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Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling
involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely
used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for
some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced 𝐾-means
clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering
algorithm SPICKER to determine the initial centroids for basic 𝐾-means clustering (𝑆𝐾-means), whereas the other employs
squared distance to optimize the initial centroids (𝐾-means++). Our results showed that 𝑆𝐾-means and 𝐾-means++ were more
robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling
scores better than or equal to those of SPICKER. Conclusions. We observed that the classic 𝐾-means algorithm showed a similar
performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both 𝑆𝐾-means and 𝐾-
means++ demonstrated substantial improvements relative to results from SPICKER and classical𝐾-means.

1. Background

A critical issue in protein three-dimensional (3D) structure
prediction using either ab initio or comparative model-
ing involves identification of high-quality protein structural
models from generated decoys [1–4]. According to the first
principle of predicting protein folding, the native structure
of the target sequence should be the conformation exhibiting
minimal free energy [5]. According to this methodology,
large-scale protein-candidate conformations are generated
using ab initio or comparative methods [6–10]. Because
accurate calculation of free energy remains unclear in theory
[11–13], a protein-structure clustering algorithm is employed,
and the structure located at the center of the largest cluster
is considered the conformation exhibiting minimal free
energy. In clustering algorithms, the 3D-structural similarity
between two proteins is used as the distance metric. Cur-
rently, root mean square deviation (RMSD) and template
modeling (TM)-scores [14] constitute the two most common

metrics for determining 3D-structural similarity between
candidates. Subsequent refinement steps are also performed
based on the conformations detected by protein-structure
clustering; however, the quality of the clustering algorithm
directly affects the final results of protein prediction.

SPICKER is a simple, widely used, and efficient program
used for identifying near-native folds. In this algorithm, clus-
tering is performed in a one-step procedure using a shrunken,
but representative, set of decoy conformations, with a pair-
wise RMSD cut-off determined by a self-adjusting iteration
proposed by Zhang and Skolnick [15]. After benchmarking
using a set of 1489 nonhomologous proteins representing all
protein structures in the PDB ≥ 200 residues, Xu and Zhang
[14] proposed a fast algorithm for population-based protein
structural model analysis. Two new distancemetrics, Dscore1
and Dscore2, based on the comparison of protein-distance
matrices for describing the differences and similarities among
models were developed [1]. Compared with existing methods
using calculation times quadratic to the number of models,
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Dscore1-based clustering achieves linear-time complexity to
obtain almost the same accuracy for near-native model
selection.

Clusco [16] is a fast and easy-to-use program allowing
high-throughput comparisons of proteinmodels using differ-
ent similarity measures (coordinate-based RMSD [cRMSD],
distance-based RMSD [dRMSD], global distance test [GDT],
total score [TS] [17], TM-score, MaxSub [18], and contact
map overlap) to cluster the comparison results using standard
methods, such as𝐾-means clustering or hierarchical agglom-
erative clustering. The application was highly optimized and
written in C/C++ and included code allowing for parallel
execution, which resulted in a significant speed increase
relative to similar clustering and scoring algorithms. Berenger
et al. [19] proposed a fast method that works on large
decoy sets and is implemented in a software package called
Durandal, which is consistently faster than other software
packages in performing rapid and accurate clustering. In
some cases, Durandal outperforms the speed of approximate
methods through the use of triangular inequalities to accel-
erate accurate clustering without compromising the distance
function.

However, most of these methods are data sensitive, with
both different protein targets and different modeling algo-
rithms potentially resulting in large differences in detecting
the center of clusters [20, 21]. One possible reason for this
is that the free energy distribution varies greatly when using
different decoy generated algorithms, such as those relying
on ab initio and comparative modeling. Identifying the near-
native conformation is also a memory and time-intensive
task [22–24]. The 𝐾-means [25, 26] clustering algorithm is
popular and has been successfully employed in many differ-
ent scientific fields due to its robust performance in several
previous applications [27, 28] and the relative simplicity of
the algorithm.However, the efficacy of𝐾-means clustering in
protein-structure prediction has not been extensively studied.

In this paper, we proposed two enhanced 𝐾-means
clustering algorithms to identify the near-native structures.
The first one employs SPICKER to determine the initial
centroids for basic𝐾-means algorithm. Another one employs
squared distance to optimize the initial centroids.

2. Methods

2.1. Data Sets of Benchmark. To comprehensively evaluate the
methodology, we applied the algorithms to two representative
datasets. The first dataset is I-TASSER SPICKER Set-II
(http://zhanglab.ccmb.med.umich.edu/decoys/decoy2.html),
which is widely used for evaluating the performance of
protein decoys clustered algorithm [29, 30]. I-TASSER
SPICKER Set-II contains the whole-set atomic structure
decoys of 56 nonhomologous small proteins ranging from 47
residues to 118 residues, average with 80.88 residues. And the
decoy average contains 439.20 conformations.

The second benchmark is CASP11 experimental targets
which were generated by Zhang-Server and QUARK. We
choose 12 hard and very hard targets from 64 CASP11 targets
published on http://zhanglab.ccmb.med.umich.edu/decoys/
casp11/. Hard and very hard targets indicate lower similarity

of PDBs and more PDBs in the decoy. The targets without
Zhang-Server and QUARK server results and with ZHANG-
Server TM-score less than 0.6 are removed from the dataset.
Each decoy contains around 1200–1500 conformations, aver-
age with 1520.83 conformations. These proteins ranged from
68 residues to 204 residues, average with 135.90 residues.

2.2. Classical 𝐾-Means Algorithm and 3D Distance Metrics

2.2.1. Classical 𝐾-Means Algorithm. 𝐾-means algorithm is
a typical clustering algorithm which is based on distance.
It uses the Euclidean metric as the similarity measure. The
closer the two objects, the greater the similarity 𝐾-means’
important criterion. 𝐾-means considers that cluster is com-
posed of many objects which are close in distance.Therefore,
its final goal is to find out the compact and independent
clusters. The selection of 𝑘 initial clustering center has great
influence on the clustering results, because in the first step𝐾-means use a random selection of arbitrary 𝑘 objects as
the initial clustering center, representing an initial cluster.
In each iteration, the remaining data set will be reassigned
to the nearest cluster according to the distance. An iteration
operation will be finished when all remaining data sets are
assigned and new clustering centers will be calculated. When
the new clustering centers are equal to the original clustering
centers or less than a specified threshold, the algorithm will
be finished. Euclidean metric is defined as follows:

Euclidean Metric

= √ 𝑁∑
1

(𝑥2𝑖 − 𝑥2𝑗) + (𝑦2𝑖 − 𝑦2𝑗 ) + (𝑧2𝑖 − 𝑧2𝑗), (1)

where𝑁 is the number of corresponding atoms between two
objects 𝑖 and 𝑗.
2.2.2. Root Mean Square Deviation and Template Modeling
Score. The similarity between two models is usually assessed
by the root mean square deviation (RMSD) between equiv-
alent atoms in the model and native structures after the
optimal superimposition [31, 32].

RMSD alone is not sufficient for globally estimating the
similarity between the two proteins, because the alignment
coverage can be very different from approaches. A template
with a 2 Å RMSD to native having 50% alignment coverage
is not necessarily better for structure modeling than the one
with an RMSD of 3 Å but having 80% alignment coverage.
While the template aligned regions are better in the former
because fewer residues are aligned, the resulting full-length
model might be of poorer quality. Template Modeling Score
(TM-score) function is a variation on the Levitt–Gerstein
(LG) score [1, 33], which was first used for sequence indepen-
dent structure alignments. TM-score is defined as follows:

TM-score = Max[ 1𝐿𝑛
𝐿
𝑎∑
𝑖

11 + (𝑑𝑖/𝑑0)2] , (2)

where 𝐿𝑛 is the length of the native structure, 𝐿𝑎 is the length
of the aligned residues to the template structure, 𝑑𝑖 is the

http://zhanglab.ccmb.med.umich.edu/decoys/decoy2.html
http://zhanglab.ccmb.med.umich.edu/decoys/casp11/
http://zhanglab.ccmb.med.umich.edu/decoys/casp11/
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Input: V is the distance matrix for protein pairs;𝑁 is the number of proteins; 𝐾 is the specified number
of the clusters; CCk is the center of the 𝑘th cluster; CCk indicates the 𝑘th new cluster center.
Output: C1 ⋅ ⋅ ⋅Ck , the 𝑘th cluster.
(1) V = Prepare_data();
(2) CCK ← startSpicker(𝑉,𝐾);
(3) while true do
(4) for 𝑛 = 1 to𝑁 do
(5) for 𝑘 = 1 to 𝐾 do
(6) DistributeToCluster(V,C𝑘, 𝑛);
(7) end for
(8) end for
(9) for 𝑘 = 1 to 𝐾 do
(10) CCk ← CaculateNewCenter(Ck);
(11) end for
(12) for 𝑘 = 1 to 𝐾 do
(13) if CCk! = CCk then
(14) flag=true;
(15) end if
(16) end for
(17) if flag= =true then
(18) break;
(19) else
(20) for 𝑘 = 1 to 𝐾 do
(21) CCk ← Update(CCk , 𝑘);
(22) end for
(23) end if
(24) end while
Output: C1 ⋅ ⋅ ⋅Ck

Algorithm 1: 𝑆𝐾-means (V, 𝑁,𝐾).

distance between the 𝑖th pair of aligned residues, and 𝑑0 is
a scale to normalize the match difference. “Max” denotes the
maximum value after optimal spatial superposition. RMSD,
TM-score, and other metrics, such as GDT-TS (Global
Distance Test) score and Qprob [34], can be used to evaluate
the distance between the two structures. SPICKER enhanced
the initial centers of the classical 𝐾-means algorithm.

One of the key limitations of the 𝐾-means algorithm
concerns the positioning of initial cluster centers. As a
heuristic algorithm, it will converge to the global optimum,
with the results potentially dependent upon the initial cluster
positions. In the classical 𝐾-means algorithm, the initial
centers are randomly generated, and different initial positions
consistently result in entirely different final cluster centers.
SPICKER represents a simple and efficient strategy for iden-
tifying near-native folds by clustering protein structures gen-
erated during computer simulations. SPICKER performs this
in a one-step procedure using a shrunken, but representative,
set of decoy conformations, with the pairwise RMSD cut-off
determined by self-adjusting iterations.

We proposed the first enhanced𝐾-means algorithm, 𝑆𝐾-
means, which integrates SPICKER with 𝐾-means as Algo-
rithm 1. In the 1st line Prepare_data() calculates the similarity
of all proteins. In the 2nd line, startSpicker(𝑉,𝐾) executes
the program, SPICKER, and gets 𝐾 initial cluster centers.
In the 6th line, function DistributeToCluster(V,C𝑘, 𝑛) is to
distribute the 𝑛th protein to the nearest cluster center C𝑘

according to the distance matrix V. And in the 10th line,
function CaculateNewCenter(Ck) is to calculate the new
center for current cluster Ck. In the 19th line, Update() copies
the new cluster center to the current cluster center. The flow
chart of 𝑆𝐾-means is depicted in Figure 1(a).

2.3. Initial Constraints Enhance the Classical 𝐾-Means Algo-
rithm. Another enhanced 𝐾-means algorithm, 𝐾-means++
[35], was applied to detect the near-native conformation.
The 𝐾-means++ algorithm maximizes the distance between
initial cluster centers, which are not chosen uniformly at
random from the data points that are being clustered. Each
subsequent cluster center is chosen from the remaining data
points, with probabilities proportional to its squared distance
from the closest existing cluster center to that point.The flow
chart of 𝑆𝐾-means is depicted in Figure 1(b).

3. Results

3.1. Benchmark on I-TASSER SPICKER Set-II. We compared
the two enhanced 𝐾-means algorithms with SPICKER by
randomly choosing the near-native conformation on I-
TASSER SPICKER Set-II.The results are shown in Table 1 and
demonstrated that the average TM-score of the first model
detected by classical 𝐾-means was 0.5717, which was similar
to results (0.5745) returned by SPICKER. Additionally, 33
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Figure 1: Algorithm flowcharts of 𝑆𝐾-means and 𝐾-means++.

(59%) of the 56 targets detected by 𝐾-means++ obtain TM-
scores better than or equal to those of SPICKER, and 42
(75%) of the 56 targets detected by 𝑆𝐾-means obtained TM-
scores better than or equal to those of SPICKER. These
results demonstrated that the performance of both of the
two enhanced 𝐾-means algorithms outperformed SPICKER
in situations involving larger populations of conformation
decoys.

A statistical significance is important to indicate that the
difference between two approaches’ sample averages most
likely reflects a “real” difference in the population. For prac-
tical purposes statistical significance suggests that the two
larger populations from which we sample are “actually” dif-
ferent. 𝑡-Test (Student’s test) is the most common form of sta-
tistical significance test. We implemented equal sample sizes𝑡-test between four methods (𝐾-means++, 𝑆𝐾-means, 𝐾-
means, and SPICKER) and randommethod in Supplemental
Information Table S1 in Supplementary Material available
online at https://doi.org/10.1155/2017/7294519. Unfortunately,
on I-TASSER Set-II dataset, none of the four methods show
statistical significance with the random method as first row
in Table S1. But when we only consider the data with decoy

size less than 520 (2nd row in Table S1),𝐾-means++ and 𝑆𝐾-
means showedmore significant than𝐾-means and SPICKER.
These indicate that 𝑆𝐾-means and 𝐾-means++ are more
likely to be different with randommethod than𝐾-means and
SPICKER when the decoy size is less than 520.

3.2. Benchmark on CASP11 Hard Dataset. Figure 2 is a
comparison of the TM-score between 𝐾-means++ and
SPICKER.The green histograms are the TM-score of SPICER
model1 from Zhanglab website (http://zhanglab.ccmb.med
.umich.edu/decoys/casp11/). The red and yellow histograms
are the TM-score values of model1 and the best model
(in model1–model5) of 𝐾-means++, respectively. For all 12
CASP11 hard targets, 8 (66.7%) out of 𝐾-means++ model1
have higher TM-score than SPICKER model1. And on three
targets (T0820, T0824, and T0857),𝐾-means++ and SPICER
have very similar results (TM-score difference is less than
0.01).𝐾-means++ increase the average TM-score 10.5% from
SPICKER’s 0.38 to 0.42. 𝐾-means++ performances perfect
on the target T0837 with TM-score 0.69 which is 60.5%
higher than SPICKER’s TM-score 0.43. 10 (83%) out 12 best
models of𝐾-means++ have higher TM-score than SPICKER.

https://doi.org/10.1155/2017/7294519
http://zhanglab.ccmb.med.umich.edu/decoys/casp11/
http://zhanglab.ccmb.med.umich.edu/decoys/casp11/
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Table 1: Comparison between 𝑆𝐾-means, 𝐾-means++, and SPICKER on 56 protein decoys.

Index PDB Lena Sizeb Bestc 𝐾-means++d 𝑆𝐾-meanse 𝐾-meansf SPICKERg Randomh

1 1abv 103 526 0.507 0.3701 0.3834 0.4910 0.3813 0.479
2 1af7 72 527 0.623 0.5009 0.5009 0.4820 0.4874 0.322
3 1ah9 63 510 0.696 0.5040 0.4743 0.4740 0.4657 0.434
4 1aoy 65 529 0.711 0.6482 0.6695 0.6695 0.6695 0.622
5 1b4bA 71 460 0.473 0.3815 0.4279 0.4270 0.4501 0.379
6 1b72A 49 534 0.697 0.5397 0.3917 0.6410 0.4923 0.562
7 1bm8 99 329 0.388 0.4332 0.3787 0.3320 0.3550 0.255
8 1bq9A 53 573 0.465 0.3540 0.3459 0.3990 0.3873 0.411
9 1cewI 108 452 0.748 0.7294 0.7154 0.7290 0.7187 0.617
10 1cqkA 101 284 0.885 0.8439 0.8539 0.8539 0.8539 0.815
11 1csp 67 315 0.753 0.7158 0.7158 0.7158 0.7158 0.686
12 1cy5A 92 273 0.893 0.8685 0.8839 0.8680 0.8839 0.876
13 1dcjA 73 525 0.368 0.3299 0.3645 0.3170 0.3264 0.334
14 1di2A 69 374 0.843 0.7622 0.7663 0.7620 0.7663 0.374
15 1dtjA 74 285 0.814 0.7901 0.7581 0.7370 0.7901 0.705
16 1egxA 115 352 0.827 0.7673 0.7673 0.7673 0.7673 0.768
17 1fadA 92 514 0.652 0.5716 0.5755 0.5755 0.5755 0.553
18 1fo5A 85 340 0.568 0.5391 0.5391 0.5230 0.5296 0.469
19 1g1cA 98 307 0.787 0.7473 0.7732 0.7800 0.7732 0.621
20 1gjxA 77 525 0.515 0.2375 0.3807 0.3810 0.4298 0.191
21 1gnuA 117 553 0.647 0.5353 0.5353 0.5350 0.5456 0.509
22 1gpt 47 469 0.553 0.5130 0.5377 0.5060 0.4927 0.517
23 1gyvA 117 337 0.776 0.7406 0.7406 0.7540 0.7406 0.753
24 1hbkA 89 300 0.708 0.6633 0.6633 0.6633 0.6633 0.599
25 1itpA 68 526 0.511 0.3069 0.3152 0.3150 0.3096 0.335
26 1jnuA 104 269 0.768 0.7457 0.7237 0.6980 0.7237 0.711
27 1kjs 74 548 0.5 0.3728 0.3728 0.3580 0.3728 0.313
28 1kviA 68 550 0.79 0.7181 0.6774 0.7220 0.6774 0.642
29 1mkyA3 81 285 0.552 0.4155 0.4155 0.4155 0.4155 0.384
30 1mla_2 70 335 0.775 0.6742 0.6226 0.6226 0.6226 0.609
31 1mn8A 84 545 0.457 0.2517 0.3543 0.3540 0.3285 0.310
32 1n0uA4 69 301 0.588 0.4753 0.4746 0.4524 0.4524 0.333
33 1ne3A 56 566 0.453 0.2523 0.3943 0.3940 0.3724 0.344
34 1no5A 93 426 0.419 0.3710 0.4247 0.4240 0.4054 0.500
35 1npsA 88 469 0.800 0.7671 0.7671 0.2810 0.7671 0.283
36 1o2fB 77 510 0.528 0.3380 0.338 0.3370 0.2690 0.379
37 1of9A 77 507 0.585 0.5469 0.494 0.5460 0.4940 0.554
38 1ogwA 72 520 0.890 0.7853 0.7853 0.7850 0.8622 0.78
39 1orgA 118 442 0.816 0.7440 0.7339 0.7440 0.7440 0.693
40 1pgx 59 562 0.551 0.5824 0.3216 0.5160 0.4446 0.51
41 1r69 61 291 0.824 0.7007 0.7255 0.7255 0.7255 0.827
42 1sfp 111 308 0.758 0.7453 0.7453 0.7454 0.7454 0.749
43 1shfA 59 536 0.836 0.5649 0.5070 0.5640 0.5070 0.408
44 1sro 71 515 0.648 0.6513 0.6513 0.5820 0.6158 0.583
45 1ten 87 294 0.851 0.8215 0.8215 0.7860 0.8215 0.781
46 1tfi 47 339 0.592 0.5061 0.5576 0.5520 0.5576 0.550
47 1thx 108 302 0.865 0.8000 0.8000 0.8000 0.8000 0.819
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Table 1: Continued.

Index PDB Lena Sizeb Bestc 𝐾-means++d 𝑆𝐾-meanse 𝐾-meansf SPICKERg Randomh

48 1tif 59 542 0.340 0.3269 0.2667 0.2660 0.3199 0.232
49 1tig 88 565 0.585 0.5524 0.4596 0.4740 0.4176 0.517
50 1vcc 76 551 0.455 0.3973 0.4066 0.3970 0.4066 0.291
51 256bA 106 506 0.814 0.7657 0.7578 0.7650 0.7578 0.723
52 2a0b 118 282 0.838 0.8083 0.8083 0.8083 0.8083 0.768
53 2cr7A 60 540 0.666 0.3589 0.5059 0.5820 0.5136 0.365
54 2f3nA 65 485 0.758 0.6403 0.7322 0.6510 0.7132 0.626
55 2pcy 99 435 0.637 0.6040 0.5795 0.6460 0.6233 0.527
56 2reb_2 60 550 0.403 0.3902 0.378 0.3290 0.3174 0.416
aThe length of the protein sequence.
bThe size of the models in the decoy.
cThe best (maximum) TM-score of the models in the decoy.
dThe TM-score of centroid model in the largest cluster selected by𝐾-means++ (bold indicates better than SPICKER).
eThe TM-score of centroid model in the largest cluster selected by 𝑆𝐾-means (bold indicates better than SPICKER).
fThe TM-score of centroid model in the largest cluster selected by𝐾-means (bold indicates better than SPICKER).
gThe TM-score of centroid model in the largest cluster selected by SPICKER.
hThe TM-score of centroid model selected by random.
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Figure 2: TM-score comparison between SPICKER and 𝐾-
means++ on 12 CASP11 targets.

When comparing with 𝑆𝐾-means, even though only 5 out
of 12 model1s have higher TM-score than SPICKER, the
average TM-score 0.38 of 𝑆𝐾-means model1 is the same to
SPICKER’s. And the average TM-score 0.46 of 𝑆𝐾-means best
model, which is the same to average TM-score of𝐾-means++
best model, is 28% higher than average TM-score 0.36 of
SPICKER model1.

4. Discussion

4.1. Case Study onThree Targets. The two enhanced 𝑘-means
methods got comparable results with SPICKER on most
targets and demonstrated perfect advantages on some rich

𝛼-helix and 𝛽-stands targets. 𝛼-helix and 𝛽-stands are two
most common secondary structure elements; they have been
researched a lot and they are very important for protein 3D
structure prediction. After exploring some targets, we find
that 𝑆𝐾-means possibly prefers to identify better 𝛽-strands
targets and 𝐾-means++ possibly prefers to recognize better𝛼-helix targets.

The 𝑆𝐾-means method achieved higher TM-score than
SPICKER on some 𝛽-strands targets, such as 1af7, 1gpt, 1sro,
and 1tig. We choose two targets (1sro and 1tig) and compared
model1 which identified by 𝑆𝐾-means (red) and SPICKER
(green) with their native (blue) conformations in Figure 3.
The black frames highlight the improvements of the 𝑆𝐾-
means algorithm relative to SPICKER results. Figure 3(a)
shows conformation identified by SPICKER (green) on 1sro;
all three 𝛽-strands are shorter than those in the conformation
identified by 𝑆𝐾-means (red). For protein 1tig (Figure 3(b)),
the conformation identified by 𝑆𝐾-means (red), the three 𝛽-
stand sections are closer to the native (blue) conformation
than the structure identified by SPICKER (green). These
results demonstrate that 𝑆𝐾-means algorithm possibly can
perform better on identifying 𝛽-stands.

Figure 4(a) shows the distribution of TM-score and
RMSD on the whole decoy with yellow points; points closing
to the left-top are better. And we point out the minimum
RMSD, the maximum TM-score, model1 identified by 𝐾-
means++, and SPICKER with different point shape and
color. In this figure, we find that model1 identified by 𝐾-
means++ is closer to native than model1 of SPICKER on
both measurement of TM-score and RMSD. In Figure 4(b),
we find that T0837 is mainly consisted of 𝛼-helix. The
conformation identified by 𝐾-means++ (red) is overlapped
with the native conformation (blue) on most 𝛼-helix area.
In the black frame, we mark an obvious difference between
model1 structure identified by SPICKER (green) and the
native structure (blue); the green 𝛼-helix has totally wrong
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(a) 1sro

(b) 1tig

Figure 3: Superimposing of 3D structures of 𝑆𝐾-means model1
(red), SPICKER model1 (green), and native (blue) on 1sro and
1tig. The black frames highlight the improvements of 𝑆𝐾-means
comparing with SPICKER.

direction. This probably validates our𝐾-means++ algorithm
having advantages in identifying better 𝛼-helix.
4.2. The Time and Space Complexity Analysis. Since, in clas-
sical𝐾-means algorithm, every iteration requires calculation
of the distance between each protein and each cluster center,
the time complexity of classical 𝐾-means algorithm is 𝑂(𝑡 ∗𝐾 ∗𝑁); here 𝑡 is the number of iteration until cluster centers
convergence. K is the specified number of clusters. And N
is number of proteins in the decoy. The space complexity of
classical 𝐾-means algorithm is 𝑂(𝑁 + 𝐾).𝑆𝐾-means is combined by SPICKER and the classical 𝐾-
means algorithm.The time complexity of SPICKER is𝑂(𝑁2∗𝑆+𝐾∗𝑁+𝑆∗𝑁+𝑁); 𝑆 is the length of the protein.Therefore,
the time complexity of 𝑆𝐾-means is 𝑂(𝑁2 ∗ 𝑆 + (1 + 𝐾 +𝑆 + 𝑡 ∗ 𝐾) ∗ 𝑁), the sum of 𝑂(𝑁2 ∗ 𝑆 + 𝐾 ∗ 𝑁 + 𝑆 ∗ 𝑁 +𝑁) and 𝑂(𝑡 ∗ 𝐾 ∗ 𝑁). The space complexity of SPICKER is𝑂(𝑁2 +𝑁∗ 𝑆 +𝐾 ∗ 𝑆 + 𝑆 +𝑁). The space complexity of 𝑆𝐾-
means algorithm is largest of space complexity of SPICKER
and classical 𝐾-means, 𝑂(𝑁2 + 𝑁 ∗ 𝑆 + 𝐾 ∗ 𝑆 + 𝑆 + 𝑁).
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(a) The visualization of TM-score and RMSD on the whole decoy 

2 4 6 8 10 12 14 16 18 20

TM
-s

co
re

RMSD

All models of the decoy
Minimum RMSD model of the decoy
Maximum TM-score model of the decoy
K-means++ model1

K-means++

SPICKER model1

SPICKER model1

Native(b) Superimposing
of T0837
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Figure 4: Visualized comparing in all models of the decoy and
superimposing of 3D structures of T0837. (a) The visualization of
TM-score andRMSDon thewhole decoys. (b)Thenative structures,
model1, identified by 𝐾-means++ and SPICKER are represented by
blue, red, and green, respectively.

𝐾-means++ is combined by initial centers choosing
process and the classical 𝐾-means algorithm. The initial
centers choosing process determines each center by the max
distance to all other proteins, which has the time complexity𝑂(𝐾 ∗ 𝑁) and the space complexity 𝑂(𝑁 + 𝐾). So the time
complexity of𝐾-means++ is 𝑂(𝐾 ∗𝑁+ 𝑡 ∗ 𝐾 ∗𝑁). And the
space complexity of𝐾-means++ algorithm is 𝑂(𝑁 + 𝐾).

The time complexities of 𝑆𝐾-means and𝐾-means++ both
have quadratic polynomial forms. The space complexity of𝑆𝐾-means and 𝐾-means++ has quadratic polynomial and
linear forms, respectively.

5. Conclusions

Here, we developed two efficient methods for identifying
high-quality protein structuralmodels by enhanced𝐾-means
clustering algorithm (𝑆𝐾-means and 𝐾-means++). Based on
the publicly available benchmark dataset (I-TASSER decoy
set-II and), our results showed that 𝑆𝐾-means and 𝐾-
means++ were more robust than SPICKER at identifying
conformational targets, with detection rates of 59% and 75%,
respectively, exhibiting TM-scores better than or equal to
those identified by SPICKER. Benchmarking on the CASP11
hard dataset, 8 (66.7%) out of 12 𝐾-means++ model1 have
higher TM-score than SPICKER model1. And the average
TM-score 0.46 of 𝑆𝐾-means best model, which is the same to
average TM-score of 𝐾-means++ best model, is 28% higher
than average TM-score 0.36 of SPICKER model1. These
findings demonstrated that the two methods achieved bet-
ter results at candidate-decoys populations conformations,
possibly due to our improvements of initializing the cluster
centers, thereby removing the element of randomness.
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Data Access

Programs and the data employed in the experiments are avail-
able at online http://eie.usts.edu.cn/whj/SK-means/index
.html.
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