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ABSTRACT Gene expression is regulated at multiple levels, including transcription and translation, as well
as mRNA and protein stability. Although systems-level functions of transcription factors and microRNAs are
rapidly being characterized, few studies have focused on the posttranscriptional gene regulation by RNA
binding proteins (RBPs). RBPs are important to many aspects of gene regulation. Thus, it is essential to know
which genes encode RBPs, which RBPs regulate which gene(s), and how RBP genes are themselves
regulated. Here we provide a comprehensive compendium of RBPs from the nematode Caenorhabditis
elegans (wRBP1.0). We predict that as many as 887 (4.4%) of C. elegans genes may encode RBPs ~250 of
which likely function in a gene-specific manner. In addition, we find that RBPs, and most notably gene-
specific RBPs, are themselves enriched for binding and modification by regulatory proteins, indicating the
potential for extensive regulation of RBPs at many different levels. wRBP1.0 will provide a significant
contribution toward the comprehensive delineation of posttranscriptional regulatory networks and will
provide a resource for further studies regulation by RBPs.
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Generating the right protein at the right place, the right time, and the
right levels is critical during all aspects of life. Multiple levels of gene
regulation coordinate the precise expression of genes throughout de-
velopment and in response to environmental cues and insults. In
genomics and systems biology, much attention has focused on the
elucidation of regulatory networks involving transcription factors
(TFs) or microRNAs (miRNAs) (Martinez and Walhout 2009; Arda
and Walhout 2010). These networks include interactions in which
these factors both regulate and are regulated by other molecules
(Reece-Hoyes et al. 2011; Bartel 2009; Deplancke et al. 2006; Martinez
et al. 2008; Harbison et al. 2004; Arda et al. 2010). RNA binding
proteins (RBPs) are another important class of gene regulators;

however, the regulatory networks in which they function remain
largely uncharacterized.

Although TFs bind DNA and miRNAs interact with mRNAs,
RBPs can interact with the entire spectrum of RNAs. These RNAs
occur throughout the cell and can take on a vast array of functions,
including serving as templates for protein synthesis (mRNA),
participating as structural components of the splicing and trans-
lation machinery (rRNA, tRNA, snRNA), and providing regulatory
activity to modulate transcription, translation and chromatin
structure (miRNA, siRNA, piRNA, lncRNA) (Lee and Schedl, 2005
Steitz 2008; Moore and Proudfoot 2009; Carthew and Sontheimer
2009; Wahl et al. 2009). Physical interactions between RNA and
RBPs are crucial to RNA regulation, for instance, to mediate precise
mRNA 39 end formation, splicing, localization, stability, and trans-
lation. As a result of these physical interactions, RBPs can control
transcript localization, levels, and translation (Shepard et al. 2003;
Glisovic et al. 2008).

In contrast to RBPs, TFs are rapidly being characterized at
a systems level using genome-scale methods such as chromatin
immunoprecipitation (ChIP) and yeast one-hybrid assays (Walhout
2011). Among other findings these studies have demonstrated de-
generate DNA binding of TFs, extensive combinatorial complexity
of interactions between TFs and gene promoters, as well as both
specific and promiscuous protein interactions between divergent
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members of the same TF family (Deplancke et al. 2006; Badis et al.
2009; Grove et al. 2009; Zinzen et al. 2009). The systems-level char-
acterization of TFs has been greatly facilitated by high-confidence
predictions of which genes in a genome encode such proteins
(Reece-Hoyes et al. 2005; Kummerfeld and Teichmann 2006;
Vaquerizas et al. 2009). However, such compendia are not yet avail-
able for RBPs in multicellular model organisms.

Here, we present a compendium of predicted RBPs for the
nematode Caenorhabditis elegans (wRBP1.0). We have used wRBP1.0
to begin the analysis of RBPs at a genome-wide level, using publicly
available datasets. We found that RBP-encoding mRNAs have more
alternative isoforms, longer 39 untranslated regions (UTRs), and more
alternative polyadenylation (APA) sites than other mRNAs. In addi-
tion, RBP gene promoters interact with more TFs, RBP mRNAs are
bound by more RBPs, and the 39 UTRs of RBP-encoding mRNAs are
targeted by more miRNAs. Finally, RBPs are phosphorylated more
frequently than other proteins. Together, our compendium and anal-
yses provide a first step toward the characterization of RBP regulatory
networks in C. elegans and serve as a model for the continued study of
RBPs in other organisms, including humans.

MATERIALS AND METHODS
wRBP1.0 was curated by computationally predicting RNA binding
domain (RBD)-containing proteins in the C. elegans proteome
(WS219). A FASTA file containing the amino acid sequences of
all protein coding isoforms in the WS219 release was downloaded
from WormBase (http://wormbase.org/). This file was analyzed us-
ing a locally installed Unix version of the InterProScan software
[iprscan v4.6; InterPro release 24.0; accessed September, 15, 2010
(Quevillon et al. 2005; Hunter et al. 2009)] using default settings.
Iprscan takes the amino acid sequence of each protein as its input
and then uses several different applications to search specific data-
bases of domain signatures. The output of iprscan is all recognizable
protein domains in that protein sequence. The results were filtered
to include only those domains that were identified by Pfam, SMART,
Superfamily, or ProSite (Wilson et al. 2009; Sigrist et al. 2010;
Letunic et al. 2012; Punta et al. 2012) because these applications
were most effective at detecting RBDs (data not shown). Results
were then manually filtered to include only those proteins that pos-
sess one or more of 17 RBDs (Supporting Information, Table S1). Of
note is the RGG box, an RBD that was not included as an indepen-
dent entry by any of the tools used (although it is contained within
the specific Pfam domain definition FXR1P_C which encompasses
two RRM domains and one RGG box). Although these domains are
known RBDs (Kiledjian and Dreyfuss 1992), their sequence and
structural determinants have not been well defined. We therefore
only included RGG box proteins in our list that have been impli-
cated in the literature as RNA binding. The list was manually
checked to verify the presence of known C. elegans RBPs and to
eliminate false-positive predictions, as enumerated to follow. Five
proteins were removed from wRBP1.0 because the computationally
predicted domains were much longer or shorter than known RBDs,
and we were not confident in their predictions as RBDs based upon
visual assessment (R12B2.5, T03G11.3, D2005.1, Y82E9BR.19, and
R11H6.5). One protein was removed because it is currently anno-
tated as a pseudogene in Wormbase (C06A1.4). Two proteins were
removed due to the lack of characteristic zinc finger homology (Y60A9.3,
R03D7.7). We added 12 RBPs based upon published reports that dem-
onstrated or strongly predicted RNA binding (C18G1.4, C50E10.4,
M04B2.1, R06F6.1, R144.7, T12F5.5, Y18D10A.17, Y48G8AL.6,
Y53C12B.3, ZK1127.1, ZK1236.3, ZK381.4). Sixteen RBPs were added

after secondary searches of genes annotated as ‘RNA-binding’ according
to Gene Ontology, UniProtKB, or Wang et al. 2009 (Gene Ontology
Consortium 2000; Uniprot Consortium 2009; Wang et al. 2009) based
upon manual inspection of all 96 RBPs using information found on
Wormbase.org.Wormbase indentified several proteins with noncanonical
domains including cytidine deaminases (C47D2.2, F49E8.4), translation
initation factors (T01C3.7, F53A2.6, R04A9.4, C05D9.5, Y57A10A.30),
tRNA binding proteins (C41G7.1, F29C4.6, C49H3.10), and additional
general factors (C12D8.11, C41G7.1, F29C4.6, C49H3.10, C11D2.7,
C15C6.4, C48B6.2, F08B4.7) that were missed in our initial screen.

Genome-wide datasets were downloaded from their respective
databases or publications. TF binding data were obtained from
(Gerstein et al. 2010). RIP-Chip data for three RBPs were obtained
from (Kershner and Kimble 2010; Kim et al. 2010; Wright et al.
2010). 39 UTRs were from 39UTRome annotations, kindly provided
by Marco Mangone. These annotations are reflective of two inde-
pendent large scale datasets (Mangone et al. 2010; Jan et al. 2011).
TargetScan miRNA target predictions were downloaded from
http://www.targetscan.org/worm_52/ based on predictions that cor-
responded to 39 UTRs determined using 3P-Seq (Jan et al. 2011).
mirWIP target predictions (Hammell et al. 2008) were kindly provided
by Molly Hammell. ALG-1 targets were downloaded from the UCSC
genome browser using intersection of the ALG-1 binding sites (Zisoulis
et al. 2010) with a custom track composed of the aforementioned
39UTRome annotations. Protein phosphorylation sites from synchro-
nized adult worms were obtained from (Zielinska et al. 2009). All data
were compiled into a local database (Table S3). The number of alter-
native isoforms was defined as the number of distinct proteins encoded
by a single gene according to WormBase annotations. TF and RBP
binding events as determined by ChIP-Seq and RIP-Chip were assigned
to their respective genes according to the original publications. The
number of miRNAs predicted to target each gene was defined as the
number of unique miRNA families with one or more conserved sites
predicted in any of the gene’s 39 UTRs. miRNA targeting was defined to
affect a gene when 1+ miRNA target site was gained/lost in an alter-
native 39 UTR. miRNA predictions are based on data from Jan et al.
2011 and therefore the analyses of alternative 39 UTRs and their effects
on miRNA targeting were based upon the same dataset. The number of
posttranslational modifications per protein was calculated from the
number of unique residues that were phosphorylated. The number of
binding events or posttranslational modifications was calculated for
each RNA/protein isoform and then combined nonredundantly for
each gene. Hypergeometric and Komolgorov-Smirnov tests were per-
formed using R project software (R Core Team 2012).

RESULTS AND DISCUSSION

wRBP1.0
To curate the compendium of putative RBPs in C. elegans, we
searched the proteome (version WS219) for each of 17 RBDs [see the
section RNA binding domains (RBDs)] based on domain sequence
signatures from the unified InterPro database (Quevillon et al. 2005;
Hunter et al. 2009). Proteins were annotated for the presence of each
domain using four separate databases (see Materials and Methods)
and each protein possessing one or more RBD was included in the
compendium. Low-confidence calls were removed (see Materials and
Methods), and the curations were supplemented with RBPs that we
identified from the literature but that were missed in the computa-
tional search. Of the total RBP set, 67% were identified by more than
one method, which illustrates the robustness of our predictions (Fig-
ure S1A). Furthermore, the initial list contains greater than 93% of
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proteins that were previously curated as RNA binding (Wang et al.
2009), which illustrates the sensitivity of our method. It is important
to note that we increased the number of putative C. elegans RBPs by
almost threefold relative to this study (from 319 to 887). Two major
reasons for this include the inclusion of additional RBDs and protein
classes (i.e., dsRBDs, ribosomal proteins, C2H2 zinc fingers, SAM
domains) and the inclusion of additional RBPs possessing each do-
main (i.e., 10–60% increase in KH, RRM, helicase, and CCCH zinc
finger domain containing proteins). Further, 66% of the RBPs (177
of 269) annotated in Gene Ontology and UniProtKB databases as
‘RNA binding’ were included, again demonstrating high sensitivity
(Figure S1B) (Gene Ontology Consortium 2000; Uniprot Consortium
2009). Next, we manually evaluated 96 RBPs that were not included
in our initial list but that were annotated as RNA binding by Gene
Ontology, UniProtKB and Wang et al. 2009. After careful consider-
ation, we judged 16 of these to be candidate RBPs, whereas we did
not have sufficient confidence to include the other 80 (data not
shown). Finally, we determined that wRBP1.0 includes 220 of 230
protein listed in RBPDB (Cook et al. 2011) including 22 of 23
proteins with experimental evidence of RNA binding [AIN-1 is
associated with the miRNA silencing complex but does not require
RNA for binding (Wormbase.org)]. Altogether, this generated a final
wRBP1.0 compendium of 887 genes. RBPs were then classified into
Groups 1-4 based on the domains they possess (Figure 1, see below).

RNA binding domains (RBDs)
We identified a set of 17 RBDs by literature searches for proteins that
bind to RNA (Figure 1, Table S1). Altogether, we identified 887 pu-
tative RBP-encoding genes (Table S2; see below). We divided these
genes into four groups based on whether they are more likely to bind
and regulate RNA in a gene-specific or nonspecific manner. Many
RBPs contain multiple RBDs; however, only 10 of 887 genes contain
domains from two or more different groups (Table S2). The classifi-
cation of these 10 genes was first based on the presence of a sequence-
or structure-specific RBD.

Group 1: Gene-specific RBDs that bind RNA in a sequence-specific
manner: This group contains eight RBDs that mediate binding to
specific mRNAs in a sequence and/or structure-specific manner
(Figure 1). RNA binding by these domains has been demonstrated
for several individual proteins in vitro, and gene-specific binding has
been detected for several proteins in vivo (Table S1) (Ryder et al. 2004;
Bernstein et al. 2005; Opperman et al. 2005; Pagano et al. 2007; Farley
et al. 2008; Pagano et al. 2009; Kershner and Kimble 2010; Wright
et al. 2010). Direct, sequence-specific RNA binding has been shown
for some C. elegans RBPs, but the vast majority remains untested. For
instance, GLD-1 (KH domain) and FBF-1 both bind specific sequen-
ces in vitro (Ryder et al. 2004; Bernstein et al. 2005) and associate with
specific mRNAs in vivo (Kershner and Kimble 2010; Wright et al.
2010; Jungkamp et al. 2011). Altogether, 250 of the 887 RBP-encoding
genes are included in Group 1.

Group 2: Gene-specific RBDs that do not bind RNA in a sequence-
specific manner: RBDs within Group 2 bind RNA in a gene-specific
manner in vivo. However, contrary to Group 1 RBDs, the means for
this RNA binding specificity are unknown or occur in a manner that
is not inherent to the RBD itself (i.e., the domain contributes to RNA
binding affinity rather than specificity). For instance, the argonautes
ALG-1 and ALG-2 bind miRNAs through their PAZ/PIWI domains.
Complementary base pairing by these miRNAs directs targeting of

these proteins to specific mRNAs. Out of the 17 RBDs considered,
four are placed in this group: helicase, PAZ, PIWI, and NTF2, alto-
gether encoding 169 proteins.

Group 3: Putative gene-specific RBDs: Group 3 proteins are
predicted to bind RNA in a gene- and sequence-specific manner.
However, we have separated Group 3 proteins from those in Group 1
because their RBDs could be involved not only in RNA binding but
also in DNA binding, or protein-protein interactions, thus making the
prediction of their function ambiguous (see Table S1 for references).
For instance, Xenopus laevis TFIIIA can bind both DNA and RNA
through various combinations of its C2H2 zinc fingers (Theunissen
et al. 1992; Lu et al. 2003). All proteins with the domains of group 3
are included although we expect that not all of them will mediate RNA
binding (e.g., many C2H2 zinc fingers occur in TFs that bind DNA).
Group 3 contains three of the 17 RBDs and 226 genes.

Group 4: Nongene-specific RBPs, with some exceptions: The fourth
group contains RBDs that typically do not bind RNA in a gene-
specific manner. Many essential factors involved in general gene
expression are in this group, including ribosomal proteins, transfer
RNA-binding proteins, translation initiation factors, core splicing
proteins and RNA degradation proteins such as ribonucleases and
exosome components. Two of the 17 domains are included in this
category and because many general RBPs lack clear domains,
additional proteins are included based upon conservation to RBPs in
other organisms. Altogether, this group contains 279 genes.

RBP-encoding genes are bound by more TFs, more
RBPs, and have more splice variants
RBPs have been proposed to both fine tune gene expression as well as
drive tissue and stage-specific gene expression (Blencowe 2006; Glisovic
et al. 2008). Therefore, we hypothesized that RBPs may, as a group, be

Figure 1 wRBP1.0. Pipeline for C. elegans RBP predictions. RBDs were
predicted from WormBase protein annotations then filtered and literature
curated. RBPs were separated into four groups according to their RBDs as
indicated.
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extensively regulated to mediate these functions. Here, we tested this
hypothesis using the wRBP1.0 compendium and several publicly
available datasets.

Transcriptional regulation mediated by the binding of TFs to gene
promoters provides a first and important level of regulation. There are
937 predicted TFs encoded by the C. elegans genome (Reece-Hoyes
et al. 2005; Reece-Hoyes et al. 2011), and binding of 22 of these TFs
(~2%) has been examined by ChIP-seq (Gerstein et al. 2010). Based
on these data, we found that promoters of RBP genes are bound by
more TFs than promoters of other genes (Figure 2A, Figure S2). Both
gene-specific and general RBP promoters are bound by significantly
more TFs (P , 1e-9), indicating that transcriptional regulation is an
important first step toward RBP expression. Importantly, these data
were obtained using transgenic TF fusion strains. Because transgenes
are often silenced in the germline (Cui and Han 2007) where many
RBPs are expressed, it is possible that our analyses underestimate the
enrichment. Further, this analysis was based on only 22 TFs; future
studies will reveal the generality of our observation.

We next analyzed publicly available RBP-mRNA interactions. We
obtained three RIP-Chip datasets for the C. elegans RBPs FBF-1,
GLD-1 and RNP-8 (Kershner and Kimble 2010; Kim et al. 2010;
Wright et al. 2010) and found that 73% of RBP mRNAs are bound
by at least one RBP, compared with only 35% of the total transcrip-
tome (Figure 2B). The number of RBP mRNAs from Group 4 bound
is even greater (86%). Our result is consistent with Gene Ontology
enrichment analysis performed in the original studies that retrieved
enrichment for ‘RNA binding’ and ‘Nucleic acid binding’ terms, re-
spectively (Kim et al. 2010 and Kershner and Kimble 2010).

The binding of RBPs to mRNAs affects numerous steps of
an mRNA’s lifecycle, including alternative splicing (Blencowe 2006;
Glisovic et al. 2008). To test whether C. elegans RBP-encoding mRNAs
are more extensively spliced than other genes, we evaluated the num-
ber of protein isoforms per RBP-encoding gene by using comprehen-
sive WormBase annotations. Approximately one-quarter of the 887
RBP-encoding genes (212; 23.9%) encode multiple isoforms, which is
significantly more than the 14.4% of genes that undergo alternative
splicing in the entire genome (Figure 2C). An even greater percentage
of mRNAs encoding gene-specific RBPs in Group 1 are alternatively

spliced (30.4%; Figure 2C). Through alternative splicing, the total
number of RBPs increased by more than 40% (from 887 genes to
1242 proteins) and, interestingly, the number of distinct gene-specific
RBPs increased by ~60% (250 genes encoding 401 proteins). Thus,
alternative splicing increases the effective number of RBPs in the
C. elegans proteome.

RBP 39 UTRs are extensively regulated
39 UTRs affect gene expression via interactions with RBPs and
miRNAs (Bartel 2009; Kuersten and Goodwin 2003). Concordantly,
C. elegans 39 UTRs contain numerous conserved sequence elements
that may interact with miRNAs or RBPs (Mangone et al. 2010; Jan
et al. 2011). Using comprehensive 39 UTR annotations (www.
UTRome.org), we found that RBP-encoding mRNAs have signifi-
cantly longer 39 UTRs, with a median length of 156 nucleotides
(nt), compared with 129 nt for the whole transcriptome (Figure 3A,
Figure S2). The 39 UTRs of gene-specific RBP mRNAs (Group 1) are
even longer (215 nt), whereas general RBPs have shorter 39 UTRs
(Group 4; 100 nt). Longer 39 UTRs can contain more regulatory sites,
which implies that gene-specific RBPs may be more heavily regulated
via their 39 UTRs, whereas general RBPs may be less extensively
regulated.

To test this, we first assessed the degree to which miRNAs target
RBP 39 UTRs relative to all genes. In the absence of comprehensive
experimental miRNA targeting data, predictions for bound target
mRNAs can be made using the miRNA seed sequences (Bartel
2009). We used target predictions from TargetScan for all C. elegans
39 UTR sequences experimentally determined by 3P-Sequencing (3Pseq)
(Jan et al. 2011). TargetScan predicts miRNA targets based upon
stringent seed pairing as well as site number, type, context, and con-
servation (Bartel 2009). Comparison of RBP-encoding mRNA
39 UTRs to the 39 UTRs of all C. elegans mRNAs revealed that signifi-
cantly more RBP 39 UTRs are predicted targets of miRNAs (Figure 3B).
Furthermore, significantly more miRNA families target each gene-
specific RBP 39 UTR compared with all 39 UTRs, indicating a potential
for increased combinatorial complexity (Figure 3C, Figure S2). In
contrast, general RBPs showed no significant difference in miRNA
targeting compared to the total transcriptome.

Figure 2 RBPs are extensively regulated by TFs and RBPs. (A) More TFs bind to RBP promoters than the promoters of other genes (B) RBPs bind
to a greater proportion of RBP-encoding mRNAs. (C) RBP genes are more frequently spliced than other genes. �P , 0.05, ��P , 0.005, relative to
proteome, hypergeometric test (frequency data), Komologorov-Smirnov test (cumulative frequency data).
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It is important to note that these predictions are based on con-
servation of the site in multiple species and availability of the site in
folded RNA. This implies that the increased number of miRNA
families targeting 39 UTRs is not solely a consequence of 39 UTR
length. To confirm this, we compared RBP 39 UTRs with similar
length 39 UTRs from the total transcriptome by binning 39 UTRs
by length (Figure S3). This analysis confirmed that, among the short-
est 39 UTRs (i.e., the first two quartiles), more miRNAs are indeed
predicted to target RBP 39 UTRs, while we did not observe a difference
for the longest 39 UTRs.

We further evaluated miRNA targeting to RBP 39 UTRs using
predictions made by mirWIP (Hammell et al. 2008) and argonaute
ALG-1 bound 39 UTRs determined using cross-link immuoprecipita-
tion (Figure S4) (Zisoulis et al. 2010). Both of these analyses showed
that RBP 39 UTRs are indeed more frequently targeted by miRNAs,
which further supports the observations made with TargetScan
predictions.

Alternative 39 UTR usage provides additional unique sites of reg-
ulation for miRNAs and RBPs or, conversely, can eliminate regulatory
sites for these same factors. Recently, it has been shown that shorten-
ing of 39 UTRs by alternative polyadenylation (APA) alters protein
expression in proliferating cells, an effect partly attributed to the loss
of miRNA binding sites (Sandberg et al. 2008; Mayr and Bartel 2009).
Using 39 UTR annotations determined by 3P-Seq (Jan et al. 2011), we
found that more RBPs use APA and that RBPs possess more distinct
39 UTRs than the total transcriptome (Figures 3, D and E; results with
39UTRome annotations were consistent, data not shown). Once again,
the effect was especially pronounced for gene-specific RBPs (Group 1).
We calculated the number of genes in which APA eliminates all
predicted targeting sites for one or more miRNA family, thereby
preventing miRNA repression and increasing gene expression. Using
3P-seq-derived 39 UTRs and TargetScan miRNA target predictions,
we found that more than 15% of the gene-specific RBPs could evade
potential repression by at least one miRNA family using APA,

Figure 3 RBPs are extensively regulated through 39 UTRs (A) RBP transcripts have longer 39 UTRs. (B) RBP 39 UTRs are more heavily targeted by
miRNAs. (C) More miRNA families target RBP 39 UTRs. (D) 39 UTR annotations show that more RBPs use alternative 39 UTRs, and (E) that RBP genes
have more alternative 39 UTRs. (F) Combined miRNA target predictions and 39 UTR annotations reveal that APA affects predicted miRNA
targeting. �P, 0.05, ��P, 0.005, relative to proteome, hypergeometric test (frequency data), Komologorov-Smirnov test (cumulative frequency data).
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a fraction that is more than twice that of the total transcriptome
(Figure 3F). The predicted effects of APA may also affect gene ex-
pression through the distinct binding of RBPs to alternate 39 UTRs.

RBPs are more extensively phosphorylated
Posttranslational modifications provide another mechanism to create
protein diversity. In particular, phosphorylation can affect the ability
of proteins to function and/or interact with binding partners (Deribe
et al. 2010). To evaluate the degree to which RBPs are phosphorylated,
we interrogated phosphoproteome data that were obtained by tandem
mass spectrometry of synchronized adult worms and that identified
6780 phosphorylation sites on 2373 proteins (Zielinska et al. 2009).
Because many factors can affect the ability for certain proteins to be
detected in mass spectrometry, we corrected for potential biases by
normalizing the frequency of detected RBPs in each group by a sepa-
rate mass spectrometry study that analyzed the proteome of mixed

stage worms and did not enrich for phophopeptides (Figure S5)
(Merrihew et al. 2008). We found that more gene-specific RBPs are
phosphorylated relative to the entire proteome (Figure 4A). Further-
more, gene-specific RBPs (Group 1) have significantly more phos-
phorylation sites per protein than the total proteome (Figure 4B,
Figure S2). In contrast, general RBPs (Group 4) are less frequently
phosphorylated, although this group still contains more phosphoryla-
tion sites than entire proteome. This finding confirms the enrichment
for the Gene Ontology term ‘RNA binding’ in the mass spectrometry
dataset (Zielinska et al. 2009). The increased level of RBP phosphor-
ylation further indicates that RBPs are indeed a heavily regulated class
of cellular regulators.

Comparison of gene-specific RBPs (Group 1) with TFs
Group 1 RBPs are conceptually analogous to TFs in that they are
predicted to bind to and regulate genes in a specific manner. Thus, we

Figure 4 RBPs are extensively regulated posttransla-
tionally. (A) More RBPs are phosphorylated. (B) RBPs
have more phosphorylated residues per protein.
�P , 0.05, ��P , 0.005, relative to proteome, hyper-
geometric test (frequency data), Komologorov-Smirnov
test (cumulative frequency data).

Figure 5 Comparison of gene-specific RBPs (Group 1) with TFs. (A) Comparison of alternative isoforms, TF binding, miRNA targeting, RBP
binding, and phosphorylation. (B) Gene-specific RBPs have more TFs bound to promoters relative to TF genes. (C) Gene-specific RBPs and TFs
have 39 UTRs targeted by more miRNA families. �P , 0.005, relative to proteome, ��P , 0.005 relative to wTF2.2, hypergeometric test (frequency
data), Komologorov-Smirnov test (cumulative frequency data).
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compared the characteristics of gene-specific RBPs in Group 1 to
those of TFs. Although RBPs and TFs both have more isoforms than
the general proteome, RBPs have significantly more isoforms
compared with TFs (Figure 5A). This finding is interesting because
RBPs often contain multiple RBDs that are differentially included in
different isoforms, whereas most C. elegans TFs have only one DNA
binding domain (Table S2) (Reece-Hoyes et al. 2005). There are
more TFs bound per RBP promoter than per TF promoter, which
indicates that there may be more combinatorial complexity in the
transcriptional regulation of RBP genes, or in the generation of
tissue-specific gene expression patterns (Figure 5B).

Both RBPs and TFs are predicted to have 39 UTRs that are more
frequently targeted by miRNAs, and there is no difference between the
numbers of distinct miRNA families that target their 39 UTRs (Figure 5,
A and C). However, there was a large, significant difference involving
binding by RBPs: RBP-encoding mRNAs are more frequently bound by
RBPs than TF mRNAs and mRNAs in general (Figure 5A). This dif-
ference could be attributed to an expression bias since RBP mRNAs are
enriched in the germline (Wang et al. 2009) and should therefore be re-
evaluated after the determination of additional RBP-mRNA interaction
data, including that of RBPs expressed in the soma. Finally, phosphor-
ylation of both RBPs and TFs is significantly enriched relative to the
proteome, but RBPs are more extensively phosphorylated than TFs.
Taken together, both types of regulators are extensively regulated.

Conclusions
We present wRBP1.0: a comprehensive compendium of C. elegans
RBPs. As has been demonstrated for the C. elegans TF compendium
(Reece-Hoyes et al. 2005, 2007; Grove et al. 2009; Reece-Hoyes et al.
2011) we expect that wRBP1.0 will be an invaluable resource for the
creation of ORF-based clone collections, the delineation of RBP ex-
pression patterns, and RBP regulatory networks.

Using wRBP1.0 and several publicly available genomic, tran-
scriptomic and proteomic datasets, we found that RBPs are extensively
regulated at each level. A question that remains is why an organism
extensively regulates its RBPs. One attractive possibility is that in-
dividual RBPs mediate precise gene regulation under different deve-
lopmental or environmental conditions or in distinct cells or tissues
within the animal. Such diverse functionalities could potentially be
greatly facilitated by a combination and layering of the different
transcriptional and posttranscriptional regulatory mechanisms.
Furthermore, it is likely beneficial to the animal to be able to
rapidly decrease the level or activity of different RBPs, such that
downstream target gene expression can change rapidly as well.

Many of the regulatory trends we observed are more pronounced
for gene-specific RBPs, i.e., those we predict to function analogously to
TFs. There are nearly four times more genes predicted to encode TFs
than gene-specific RBPs in the C. elegans genome (937 vs. 251)
(Reece-Hoyes et al. 2011; this study). Strikingly, however, gene-
specific RBPs have more alternative isoforms and are more extensively
phosphorylated than TFs. This finding could suggest that despite
fewer gene-specific RBP genes than TF genes in the C. elegans ge-
nome, regulatory mechanisms can increase the repertoire of RBPs,
thereby diversifying their regulatory capacity.

Related analyses have been performed in the unicellular eukaryote
Saccharomyces cerevisiae (Mittal et al. 2009, 2011). Using a list of
putative RBPs (Hogan et al. 2008), RBP mRNAs were shown to have
shorter half-lives, greater abundance, and greater ribosome occupancy
(Mittal et al. 2009). Additionally, it was shown that RBPs are more
abundant, have longer half-lives, and decreased noise (Mittal et al.

2009). These trends were more pronounced for ribosomal RBPs and
for RBPs with high connectivity, as defined by interaction data. Com-
bined with complementary analyses in this study it is clear that RBPs
exhibit properties distinct from the total transcriptome/proteome. It
also is evident that gene-specific/low connectivity RBPs exhibit prop-
erties distinct from nongene-specific/high connectivity RBPs. Alto-
gether, wRBP1.0 provides a starting point for the generation of RBP
clone resources that can be used in system-level characterization of
posttranscriptional regulatory networks, as well as a first step in the
analysis of the regulation of this important class of proteins.
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