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Abstract

Although the number of reconstructed metabolic networks is steadily growing, experimental data integration into these
networks is still challenging. Based on elementary flux mode analysis, we combine sequence information with metabolic
pathway analysis and include, as a novel aspect, circadian regulation. While minimizing the need of assumptions, we are
able to predict changes in the metabolic state and can hypothesise on the physiological role of circadian control in nitrogen
metabolism of the green alga Chlamydomonas reinhardtii.

Citation: Schäuble S, Heiland I, Voytsekh O, Mittag M, Schuster S (2011) Predicting the Physiological Role of Circadian Metabolic Regulation in the Green Alga
Chlamydomonas reinhardtii. PLoS ONE 6(8): e23026. doi:10.1371/journal.pone.0023026

Editor: Miguel A. Blazquez, Instituto de Biologı́a Molecular y Celular de Plantas, Spain

Received March 16, 2011; Accepted July 9, 2011; Published August 22, 2011
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Introduction

Metabolic pathway analysis is a well established and very useful

tool in Systems Biology [1,2]. One concept in this field is that of

elementary flux modes (EFMs), which represents a minimal set of

reactions that can operate at steady state with all reactions

proceeding in the thermodynamically feasible direction [3]. The

EFM approach has proved its value in diverse biotechnological

applications [4]. It has been used to find efficient routes for the

production of particular target compounds, such as fatty acids in

plants [5], or methionine [6] and cyanophycin [7] in bacteria, to

find possible targets for the engineering of metabolic networks

through knock-outs or knock-ins [8,9], as well as to assess the

impact of enzyme deficiencies [10,11] or the robustness of

metabolic networks [12]. Note that in contrast to optimality based

approaches like Flux Balance Analysis [13], EFM analysis has the

advantage of providing a more comprehensive overview of the

existing routes through a given network by providing a complete

data set of possible fluxes rather than solely an optimality restricted

set. A disadvantage arises from the problem of combinatorial

explosion [14]. Therefore, it is impossible to compute all EFMs in

genome-scale models up to now, although advances have been

made recently coping with large networks [15].

Beside a growing number of methods for the analysis of

metabolic networks, connecting experimental data to reconstruct-

ed models remains a major task to systems biology [16–20].

However, this potential should not be underestimated, as immense

data are produced by modern techniques, such as high throughput

sequencing, as well as microarrays and proteomics. Moreover,

inherent information in DNA sequences, like recognition motifs,

can be utilised as well and ultimately applied to network analysis,

linking genomics, proteomics and metabolomics. This offers an

access to regulation processes that possibly lead to altered

metabolic fluxes and consequently influence the entire metabolism

of an organism.

To demonstrate the usefulness of our method with a case study,

we describe the analysis of a reconstructed metabolic network of

nitrogen uptake in the green algae Chlamydomonas reinhardtii, a

model process for green crop plants. Assimilating nitrogen is a key

step of metabolism required by phototrophic organisms in order to

grow and survive in natural habitats [21]. Nitrogen metabolism in

this green algae is circadian-clock regulated, via an mRNA

binding factor named CHLAMY1, a heteromer that consists of

two subunits, C1 and C3, the latter being well conserved in

humans [22]. This regulator is known to bind UG-repeats that

comprise at least seven non-interrupted UG-repetitions and are

located in the 39 UTR of various mRNAs including nitrite

reductase and argininosuccinate lyase [22–24]. It has been shown

experimentally that introduction of UG-repeats into the 39 UTR

of reporter constructs results in circadian expression [25]. The

binding activity is controlled by the circadian clock, as it increases

at the end of the day and decreases again at the end of the night.

As activity levels of nitrite reductase, whose mRNA bears a UG-

repeat, and of reporters that are under control of the UG-repeats

are highest at the beginning of the day, it is assumed that

CHLAMY1 binding prevents translation during the night [25,26].

Here, we combine genome based sequence and metabolic

pathway analyses by computing EFMs. This allows us to evaluate

the changes in nitrogen assimilation and amino acid anabolism

that are caused by CHLAMY1 binding and thus, determine the

physiological role of this circadian RNA-binding factor. We study

amino acid biosynthesis of alanine, glycine, asparagine, lysine and

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e23026



arginine, which permits physiological interpretation and compar-

ison to known data from other organisms. These amino acids were

chosen as they are either overrepresented in C. reinhardtii or contain

a high nitrogen content in their side chain and, thus, are

particularly suitable for nitrogen storage.

As we will show, the application of optimality principles that

solely focus on analysing maximum yields like in Flux Balance

Analysis [13], only offers a limited view on a given system and is

therefore not suitable for our approach as the complete capability

of the network has to be taken into account.

Results

As it is not feasible to analyse the complete metabolism of C.

reinhardtii using elementary flux mode analysis, we first had to

confine our model. C. reinhardtii is able to grow either autotrophi-

cally, heterotrophically or mixotrophically. As we simulate only

metabolism during the night here, we have chosen acetate and

glucose-6-phosphate (G6P) as carbon sources. G6P is provided by

starch degradation. The degradation is not explicitly included into

the model.

To model the nitrogen uptake, we analysed the biosynthesis of

five different amino acids. First, we selected amino acids that have

the highest nitrogen to carbon ratio, those are lysine, asparagine

and arginine. Furthermore, we analysed the amino acid

composition of all predicted proteins in C. reinhardtii and identified

glycine and alanine as most abundant and highly overrepresented

amino acids compared to other organisms (Fig. 1). Additionally,

glutamate, glutamine and aspartate are present in the model as

intermediates.

Taken together, our reconstructed model of nitrogen metabo-

lism of C. reinhardtii comprises 105 reactions and 95 metabolites.

An overview is given in Fig. 2, while a complete list of reactions

can be found in the Supplementary Tables S1 and S2. The

sequence analysis revealed that six enzymes are entirely encoded

by mRNAs that contain UG§7-repeats in their 39 UTRs and are

hence presumably under control of CHLAMY1 (Fig. 2).

The computation of EFMs gave rise to 404252 EFMs for

glycine, 684036 EFMs for alanine, 177294 EFMs for asparagine,

406560 EFMs for lysine and 1352352 EFMs for arginine

biosynthesis, when G6P as well as acetate were assumed to be

available. Three example EFMs are depicted in Fig. 3. The shown

EFMs producing asparagine and lysine are the most efficient ones

with respect to the yield of amino acids under study per mole

carbon source. As for arginine, a less efficient mode is shown to

reduce overlap with the other depicted modes and to show another

variant, running via the pentose phosphate pathway.

Maximum carbon yields
To compare the biosynthetic yield of different amino acids, we

calculated a so called carbon yield. As described in the Analysis

section it was calculated based on the stoichiometric equations of

EFMs. It represents the number of carbon atoms in the target

amino acid divided by the number of carbon atoms in the carbon

source. As beside G6P and acetate, CO2 was the only carbon

source that was set external, a carbon yield lower than 1

corresponds to a release of CO2 during biosynthesis. In contrast,

a carbon yield greater than one corresponds to a non

photosynthetic incorporation of CO2.

We compared maximum carbon yields of EFMs for the

unperturbed system and the extreme case, where the mRNAs of

enzymes under control of CHLAMY1 are completely downreg-

ulated. For this analysis, we first computed all EFMs that convert

one of the given carbon sources (G6P or acetate) into glycine,

alanine, asparagine, lysine or arginine (Fig. 4). During a second

run we removed those enzymes whose translation is potentially

downregulated during the night by CHLAMY1. As argininosuc-

cinate lyase (ASL) is encoded by an UG§7-repeat-containing

mRNA and subsequently modelled inactive, there are no EFMs

for arginine synthesis left under these conditions. Furthermore,

Figure 1. Distribution of amino acids among different species. Percentage share of amino acids are given for each amino acid using one
letter code. The amino acid compositions of selected organisms were derived from complete genome ORF prediction from different databases (see
Analysis section). HSA: Homo sapiens, MMU: Mus musculus, ATH: Arabidopsis thaliana, CRE: Chlamydomonas reinhardtii.
doi:10.1371/journal.pone.0023026.g001
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Figure 2. Overview of the reconstructed network of nitrogen metabolism in C. reinhardtii. Co-factors such as ATP and NAD(P)H creation or
consumption, or CO2 , phosphate and water as well as the reactions of pyrophosphatase and the electron transport chain are not shown. For a list of
all abbreviations, modelled reactions and species, see Supplementary Tables S1 and S2. External metabolites are framed and enzymes, whose mRNAs
are downregulated by CHLAMY1 are encircled. As only the NADPH dependent variant of isocitrate dehydrogenase (IDH) is affected by CHLAMY1, it is
marked with a dashed circle.
doi:10.1371/journal.pone.0023026.g002
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Figure 3. Three example elementary flux modes (EFMs). Solid arrows, most efficient EFM producing asparagine; dashed arrows, most efficient
EFM producing lysine; dotted arrows, one selected EFM producing arginine via the pentose phosphate pathway.
doi:10.1371/journal.pone.0023026.g003
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since nitrite reductase has the same property, we do no longer find

EFMs with nitrate and nitrite consumption if we assume complete

downregulation of CHLAMY1 regulated mRNAs and thus,

corresponding enzymes. Hence, in this case all EFMs use

ammonium as sole nitrogen source.

Beside glycine, the maximum yields for biosynthesis of all amino

acids are reduced, if complete downregulation by CHLAMY1 was

assumed. However, analysing maximum yields only uses a very

small portion of the information about the network’s metabolic

capabilities. In contrast, EFMs offer a more detailed view on the

metabolic capacity. This significant advantage will be exploited

below.

Yield distribution
To make use of the full potential of flux distribution, we first

took all EFMs and respective yields into account, rather than

analysing solely optimised fluxes with respect to carbon yields.

Again, as ASL is a key step in arginine biosynthesis that is

inactivated by CHLAMY1, we did not conduct any further

analysis of arginine metabolism.

From Fig. 5 it can be observed that CHLAMY1 predominantly

downregulates pathways that have lower yields. Although, the

maximum yields decrease the mean carbon yields for all amino

acids increase after removing EFMs affected by CHLAMY1

(Fig. 6).

Weighted influence
Note that until now all EFMs were discarded that contain at

least one reaction that is under influence of CHLAMY1. However,

such drastic downregulation is questionable and asks for a more

realistic modelling.

In the following calculations we therefore circumvented the need

to inactivate fluxes, regulated by CHLAMY1, which is usually

enforced by EFM analysis. We now assume downregulation of the

corresponding fluxes to 10% due to CHLAMY1 binding, rather

than complete inactivation. We reduced the impact of inhibited

EFMs by weighting EFMs differently, depending on whether they

are under CHLAMY1 control or not (Fig. 7). The extent of

downregulation by CHLAMY1 is chosen arbitrarily, as corre-

sponding quantitative data is not available. However, reduction

factors deviating slightly from 10% do not change the result

qualitatively here. Note that downregulation leads to a reduced

increase of the interquartile range compared to inactivation (see also

Fig. 5). This is due to the large portion of CHLAMY1 controlled

fluxes numbering 388832 (96.19%) for glycine, 674436 (98.6%) for

alanine, 173543 (97.88%) for asparagine and 394404 (97.01%) for

lysine biosynthesis, respectively (Fig. 8). However, this provides

a more realistic view on the metabolic state than complete

downregulation.

Additionally, we calculated the mean of molar yields by using

the formula for weighted means given by Eq. (3). This enables us

to weight every derived yield and hence, also the underlying flux,

represented by its respective EFM. We applied a weight of 10% to

EFMs affected by CHLAMY1 and a unity weight to all remaining

fluxes. The resulting mean yield is considerably increased upon

CHLAMY1 binding (Fig. 9).

Discussion

In this study, we have outlined a method that interconnects

sequence based knowledge with metabolic pathway analysis. The

method has been illustrated by nitrogen metabolism of C.

reinhardtii, which is under the control of the circadian clock. The

Figure 4. Comparison of maximum carbon yields that are obtained by EFM analysis. The carbon yield was calculated based on
stoichiometric equations as described in the Analysis section. It represents the number of carbon atoms in the target amino acid divided by the
number of carbon atoms in the carbon source. The comparison is based on ammonium uptake and all possible carbon sources (G6P and acetate).
Yields correspond to two different conditions: C, the complete set of enzymes are active at normal rate; UG{, all CHLAMY1 regulated mRNAs and
thus, related enzymes are completely inactive. In this all-or-nothing modelling approach, growth on nitrate or nitrite, as well as arginine biosynthesis,
is impossible if CHLAMY1 regulation is considered, since nitrite reductase (NiR) and argininosuccinate lyase (ASL) are essential for these processes (see
text and Fig. 2).
doi:10.1371/journal.pone.0023026.g004

Predicting the Role of Circadian Regulation

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23026



calculated elementary flux modes provide a data set that is well-

suited for quantifying and understanding the complex architecture

of this network. The large number of modes (e. g. 1352352 for

arginine) point to a considerable redundancy of this network.

Intriguingly, our results show that downregulation of circadian

controlled enzymes improves carbon distribution and thus,

Figure 5. Carbon yield distribution considering complete inactivation. Box plots (with whiskers ranging from minimum to maximum and
thick solid line indicating the median) of carbon yield distribution for glycine (Gly), alanine (Ala), asparagine (Asn) and lysine (Lys) associated pathways
based on all available carbon sources. Complete inactivation of CHLAMY1 affected reactions is considered here. Knockout of ASL completely inhibits
arginine biosynthesis and is hence, not shown (see also Fig. 2). If not marked with UG{, boxplots show complete EFM distribution. Otherwise, they
show distribution for all EFMs that are not affected by CHLAMY1 downregulation.
doi:10.1371/journal.pone.0023026.g005

Figure 6. Mean yields assuming complete downregulation by CHLAMY1. In contrast to Fig. 4, the carbon yields of either all EFMs (C) or all
those EFMs that do not have CHLAMY1 regulated mRNAs (UG{) were calculated here. The sum of these yields divided by the number of
corresponding EFMs results in the mean yield shown. An increase of the mean yield after downregulation by CHLAMY1 can be observed for all amino
acids, except for arginine, as in this case CHLAMY1 downregulates expression of ASL, which is crucial for the arginine pathway (see also Fig. 2).
doi:10.1371/journal.pone.0023026.g006

Predicting the Role of Circadian Regulation

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23026



decreases energy consumption. The somewhat counter-intuitive

result that knocking out or downregulating several enzymes may

lead to an increase in average yield arises, because poor pathways

are deleted or downregulated, so that more efficient pathways

become more dominant. A similar phenomenon was observed

earlier in the context of strain optimisation [9,27,28]. Our

approach focuses on analysing altered fluxes due to regulatory

influences in general. We compare two or more physiological

situations (e. g. day- and night-time) rather than manipulated

setups. Other examples may be provided by hibernation vs.

summertime stage or different developmental stages such as

embryonic vs. adult. The regulatory information can be provided

in a wide variety of forms, including transcriptional regulatory

events as time-dependent constraints [29].

Additionally, we have considered information derived from

sequence data. Since it is known that many regulatory proteins

bind to specific motifs in the mRNA or to promoters, such

information is extremely useful in modelling regulation of

metabolism. Moreover, measuring fluxes in detail is already a

demanding task for simple model organisms, like Escherichia coli or

Saccharomyces cerevisiae, but might be virtually infeasible for higher

organisms, when regulatory complexity becomes more sophisti-

cated. Thus, our approach proves to be an easy-to-use, helpful

method to determine the type and impact of influences of

regulatory factors.

Considering only the maximum carbon yields of pathways

summarised in Fig. 4, indicates that C. reinhardtii remains able to

synthesise glycine, alanine, asparagine and lysine but with reduced

theoretical effectiveness while not being able to synthesis arginine

if one assumes complete downregulation by CHLAMY1 at night-

time. However, as there are more than three million possible

routes within the network producing the target amino acids and

the main portion of all EFMs (above 96% for all amino acids, see

also Fig. 8) is affected by CHLAMY1 action, solely focusing on

maximum carbon yields provides a limited view and would lead to

misinterpretations. Furthermore, the calculation of the maximal

yield is sensitive to the size of the model and the carbon sources

chosen. If we use glyceraldehyde-3-phosphate (GAP) and acetate

as carbon source and thus, remove glycolysis and the pentose

phosphate pathway from the model, the maximum yield does not

change between sets of EFMs with and without CHLAMY1

affected reactions (see Fig. 10).

To study the spectrum of metabolic capabilities, we analysed the

whole yield distribution. The results, shown in Fig. 5, reveal that

CHLAMY1 influences the mRNA expression of enzymes mainly

taking part in EFMs that realise low yields. Thus, translational

downregulation by CHLAMY1 during the night leads to an

increased median yield for the considered amino acid production

whereas the maximum yield decreases.

During night-time, photosynthesis is impossible and, hence,

energy is largely limited. A prohibition of energy-consuming

reactions that usually contribute to low carbon yields during the

night has already been observed experimentally for Arabidopsis

thaliana [30]. The decrease in maximum carbon yield observed in

our analysis is mainly due to the fact that G6PI is regulated by

CHLAMY1 and thus, G6P is forced to enter the pentose

phosphate pathway (PPP). This might be necessary as the PPP is

required for the synthesis of nucleotides. As DNA-replication

occurs preferentially during the night, this regulatory compromise

can be considered as an optimised outcome of evolution.

Taken together, our results are in good agreement with

experimental observations and evolutionary considerations. In

contrast to the dependency of the decrease of the maximum yields

on the model size and carbon source chosen, the increase of the

yield distribution can be found for both G6P and GAP as carbon

source (see Fig. 5 and Fig. 10, respectively).

Beside ASL and NiR, CHLAMY1 regulated enzymes are

identified based on UG-repeats found in the annotated 39 UTR of

Figure 7. Carbon yield distribution considering partial downregulation. Weighted mean value of carbon yield distribution for the same
pathways as in Fig. 5 based on all available carbon and nitrogen sources, considering downregulation of CHLAMY1 affected enzymes to 10%. Either
all enzymes are active at normal rate or CHLAMY1 is assumed to downregulate mRNAs with UG§7-repeat–motif to 10% activity (UG0:1) leading
subsequently to reduced yield contribution of the affected EFMs.
doi:10.1371/journal.pone.0023026.g007
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the respective genes. For ASL and NiR CHLAMY1 binding has

been shown experimentally and the introduction of the respective

39 UTR sequences into luciferase constructs lead to a robust

circadian enzyme activity [25]. Furthermore, NiR activity has

been shown to cycle in circadian manner [26]. To analyse how the

prediction of CHLAMY1 regulated enzymes based on sequence

analysis might influence our results we calculated the yield

distribution with only ASL and NiR downregulated by

CHLAMY1 for comparison. As Fig. 11 shows, NiR and ASL

are the enzymes mainly contributing to an increased yield. As

G6PI is still active in this case the maximum yield is equal to that

of the complete model. This again demonstrates that the

calculation of the maximum yield alone is relatively sensitive to

changes in the model and may lead to misinterpretations.

The analysis presented here was restricted to the influence of

CHLAMY1 regulation on metabolism. There might be other

processes influencing the circadian regulation of nitrogen metab-

olism like transcriptional and posttranslational regulation. It has

been described that the transcription of some enzymes included in

our model are regulated in a circadian manner [31]. However, all

enzymes described in the aforementioned approach have isoen-

zymes that are not under the control of the circadian clock. As we

did not distinguish between different isoforms as long as they use

the same cofactors, an inclusion of transcriptional regulation

would not affect our simulations. Furthermore, we did not include

any compartmentalisation in our model, as due to the resulting

complexity the calculation of all EFMs would not be feasible.

Here, we have assumed that all fluxes contribute with equal

probability to an overall flux, as done earlier in the case of

incomplete knowledge [11]. This assumption probably does not

describe reality properly. However, it allows one to analyse the

robustness and full flexibility against altered environmental

conditions. Moreover, it enables us to predict qualitative changes

of the metabolic system under investigation. Furthermore, it has

been noticed that approaches based on optimality principles are

dependent on the applied constraints [13,32–34] and matching

them to experimental results meets with various difficulties

[35,36]. As we have shown in this study, weighting EFMs affected

by regulating factors differently from unaffected EFMs, preserves

the EFM inherent yield, while changing the overall yield

distribution (Fig. 7). Additionally, computing a weighted arithme-

tic mean of all carbon yields provides valuable information about

effects of the regulating factors, while circumventing artificial all-

or-none simulations. The simplicity of this approach provides the

advantage that no parameters, like reaction rates, are required and

no additional assumption have to be made.

Further analysis of the calculated EFMs shows that only

approximately 1/50th of the original set of EFMs is still fully active

after CHLAMY1 binding. Therefore, the metabolic flux through

the system is considerably reduced during the night-time, which is

in line with the reduction of carbon and energy consumption when

photosynthesis is inactive. This holds independently of the carbon

source chosen. Particularly EFMs with a low yield are suppressed,

so that the average yield increases. If CHLAMY1 binding is

reduced at the end of the night resulting in the expression of target

enzymes at the beginning of the day when photosynthetic energy is

again available, the metabolic capability and robustness of

nitrogen metabolism is greatly increased and allows fast incorpo-

ration of nitrogen into the organism. As energy is no longer

limiting, there is no need to restrict to those reactions with high

yields and low energy consumption. Therefore, CHLAMY1

binding during the night appears to ensure energy conservation

while still allowing nitrogen fixation. Due to the stabilisation of

mRNA by CHLAMY1 and release at the end of the night

[23,25,26], it furthermore enables a high metabolic capacity as

soon as enough energy is available.

Fig. 7 reveals that downregulation rather than inactivation of

CHLAMY1 affected reactions, still leads to an increase in global

carbon yields, although the increase is remarkably lower. This is

due to the large portion of CHLAMY1 influenced fluxes.

In general, using weighted influences instead of the simplified

all-or-none approach, can be used to study the impact of two

regulators leading to different residual activity of enzymes.

Furthermore, it could also be used to interpret microarray or

other expression data. Here, fold changes could be used as

weighting factors to simulate metabolic changes of a given system.

Hence, it provides a useful tool to connect the growing amount of

high throughput expression data to pathway analysis.

Analysis

Calculating amino acid composition
The amino acid compositions of selected organisms were

derived from complete genome open reading frame (ORF)

prediction data in fasta file format. The fasta files from Homo

sapiens, Mus musculus, and Arabidopsis thaliana were obtained from

the UniProt database [37], while the fasta file for Chlamydomonas

Figure 8. Number of EFMs with and without circadian
regulation. More than 96% of all elementary flux modes (gray) are
influenced by CHLAMY1. Remaining elementary flux modes, assuming
complete downregulation by CHLAMY1, are shown in black.
doi:10.1371/journal.pone.0023026.g008
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Figure 9. Mean yields assuming partial downregulation of genes by CHLAMY1. All EFMs have been used to calculate a weighted mean
according to Eq. 3. An increase of the weighted mean yield can again be observed for all amino acids as in Fig. 6. However, the increase is less
pronounced.
doi:10.1371/journal.pone.0023026.g009

Figure 10. Yield distribution for GAP and acetate as carbon source. Carbon yield distribution was calculated assuming complete
inactivation. In contrast to Fig. 5 GAP and acetate were used as carbon source and the maximum yields (upper whiskers) do not change between EFM
sets including all enzyme or those that are not affected by CHLAMY1 downregulation (UG{). Box plots (with whiskers ranging from minimum to
maximum and thick solid line indicating the median) of carbon yield distribution for glycine (Gly), alanine (Ala), asparagine (Asn) and lysine (Lys)
associated pathways based on all available carbon sources.
doi:10.1371/journal.pone.0023026.g010
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reinhardtii was fetched from a database provided by the Joint

Genome Institute [38]. These files were scanned for total amino

acid distribution and the results summarised in Fig. 1.

Pathway reconstruction
A metabolic network comprising the nitrogen metabolism in C.

reinhardtii (Fig. 2) was reconstructed using the KEGG [39] and

ChlamyCyc [40] databases, the biochemical pathways textbook

[41] as well as bibliomic data. All reactions were manually curated,

which included mass balancing if required and verification of

reaction reversibility based on existing biochemical knowledge. If

the irreversibility was not conclusive, we set the corresponding

reaction reversible.

The carbohydrate metabolism under study includes glycolysis,

gluconeogenesis, the pentose phosphate pathway, acetate uptake,

the citrate cycle and the glyoxylate shunt. The nitrogen uptake

model was reconstructed using data from [42–45]. Moreover, the

biosynthetic pathways of glycine, alanine, asparagine, lysine and

arginine, which provide the target metabolites of the model, are

taken into account by comparing charts [41] with the above-

mentioned databases and biological literature. The accessible

carbon sources are acetate, simulating heterotrophic growth, and

glucose-6-phosphate (G6P), resulting from starch breakdown

during the night. Moreover, molecular nitrogen is provided by

nitrate, nitrite or ammonium uptake. Consequently, those

substances as well as G6P, acetate and the five above-mentioned

amino acids are modelled as external metabolites, that is, their

concentrations are considered to be buffered. In contrast, we

modelled all energy and redox carriers, such as ATP, NAD(P)H

and ferredoxin, as internal. The network in SMBL A SBML

version of the network is provided in the Supplements.

Sequence analysis
The mRNA sequences that are associated to the enzymes

included in the model were analysed for perfect UG§7-repeats

(UG UG UG) in annotated 39 UTR [22] of models from the Joint

Genome Institute database version 4.0 of C. reinhardtii [38].

Special emphasis had to be put on isoenzymes, as in several

cases mRNAs encoding enzymes contained UG§7-repeats, while

others associated to enzymes catalysing the same reaction did not.

As we did not regard localisation of enzymes and did not

distinguish between isoenzymes as long as they use the same

cofactors, the corresponding reactions were simulated not to be

under control of the circadian clock via CHLAMY1 for the EFM

analysis.

Computation of elementary flux modes
EFMs were computed with efmtool [46] inside the MATLAB

environment, version 2008b (The MathWorks, Natick, MA, USA).

Details of elementary flux mode calculation are described

elsewhere [46,47].

Calculation of yields
In order to compare the effectiveness of different modelled

amino acid pathways, we computed carbon yields according to:

carbon yield~
#C(aa)

#C(G6Pzacetate)
, ð1Þ

where #C(aa) and #C(G6Pzacetate) refer to the numbers of

carbon atoms in the considered target amino acid (aa) and in the

substrates G6P and acetate, respectively. The number of carbon

atoms were obtained from the overall chemical equation of each

elementary mode. The mean yields �yy of all yields yi were

calculated according to standard formula for mean calculation:

�yy~
1

n

Xn

i~1

yi, ð2Þ

Weighted yields
To calculate the effect of CHLAMY1 downregulation rather

than full inactivation of the influenced enzymes, yields from EFMs

were weighted differently in the resulting yield distribution. We

arbitrarily assumed downregulation to 10% as experimental

measures for the degree of downregulation are not available. For

the calculation of the yield distribution and visualisation in boxplot

graphics the yields unaffected by CHLAMY1 were counted ten

times, whereas yields affected by that regulator were only taken

into account once.

Additionally, we calculated weighted mean yields for a

simplified visualisation of the downregulating effect of

CHLAMY1. To do so we computed the weighted arithmetic

Figure 11. Combined carbon yield distribution for complete
downregulation by CHLAMY1. For the depicted boxplots the yield
distribution for all amino acids including arginine have been combined
into one yield distribution. Box plots (with whiskers ranging from
minimum to maximum and thick solid line indicating the median) of
carbon yield distribution are based on all available carbon and nitrogen
sources. Complete inactivation of CHLAMY1 affected enzymes is
considered here.
doi:10.1371/journal.pone.0023026.g011
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mean yield �yyw according to the following equation:

�yyw~

P
i wi � yiP

i

wi

, ð3Þ

with wi being the weight of the derived carbon yield yi . These

weighting factors can be defined in various ways. Here, we use the

definition given above based on the fractional extent of

downregulation.

Supporting Information

Table S1 Overview of modelled metabolites and corresponding

abbreviations.

(PDF)

Table S2 Overview of modelled enzymes and corresponding

EC–numbers, abbreviations as well as JGI database IDs (cre v4.0;

http://genome.jgi-psf.org/Chlre4/). The code of the UG§7-

repeats is as follows: i – intron, e – exon, 59/39 UTR – the 59

or 39 untranslated region of an enzyme. For bold marked UG§7-

repeat entries CHLAMY1 binding has been shown experimen-

tally.

(PDF)
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