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Abstract

Motivation: Actin filaments (AFs) are dynamic structures that substantially change their organization over time. The
dynamic behavior and the relatively low signal-to-noise ratio during live-cell imaging have rendered the quantifica-
tion of the actin organization a difficult task.

Results: We developed an automated image-based framework that extracts AFs from fluorescence microscopy
images and represents them as networks, which are automatically analyzed to identify and compare biologically
relevant features. Although the source code is freely available, we have now implemented the framework into a
graphical user interface that can be installed as a Fiji plugin, thus enabling easy access by the research community.
Availability and implementation: CytoSeg 2.0 is open-source software under the GPL and is available on Github:

https://github.com/jnowak90/CytoSeg2.0.
Contact: nowakj@student.unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The actin cytoskeleton underpins many cellular processes, such as
cytoplasmic streaming, cell wall organization and trafficking of
vesicles inside the cell (Derksen ez al., 1990). Together with microtu-
bules, the actin filaments (AFs) provide the backbone of the
cytoskeleton.

Plant AFs have been visualized via immunolabeling in fixed sam-
ples or through fluorescently tagged cytoskeleton-binding proteins,
such as GFP-fABD2, Lifeact or mTalin (Kost et al., 1998; Riedl
et al., 2008; Sheahan et al., 2004; Wick et al., 1981; Wilsen et al.,
2006). Measurements of the organization and behavior of the AFs
have therefore been steadily improving (Yoneda et al., 2007).
Although automated frameworks for the analysis of microtubule or-
ganization and dynamics are well-established (Faulkner et al., 2017;
Kapoor et al., 2019), it has proven more challenging to device-auto-
mated frameworks to quantify features of the actin cytoskeleton,
mainly due to its rapid dynamics. Nevertheless, several automated
frameworks for AF analyses are available, including measurements
of length, orientation and intensity distribution of filaments
(Alioscha-Perez et al., 2016; Rogge et al., 2017; Zhang et al., 2017).

Recently, we published an automated framework which extracts
networks from segmented AFs (Breuer er al., 2017). We used
transport-related network properties to quantify the organization of
the actin cytoskeleton and showed that AFs in Arabidopsis thaliana
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hypocotyls are optimized for efficient transport. Moreover, our
framework can be used to compare the actin cytoskeleton organiza-
tion between different organisms and different cell types (Yu ez al.,
2019) but can also be used for other types of biological systems (see
Supplementary Material).

Yet, the framework was provided as plain code that needed man-
ual adjustments for individual experiments. Therefore, we present a
graphical user interface (GUI) called CytoSeg 2.0 that facilitates easy
use of the published algorithms and individualized gauging of parame-
ters. The GUI was developed as a plugin for Fiji, which is widely used
image processing software for biologists (Schindelin ez al., 2012).

2 Implementation and functionality

The CytoSeg 2.0 GUI is built as a macro for the Fiji imaging soft-
ware. The code can be downloaded from Github (https://github.
com/jnowak90/CytoSeg2.0) and should be extracted in the plugins
folder of the Fiji application, which makes the GUI visible in the Fiji
plugins menu. To use the GUI, both Fiji and Python 3 have to be
installed with related plugins and modules (listed on the Github
page).

The GUI is built for the analysis of fluorescently tagged actin
cytoskeleton image stacks from living cells in TIFF format.
However, it is also possible to use the GUI for immunolabeled AFs
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Fig. 1. Overview of the CytoSeg 2.0 workflow. (A) Scheme of the four different steps of the image processing pipeline. (B) GUI for the parameter gauging and resulting seg-
mented actin cytoskeleton (red). (C) Pre-processed image with the selected region of interest (blue) and overlayed extracted network (purple/orange)

or other types of filamentous structures (see Supplementary
Material). The user can select a single image stack (e.g. image stack
of different time points) or a folder of images/movies as input. Large
image files should be used with caution due to long running times.
Demo images of control and LatB-treated actin cytoskeletons are
provided on the Github page.

The pipeline of CytoSeg 2.0 is partitioned into four steps: image
pre-processing, parameter gauging, image segmentation and network
extraction (Fig. 1A). The user can select whether to choose a com-
plete analysis which includes all four steps, or a specific step of this
series. During the pre-processing, the image is corrected for cell drift
(stack registration), loss of fluorescence due to long light exposure
(bleach correction) and uneven illuminated background (background
subtraction). Maximum intensity Z-projected images are then used
to manually select the region of interest, stored as an image mask
(Fig. 1C). The mask is necessary for both the parameter gauging and
the image segmentation. The segmentation of the image into actin
cytoskeleton and background is dependent on four parameters: vyigen
(filament width), vy (adaptive median threshold), vg, (size of
smallest components) and v, (average filament intensity). To find
the parameters for the optimal segmentation of the actin cytoskel-
eton, we added a GUI for the gauging of the parameters (Fig. 1B).

Here, the user can change the four parameters by dragging the
corresponding sliders. The resulting segmented, and skeletonized
actin cytoskeleton is then highlighted (red, Fig. 1B), and changes can
be made until optimal segmentation is achieved. The selected
parameters can be saved and will be stored for future analysis. To
make sure that the selected parameters can be used for multiple
images of the same experiment, several images should be tested dur-
ing the gauging process.

Once the gauged parameters are selected, they can be used for
the image segmentation. The segmented image is obtained by using
a Gaussian filter (vyiqwm), adaptive thresholding (vwidihs Vthres), re€-
moval of small particles (v,.) and removal of filaments below a cer-
tain threshold (vjy,).

Networks are then extracted from the segmented image by defining
crossings or endpoints of the skeleton as nodes, connected by edges if
they can be directly reached on the skeleton. Furthermore, the edges
are weighted according to their edge capacity which is defined by the
weight and length of the underlying filament (Fig. 1C). Apart from the
extracted networks, the algorithm also creates randomized networks
that maintain the edge length distribution and number of nodes.

The resulting extracted and random networks, as well as a table of
calculated transport-related network properties (average edge cap-
acity, assortativity, number of connected components, average path
length, algebraic connectivity and edge angles) are saved in a new fold-
er for every image and can be used for further analysis, such as for
comparison of network properties between different conditions, alter-
ation of properties over time or testing for statistical significance.
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