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Professional phagocytes such as dendritic cells and macrophages can ingest particles larger than 0.5 μm in diameter. Epithelial cells
are nonprofessional phagocytes that cannot ingest pathogenic microorganisms, but they can ingest apoptotic cells. Inhibition of the
engulfment of apoptotic cells by the airway epithelium can cause severe airway inflammation. Vascular endothelial growth factor
(VEGF) is an angiogenesis-promoting factor that can mediate allergic airway inflammation and can promote airway epithelial cells
(AECs) proliferation, but it is not clear whether it affects the engulfment of apoptotic cells by AECs. In the present study, VEGF
inhibited engulfment of apoptotic cells by AECs via binding to VEGF receptor(R)2. This inhibitory effect of VEGF was not
influenced by masking of phosphatidylserine (PS) on the surface of apoptotic cells and was partially mediated by the PI3K-Akt
signaling pathway. VEGF inhibition of phagocytosis involved polymerization of actin and downregulation of the expression of
the phagocytic-associated protein Beclin-1 in AECs. Since engulfment of apoptotic cells by AECs is an important mechanism for
airway inflammation regression, VEGF inhibition of the engulfment of apoptotic cells by airway epithelial cells may be
important for mediating allergic airway inflammation.

1. Introduction

Phagocytic cells can engulf particles larger than 0.5μm in
diameter [1]. Specialized or professional phagocytes like den-
dritic cells (DCs) and macrophages play an important role in
the resistance to infection by pathogenic microbes and main-
taining homeostasis. Nonprofessional phagocytes including
epithelial cells and fibroblasts cannot phagocytize pathogenic
microorganisms but can ingest apoptotic cells, a process
known as efferocytosis [2, 3]. Apoptosis, or programmed cell
death, is a key process in tissue homeostasis, and phagocy-
tosis of apoptotic cells by the tissue epithelium protects
against inflammatory or immunogenic responses to the
dying cells [4]. A recent study by Juncadella et al. found
that phagocytosis of apoptotic airway cells depended on
Ras-related C3 botulinum toxin substrate 1 (Rac1), which is
a GTPase, and that defective phagocytosis contributed to
allergic airway inflammation [5]. Asthma is a chronic airway

inflammation involving a number of different cells and
diverse cellular components [6]. Previous studies described
VEGF-mediated allergic airway inflammation in asthmatic
mice [7, 8]. The mechanism is not clear, but it is known that
the angiogenesis-promoting factor VEGF can promote the
survival and proliferation of airway epithelial cells (AECs)
[9]. It is not known whether VEGF can promote phagocyto-
sis by AECs.

Recent studies have described VEGF involvement in
macrophage phagocytosis. VEGF expression was negatively
correlated with the phagocytic function of macrophages in
a study finding that treatment with T11 target structure
membrane glycoprotein promoted phagocytosis and reduced
VEGF expression [10]. The binding of lectin agglutinin by
immature DCs was found to inhibit phagocytosis and
increase intracellular VEGF [11]. This study investigated
the effect of VEGF on efferocytosis by AECs. VEGF inhibited
epithelial cell efferocytosis via VEGFR2, was not affected by
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the masking of PS on the surface of apoptotic cells, and was
partially mediated by the PI3K-Akt pathway.

2. Materials and Methods

2.1. Isolation and Culture of AECs. Primary AECs were iso-
lated from BALB/c mice as previously described [5]. Briefly,
mice were intubated and leukocytes were removed by bron-
choalveolar lavage with phosphate-buffered saline (PBS), and
the lungs were then lavaged with PBS via the pulmonary artery
until they appeared white. Lung tissue was removed and
digested at 37°C for 30min with 0.25% trypsin, 100μg/ml
DNase, and 40μg/ml collagenase. The resulting liquid was
passed through 200 and 400 mesh filters; the filtrate was
washed twice with PBS containing 1% fetal bovine serum
(FBS), and the red blood cells were removed by centrifugation.
After resuspending and washing the cell suspension, CD45-
positive cells were removed by magnetic bead sorting. CD45-
negative cells were resuspended in Dulbecco’s modified Eagle
medium containing 10% FBS, inoculated into 6-well plates,
and cultured at 37°C for 2h. Nonadherent cells were collected
and seeded into 6-well plates precoated with collagen and
maintained in a 37°C incubator until use.

2.2. Induction and Assay of Apoptosis. AECs were seeded into
6-well plates at 1 × 106/well and stimulated with 50μM of
curcumin for 72 h. The cells were washed twice with PBS
containing 1% FBS, and then gently resuspended in 195μl
Annexin V-fluorescein isothiocyanate (FITC) binding solu-
tion followed by incubation with 5μl of Annexin V-FITC
for 20min at room temperature. Apoptotic cells were assayed
with a FACSCalibur flow cytometer.

2.3. Assay of Phagocytosis. AECs were seeded in 12-well
plates at 5 × 104/well, stimulated with 1ng/ml, 10 ng/ml,
100 ng/ml, 300 ng/ml, 500 ng/ml, or 1000ng/ml VEGF for
6 h, before adding 1 × 105 fluorescein isothiocyanate (FITC)-
labeled curcumin-induced apoptotic cells. After 4 h, the epi-
thelial cells were washed twice with PBS before assay of
phagocytosis by FITC fluorescence using a FACSCalibur flow
cytometer. To assay the blocking of phagocytosis, epithelial
cell cultures were treated with anti-VEGFR2 antibodies,
Wortmannin, or cytochalasin D for 2 h before stimulation
with 500ng/ml VEGF.

2.4. Assay of PS on the Surface of Apoptotic Cells. Cells were
washed with PBS, suspended in Annexin V-FITC binding
solution, and incubated at room temperature with Annexin
V-FITC staining solution for 20min. Surface PS was assayed
with a FACSCalibur flow cytometer.

2.5. Assay of VEGFR2 on the Surface of AECs. Cells were
seeded in 6-well plates, incubated for 6 h, washed twice with
PBS containing 1% FBS, and then incubated with FITC-
labeled VEGFR2 antibody for 30min on ice. The cells were
then washed twice with PBS and fixed with 4% paraformal-
dehyde. Cell surface expression of VEGFR2 was assayed by
flow cytometry.

2.6. Western Blot Assay. Cellular proteins were extracted with
NP40 cell lysis buffer, and the protein concentration was
determined with a bicinchoninic acid assay. The extracted
proteins (30μg per channel) were separated on 10% sodium
dodecyl sulfate–polyacrylamide gels by electrophoresis and
then transferred to nitrocellulose membranes. Membranes
were blocked with 5% BSA for 2 h at room temperature and
incubated overnight at 4°C with anti-VEGFR2, anti-p-Akt,
anti-Beclin1, anti-β-actin, and anti-GAPDH antibodies.
The membranes were then incubated with horseradish
peroxidase-labeled goat antirabbit secondary antibody for
2 h at room temperature. The blots were visualized with a
Beyo Electrochemiluminescence (ECL) Plus kit, and optical
density analysis was performed with Image J software.

2.7. Statistical Analysis. Data were reported as means ±
standard deviation. Statistical analysis was performed using
SPSS 10.0 software. Analysis of variance was used for group
comparisons. P values <0.05 was considered statistically
significant.

3. Results

3.1. VEGF Inhibits Efferocytosis by AEC. The morphology of
cultured primary AECs was not changed by 500ng/ml VEGF
(Figure 1(a)). After 72h incubation with 50μM curcumin,
>98% of the AECs became Annexin V-binding PS-positive
apoptotic cells (Figure 1(b)). Airway epithelial cell cultures
were stimulated with VEGF for 6h and then cocultured with
FITC-labeled apoptotic cells. As shown in (Figure 1(c)), 300,
500, and 1000ng/ml VEGF significantly inhibited the phago-
cytosis of apoptotic cells, with the greatest inhibition caused
by 500ng/ml. The results of treating AECs with 500ng/ml
VEGF for 3, 6, and 9h are shown in (Figure 1(d)). As the
strongest inhibition of phagocytosis occurred after 6h, epithe-
lial cell cultures were treated with 500ng/ml VEGF for 6h in
subsequent procedures.

3.2. VEGF Inhibition of Phagocytosis Was Not Associated with
PS Masking on the Apoptotic Cell Surface. Phagocytosis is
mediated by binding PS on the surface of apoptotic cells
[12]. Whether VEGF inhibition of phagocytosis associated
with PS was investigated by flow cytometry of PS on apoptotic
cells after treatment of epithelial cell cultures with VEGF.
Compared with PBS controls, there were no significant
changes in PS expression by apoptotic cells stimulated by
VEGF (Figure 2). The inhibition of the engulfment of apopto-
tic cells by AECs was not associated with masking PS on the
surface of apoptotic cells.

3.3. VEGF Inhibition of Phagocytosis Is Mediated by VEGFR2.
VEGFR2 is known to transduce VEGF signaling [13]. As
shown in (Figure 3(a)), flow cytometry revealed that VEGFR2
was expressed on the surface of the resting AECs
(mean fluorescence intensity = 40:3 ± 5:7 for VEGFR2 versus
7:8 ± 3:6 for the isotype control). VEGFR2 expression was also
assayed by western blotting in three airway epithelial cell iso-
lates (Figure 3(b)). Exposure of airway epithelial cell cultures
to a VEGFR2 blocking antibody before being VEGF treatment
resulted in complete loss of VEGF inhibition of phagocytosis
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Figure 1: VEGF inhibits the engulfment of apoptotic cells by AECs. (a) Isolated primary AECs were inoculated into 6-well plates (5 × 104
cells/well) and treated with 500 ng/ml VEGF for 6 h. (original magnification ×400). (b) Epithelial cells were inoculated into 6-well plates
(1 × 106 cells/well) and treated with 50 μM curcumin for 72 h. Cell surface PS expression was assayed by flow cytometry. (c) Epithelial
cells were inoculated into 12-well plates (5 × 104 cells/well) and treated with 1, 10, 100, 300, 500, or 1000 ng/ml VEGF for 6 h before
incubation with 105 FITC-labeled curcumin-induced apoptotic cells for 4 h. After washing with PBS, phagocytosis by epithelial cells was
assayed detection of fluorescence by flow cytometry. ∗∗P < 0:01 compared with 0 ng/ml VEGF. (d) Epithelial were seeded in 12-well plates
(5 × 104 cells/well) and treated 500 ng/ml with VEGF for 3, 6, or 9 h before incubating for 4 h with FITC-labeled curcumin-induced
apoptotic cells. Engulfment of apoptotic cells was assayed by flow cytometry. ∗∗P < 0:01 compared with 0 h.
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of apoptotic cells (Figure 3(c)). VEGF inhibition of phagocyto-
sis required VEGFR2.

3.4. VEGF Inhibition of Phagocytosis Is Mediated by PI3K-Akt
Signaling. PI3K-Akt signaling is known to be stimulated by
binding to VEGFR2 [14]. As shown in (Figure 4(a)), VEGF
activated Akt as early as 15min after stimulation. Signaling
continued for 45min and decreased by 60min. Blocking
PI3K-Akt signaling by 1μM Wortmannin partially blocked
the inhibition of phagocytosis by VEGF (Figure 4(b)). This
result indicated that the inhibition of phagocytosis by VEGF
was partially mediated by PI3K-Akt signaling.

3.5. VEGF Inhibition of Phagocytosis Is Associated with
Polymerization of Cytoplasmic Actin. Phagocytosis requires
polymerization and depolymerization of cytoplasmic actin
regardless of the type of phagocytic receptor or the particle
size [15]. To investigate the role of actin in VEGF inhibition
of phagocytosis, AECs were pretreated with cytochalasin D,
an inhibitor of actin polymerization, before VEGF treatment.
Following cytochalasin pretreatment, the percentages of
phagocytized apoptotic cells in the VEGF-treated and control
cultures were similar (Figure 5). The inhibition of phagocyto-
sis by VEGF involved polymerization of cytoplasmic actin.

3.6. VEGF Inhibits Beclin1 Protein Expression in AECs. Beclin1
can bind to phagosomes and phagocyte-associated receptors
in the absence of autophagosomes and is involved in macro-
phage phagocytosis [16]. We investigated whether VEGF
affected Beclin1 protein expression in this study. VEGF treat-
ment inhibited Beclin1 protein expression in AECs (Figure 6).
This suggests that Beclin1 may also be involved in the phago-
cytosis by nonprofessional phagocytic cells.

4. Discussion

In mammals, the VEGF proteins family members, VEGF-A,
-B, -C, -D, and placental growth factor (PLGF), have a char-
acteristic receptor binding pattern that includes endothelial
tyrosine kinases including VEGFR1, R2, and R3. VEGF stim-
ulates angiogenesis and lymphangiogenesis mediated by
VEGFR2 [17, 18]. Peach et al. reported that binding to
VEGFR2 promoted endothelial cell proliferation, survival,
migration, and vascular permeability [19]. In this study,
VEGF inhibited phagocytosis of AECs following VEGFR2
binding. VEGF is known to activate downstream signaling
by PI3K-Akt, PKC, FAK, Ras-MAPK, and other pathways
[20]. The PI3K-Akt pathway is present in many types of cells
and regulates the activity of downstream proteins that medi-
ate cell proliferation, differentiation, adhesion, migration,
apoptosis, and other activities and is associated with inflam-
mation, tumorigenesis, and autoimmune diseases [21, 22].
Ma et al. reported that in a lipopolysaccharide-mediated
model of airway inflammation, PI3K-Akt signaling mediated
MUC5AC expression and the release of interleukin (IL)-6
and IL-1β by AECs, and influenced mucus secretion in AECs
by regulating the production of reactive oxygen species [23].
PI3K-Akt activation is also associated with phagocytosis. Yeo
et al. found that FcγR-mediated macrophage phagocytosis
was dependent on PI3K-Akt pathway signaling [24], and Lv
et al. found that it regulated macrophages phagocytosis of
staphylococcus aureus [25]. In this study, VEGF activated
the PI3K-Akt pathway in AECs, and VEGF inhibition of
AECs phagocytosis partially disappeared when the PI3K
pathway was blocked. The results indicate that in this study,
the PI3K pathway partially mediated VEGF activity required
for phagocytosis of apoptotic cells.

Rearrangement of the actin cytoskeleton occurs in all
types of phagocytosis and is involved in the acquisition of
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Figure 2: VEGF inhibition of phagocytosis was not associated with masking of PS on the apoptotic cell surface. AECs were inoculated into 12-
well plates (5 × 104 cells/well) and treated with curcumin for 72 h before incubation with PBS or 100 ng/ml, 500, or 1000 ng/ml VEGF for 6 h.
After washing with PBS, the cell surface PS was assayed by flow cytometry. A representative flow cytometry assay is shown on the left and the
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phagocytic targets, pseudopod extension, encapsulation of
particles, and fusion of closed vacuoles regardless of the
type of phagocytic receptor and the size of the phagocytic
particle [26]. Actin polymerization in phagocytosis is Rac-
1-dependent. In this study, VEGF inhibition of phagocytosis
completely disappeared after pretreatment of AECs cultures
with cytochalasin-D, which inhibits actin polymerization.
This indicates that VEGF mediated the inhibition of phago-
cytosis by its effect on actin polymerization.

In addition to exogenous factors, many intracellular
regulatory proteins can regulate phagocytosis in health
and disease. Beclin1 is an autophagy-related protein that
consists of 450 amino acids and regulates the lipid kinase
activity of PI3K catalytic unit in the synthesis of phos-
phatidylinositol triphosphate. Beclin1 is also associated with
phagocytosis, and it can bind to phagosome and phagocyte-
associated receptors in the absence of autophagosomes [16].
Lucin et al. reported that glial cells isolated from Alzhei-
mer’s disease showed significantly reduced beclin 1 protein
levels and Beclin1-mediated glial-cell phagocytosis [27]. In
this study, VEGF decreased Beclin1 expression in AECs,

suggesting that Beclin1 may also be active in nonprofes-
sional phagocytes.

Nonprofessional phagocytes such as epithelial cells can
phagocytose apoptotic cells but not microorganisms. For
example, after the cessation of breastfeeding, the clearance
of apoptotic mammary epithelial cells is mainly by epithelial
cells, not macrophages or other inflammatory cells [28]. Epi-
thelial cells are important structural elements in nearly all
types of tissues; consequently, phagocytosis has an important
role in maintaining tissue homeostasis. For example, Lee
et al. found that the numbers of uncleared apoptotic cells in
the intestine of mice with enteritis were increased compared
with healthy mice. Increasing the phagocytic activity of the
intestinal epithelial cells reduced intestinal inflammation
[29]. Similarly, Juncadella et al. reported that inhibition of
phagocytosis of apoptotic cells in the airway epithelium
resulted in allergic airway inflammation [5]. In this study,
VEGF inhibited phagocytosis of AECs, thus increasing the
chance of the release of inflammatory molecules from apo-
ptotic cells. That may account for VEGF mediation of airway
inflammation in asthmatic mice.
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Figure 3: VEGF inhibition of phagocytosis is mediated by VEGFR2. (a) VEGFR2 expression on the surface of AECs was assayed by flow
cytometry. A graph of the geometric mean VEGFR2 fluorescence intensity is on the left. ∗P < 0:05, compared with the Iso group. A
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5. Conclusion

In conclusion, VEGF inhibited phagocytosis by AECs by
activating VEGFR2. The effect of VEGF was not associated

with masking PS on the surface of apoptotic cells and was
partially mediated by the PI3K-Akt pathway. VEGF activity
was associated with inhibition of actin polymerization and
decreased Beclin1 protein expression in cultured AECs.
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