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Abstract

We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into
islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone
marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating
whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this
aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP)
positive bone marrow donors. Sorted lineages of Mac-1+, Mac-12, Sca+, Sca2, Sca2/Mac-1+ and Sca+/Mac-12 from GFP
positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C
promoter GFP (uGFP, with strong signal) C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight
weeks, migration of GFP positive donor’ bone marrow to the recipient’s pancreatic islets was evaluated as the percentage of
positive GFP islets/total islets. The results show that the most effective migration comes from the Sca+/Mac2 lineage and
these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets
in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in
determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this
facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.
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Introduction

Studies have shown that bone marrow transplantation contrib-

utes to the recovery of islet b cell function through differentiation

into islet b cells [1]. However, there are controversial arguments

regarding a failure to document such transdifferentiation or a very

low frequency of islet b cell differentiation [2]. Moreover, reports

on bone marrow correcting experimental hyperglycemia in

diabetic animals show that bone marrow initiates recipient b cell

regeneration through donor derived endothelial cells in the

pancreas rather than directly transdifferentiating into b cells [3],

but others showed no improvement in hyperglycemia after bone

marrow transplantation [4,5]. Although this controversy has yet

been resolved, bone marrow as a candidate for diabetes cell

therapy has been considered and explored [6–8].

In this study, we proposed to identify whether specific bone

marrow subpopulations and cytokine treatments play a critical role

in bone marrow migration to pancreatic islets and conversion into

islet cells in vivo. Specific populations of bone marrow can be

induced into forming pancreatic islet b cells [9–11] and cytokines

can be major regulators in influencing bone marrow conversion

into pancreatic islet cells [12]. However, it is important to know

which specific bone marrow population and cytokine treatment

regulates bone marrow migration (homing) into islets after

transplantation and whether migrated bone marrow can convert

into islet cells. In this manuscript, we attempted to address these

questions by testing GFP labeled bone marrow lineage cells in

colocalized pancreatic islets with insulin positive cells under the

following circumstances, a) GFP lineage cell populations from

bone marrow cells only and, b) GFP lineage cells pre-cultured with

cytokines, to evaluate whether these conditions facilitate bone

marrow migration and conversion into pancreatic islet cells after

transplantation.

Materials and Methods

Experimental Designs and Methods
Experimental Animals. C57BL/6-Tg (human ubiquitin C

promoter-GFP) 30Scha/J mice (uGFP) and BL6-Tg(ACTB-

EGFP)1Osb/J mice with an ‘‘enhanced’’ GFP (EGFP) cDNA,

under the control of a chicken beta-actin promoter and

cytomegalovirus enhancer (present in all tissues with the

exception of erythrocytes and hair) emitting green under light

excitation, were purchased from Jackson Laboratories (Bar
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Harbor, ME). Mice were certified to be pathogen free and housed

in our animal facility with given ad libitum access to food and

water. The eGFP mice were pancreatic donors and the uGFP

mice were GFP labeled bone marrow donors. GFP negative

C57BL mice were the recipients. Animal study protocols were

approved by the Institutional Animal Care and Use Committee at

Roger Williams Hospital.

Bone Marrow Transplantation. 6–8 week old mice were used

as donors or recipients. After sacrificing the mice and dissecting the

femur, tibia and pelvic bones, bone marrow was obtained by flushing

the bones using a syringe and a 22-gauge needle with PBS containing

5% heat-inactivated fetal calf serum (HI-FCS). After re-suspension in

PBS without HI-FCS, cells were passed through a 40 mm cell

strainer. Cell numbers were counted in crystal violet and viability was

assessed by trypan blue staining. Whole bone marrow cells or selected

populations of marrow cells, based on their surface markers, were

injected intravenously by tail vein into each recipient. The dose of the

cells infused was different in individual experiments and is mentioned

in the results section. A photon producing linear accelerator (Elekta)

was used for the radiation of recipient animals before each transplant.

Radiation was given at a dose rate of 100 cGy per minute. The

recipients received 500 cGy of whole body.

Pancreas Collection and Immunohistochemistry

Staining. Specimens were collected after sacrificing the

anesthetized mice by cervical dislocation. Excised pancreatic

specimens were placed in freshly prepared PLP fixative solution

(balanced phosphate solution with 2% paraformaldehyde, sodium

m-periodate and L-lysine) for 2 hours at 4uC, with frequent

agitation. Samples were then washed in a 7% sucrose buffer

overnight followed by a 15% sucrose buffer wash for 2–3 hours and

a 25% sucrose plus 10% glycerol buffer wash for another 2 hours,

all at 4uC. They were then rinsed in PBS and embedded in tissue

freezing medium (OCT), frozen and stored at 270uC until

sectioning. Immunofluorescent staining was performed on 5

micron cryosections. For intracellular antigens, permeabilization

was performed with 0.2% Triton X-100 for 20 minutes, followed by

two PBS rinses. Sections were then blocked for 30 minutes with a

20% normal serum buffer. Sections were rinsed with PBS then

incubated with anti-proinsulin, insulin and biotinylated anti-mouse

CD45, rat monoclonal anti-CD34 (Abcam, Cambridge, MA) or

Alexa Fluor 488 conjugated anti GFP antibodies (Molecular Probes,

Eugene, OR) for 2 hours at room temperature, followed by 1 hour

incubations with respective secondaries (Texas Red anti-guinea pig

for insulin, Rhodamine anti-mouse for proinsulin and Alexa Flour

streptavidin for CD45). GFP expression and antigens labeled by

different fluorescence-conjugated antibodies were visualized by

fluorescent microscopy (Axiovert w 135, Carl Zeiss, Oberko-chen,

Germany). Additional staining with non-fluorescent DAB and Blue

Figure 1.Weak GFP signals in pancreatic islet of eGFP transgenic C57BL6 mice. GFP signals in pancreatic islets of eGFP transgenic positive
mice were examined. A. Light microscopy image with the arrow indicating the tissue difference between a potential islet and the rest of the
pancreatic tissue. B. The area indicated by the arrow in islet shows weak green fluorescence vs. surrounding area. C. Immunohistochemistry with
insulin specific antibody indicated positive insulin cells (red) in islet but not yellow (mixture of green and red) and there is a CD45 cell (anti CD45
antibody blue) in the islet indicated by arrow. D. shows insulin positive cells only. E. shows weak GFP signals in islet areas vs. surrounding area. F.
shows CD 45 positive cell only. A and B image magnification: 65; C image magnification: 620; D–F image magnification: 640.
doi:10.1371/journal.pone.0004504.g001
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conjugated anti insulin, CD34 antibodies (Molecular Probes) in

parallel sections were performed to confirm the fluorescent signals.

Cell Separation. Bone marrow was isolated from iliac bones,

femur, and tibiae of GFP transgenic mice 6 to 8 weeks of age.

Bone marrow cells were incubated with anti CD45-APC, anti c-

Kit APC and anti-Sca-1-biotin SA- APC (Pharmingen, San Diego,

CA). Cells positive and negative for individual markers were then

sorted into different tubes with a high speed MoFlow cell sorter

(Cytomation). For lineage negative separation, a low-density

fraction (,1.077 g/cm2) was isolated on Nycoprep 1.077A

(Accurate Chemical and Scientific Corporation). These cells

were lineage depleted using magnetic beads from a Lineage

Depletion kit (Miltenyi Biotec Inc. Auburn, CA). Cells were

washed and counted after depletion. The population of sorted cells

are displayed in Appendix S1.

Counting and Statistics. To count GFP positive islets in the

pancreas, 12 sections, 5 microns thick and 250 microns apart, were

made of each pancreatic specimen. The number of GFP positive

islets and the total islets in each section were counted. The ratio

between GFP positive islets and the total number of islets were

determined as percentage of GFP positive islets in total islets. Data

are presented as mean6one standard error of the mean. In the

text, table, and figures, all data are presented as means6SEM.

Most described experiments have been repeated three times.

However, for figures and tables, only one experiment of the results

is shown. Data used for graphical presentation and statistical

analysis are expressed as per experiment. Data were analyzed by

the ANOVA statistics program using a two factor analysis of

variance of repeated measures. Post hoc comparisons among

individual means were made by Tukey’s t-test.

Results

GFPs are expressed in the pancreatic islets of uGFP
transgenic mice and hematopoietic cells distribution in
the pancreas

We detected weak signals of GFP in the pancreatic islet area of

eGFP transgenic mice (Figure 1.). Un-homomorphy of GFP

signals were found in (A) and (B) and these insulin positive areas

were confirmed by fluorescent immunohistochemistry. There are

significantly strong GFP positive expression in areas surrounding

the insulin positive islet and CD45+ (C). The images further

display individual channels for insulin (D), GFP (E) and CD45+ (F).

GFP signals in uGFP transgenic mice are much stronger (Figure 2.)

than GFP signals in pancreatic islet from eGFP transgenic mice

(Figure 1). Since the pancreas is a more bone marrow resistant

organ, there are low numbers of hematopoietic cells in the

pancreas (about 4,5/ 1000 pancreatic cells) as shown in Figure 3

(A) and (B), compared with an abundance of hematopoietic cells

found in spleen (C) and (D). This suggests that bone marrow is

more likely to home into the spleen than to the pancreas.

Bone marrow cells migrate to pancreatic islets after
transplantation

Utilization of uGFP transgenic mice as bone marrow donors

allowed for tracking the labeled bone marrow migration into the

recipient’s pancreatic islets after transplantation (bone marrow

256106 cells) after 500 cGy (TBI). We found that infused bone

marrow homes to the pancreatic islets, as indicated by anti insulin

immunohistochemistry. These cells are also CD45 negative

(Figure 4 A) and CD34 positive (B).

Figure 2. GFP expresses in pancreatic islet in uGFP transgenic C57BL6 mice. Clear GFP signals in pancreatic islets have been shown via
immunohistochemistry of pancreatic sections from uGFP transgenic mice. A. Islet b cells have been identified by anti-insulin antibody (red, large
arrow indicated) and the positive insulin islet mixture with green GFP fluorescence (small arrow indicated) combination color image; B. Islet b cells
(red, arrows indicated) in red color image only; C. Nuclear staining with DAPI blue in blue color only; D. Positive GFP green in islet area (arrow
indicated) in green color only, image magnification: 640.
doi:10.1371/journal.pone.0004504.g002
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Bone marrow subpopulation affects their migration into
pancreatic islets

Lineage GFP positive bone marrow cells were isolated as

described above in methods and 2.56105/ml cells were infused

into recipients after 500 cGy irradiation. The positive GFP cells in

pancreatic islets were analyzed 8 weeks after transplantation.

There were six different cell lineages tested and whole bone

marrow (WBM) was used as a control. The results show that the

most favorable bone marrow population for migration to the islets

is Mac-12/Sca+ vs. WBM (Figure 5, * = p,0.01).

Figure 3. Distribution of CD45 cells in the pancreas and spleen of GFP negative mice. Identification of CD45+ cell migration into the
pancreas and spleen was performed in GFP negative C57BL6 mice. A. Pancreatic tissue as negative control for immunohistochemistry with anti-CD45
specific antibody. B. CD45+ cells were found in pancreas (brown indicated by black arrow). CD45+ population in pancreas was about 4,5/1000
pancreatic cells. C. Negative control of spleen. D. Spleen contains a large number of CD45+ cells 600,700/1000 spleen cells while the amounts of
bone marrow cells in pancreatic tissue (B) were low. Image magnification: 65.
doi:10.1371/journal.pone.0004504.g003

Figure 4. uGFP positive cell distribution in islet is CD 45 negative, but CD34 positive. A. Fluorescent immunohistochemistry with anti
CD45 (blue) and insulin (red) antibodies were used to identify mice pancreatic GFP positive and CD45+ donor cells in GFP negative C57BL6 mice,
which were transplanted with 256106 ml GFP positive WBM via tail vein after recipients had 500 cGy irradiation. GFP positive cells (indicated by
narrow arrow) are CD45 negative. CD45 positive cell (indicated by large arrow) is GFP negative. B. CD34 positive cells were further confirmed by
double labeling color immunohistochemistry with anti CD34 antibody (dark blue indicated by black arrow) in islet (brown) stained with anti-insulin
antibody. Image magnification: 640.
doi:10.1371/journal.pone.0004504.g004
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Cytokines affect Sca+ lineage bone marrow
differentiation into insulin positive cells in the recipient’s
islets

Subpopulations of Sca+ cells were pre-cultured with cytokines

IL-3 (50 U/ml), IL-6 (50 ng/ml), IL-11 (50 ng/ml) and steel

(50 ng/ml) for 0, 24 and 48 hours. Cells positive for both GFP and

insulin were only found in the recipient’s pancreas from the

48 hour culture group as shown in Figure 5 immunohistochem-

istry images. Immunohistochemistry with specific anti-insulin

antibody under de-confocal microscopy further confirmed that

insulin positive cells were derived from positive GFP donor

marrow. As viewed in Figure 6 A–D, cultures exposed to cytokines

for 48 hours stimulated bone marrow Sca+ cells to differentiate

into insulin positive cells in the pancreas. The amplified detail in

the cytosol of insulin positive cells shows GFP staining colocalized

with cytosol positive insulin granule staining in (E) and (F) (arrows

indicate GFP positive and insulin granules in cytosol). The insulin

positive granules can be clearly observed in the cellular cytosol of

both GFP positive- insulin positive cells and insulin positive cells.

Discussion

In this study, we found that GFP signals in eGFP animal

pancreatic islets cells were particularly weak. This may be one

reason that there were controversial reports for GFP in islets

[3,13,14] . Therefore, in this study, we used uGFP animals as a

bone marrow donor to avoid the weak GFP signal and focused on

how bone marrow specific lineages, with the combination of

cytokine treatment, influence bone marrow migration to islets and

conversion into insulin positive cells in vivo.

We found that bone marrow cell migration into pancreatic

tissue was restricted vs. migration into the spleen, as shown figure 3

(about 120 folds difference). More GFP positive cells were found in

the outer perimeter of the islets than within the islet, it was 8.5:1 or

about 12% of total population, suggesting that bone marrow

migration into islets is a critical step for bone marrow to contribute

to islet b cell function and regeneration.

After testing six different sorted subpopulations of GFP positive

bone marrow on GFP negative animals, we found that the bone

marrow cell population Sca+/Mac-12 can migrate into islets

more efficiently than WBM and the other five cell subpopulations.

The mechanisms involved may rely on cellular surface chemokine

receptor expression and pancreatic islet releasing factors, in which

activation of chemokine receptors in bone marrow cells promotes

cell migration into the islets [15–17]. On the other hand, Sca+ cell

lineage has the potential to differentiate into insulin positive cells in

vitro and in vivo [18–20]. Although we only found Sca+/Mac-12

favorable in this migration study, we are not excluding the

possibility that other sub populations from bone marrow may also

play a role in islet homing.

It has been reported that cytokine enriched bone marrow cultures

alters bone marrow surface markers and improves bone marrow

repopulation [21]. In this study, the Sca+/Mac-1 cell population

was cultured with cytokines before transplantation for 0, 24 and

48 hours, revealing that Sca+ cells treated by cytokines for 48 hours

induced differentiation into insulin positive cells in vivo. This

suggests that cytokines are critical for bone marrow’s participation

in islet b cell function recovery and b cell regeneration. Cytokines

tested in this study include IL-3, 6, 11 and steel factors in vitro.

However, the levels of these factors, or others in vivo, could be

different for individual responses to bone marrow transplantation,

especially in damaged pancreatic animal models.

In summary, the current study provides evidence that transgenic

mouse GFP gene control promoter, bone marrow subpopulation,

and cytokines are critical factors to stimulate successful bone

marrow migration and conversion into insulin-positive cells in

islets in vivo. The phenomenon of cytokine treated bone marrow

Sca+ subpopulations having the ability to migrate and potentially

Figure 5. Lineage population affects bone marrow migration into pancreatic islets. Six different sorted GFP bone marrow populations
were transplanted into GFP negative mice after 500 cGy TBI. The percentage of islets with positive GFP in total pancreatic islets was assayed. The
result shows that favorable bone marrow population for migration into islet is Mac-12/Sca+ vs. WBM (* = p,0.01). (TBM = tested bone marrow).
doi:10.1371/journal.pone.0004504.g005
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differentiate into insulin-positive islet cells still requires additional

mechanistic studies to identify the factors behind this effect.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0004504.s001 (0.11 MB

DOC)

Acknowledgments

Dr. LG Luo designed, conducted and performed most of the experiments

and wrote the manuscript. John ZQ Luo participated in experiments and

assisted in writing and editing the manuscript. Dr. Abedi provided animals,

sorted bone marrow cells and transplanted cells into animals. D Greer and

F Xiong provided technical help.

The authors would like to thank Dr. Peter Quesenberry for his kind help

in preparing and reviewing this manuscript.

Figure 6. Cultured in presence of cytokines for 48 hours initiated BM differentiation to insulin positive cells in islet. A. Insulin positive
cells were identified by insulin fluorescent immunohistochemistry as GFP positive (arrow indicated); B. Blue nucleus staining (DAPI) indicated by
arrow; C. GFP positive cell indicated by arrow; D. The arrow indicates same cell with insulin positive staining. Image magnification:640; E. Anti-insulin
antibody immunohistochemistry imaged under de-confocal microscopy to further identify differentiated cells. The arrow indicates the GFP positive
cell is insulin positive with clear nucleus staining and F. insulin staining indicated by arrow and DAPI nuclear staining is blue. Image magnification:
6100.
doi:10.1371/journal.pone.0004504.g006

Bone Marrow Sca Cells in Islet

PLoS ONE | www.plosone.org 6 February 2009 | Volume 4 | Issue 2 | e4504



Author Contributions

Conceived and designed the experiments: LL JZQL. Performed the

experiments: LL FX MA DG. Analyzed the data: LL JZQL FX.

Contributed reagents/materials/analysis tools: MA. Wrote the paper: LL

JZQL.

References

1. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of

glucose-competent pancreatic endocrine cells from bone marrow without

evidence of cell fusion. J Clin Invest 111: 843–850.
2. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, et al. (2003) Little

evidence of transdifferentiation of bone marrow-derived cells into pancreatic
beta cells. Diabetologia 46: 1366–1374.

3. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, et al. (2004)
Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-

cell injury. Diabetes 53: 91–98.

4. Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, et al. (2006) Failure
of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes

55: 290–296.
5. Lavazais E, Pogu S, Sai P, Martignat L (2007) Cytokine mobilization of bone

marrow cells and pancreatic lesion do not improve streptozotocin-induced

diabetes in mice by transdifferentiation of bone marrow cells into insulin-
producing cells. Diabetes Metab 33: 68–78.

6. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, et al. (2006) Multipotent
stromal cells from human marrow home to and promote repair of pancreatic

islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A
103: 17438–17443.

7. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, et al. (2007)

Autologous nonmyeloablative hematopoietic stem cell transplantation in newly
diagnosed type 1 diabetes mellitus. Jama 297: 1568–1576.

8. Banerjee M, Kumar A, Bhonde RR (2005) Reversal of experimental diabetes by
multiple bone marrow transplantation. Biochem Biophys Res Commun 328:

318–325.

9. Ai C, Todorov I, Slovak ML, Digiusto D, Forman SJ, et al. (2007) Human
marrow-derived mesodermal progenitor cells generate insulin-secreting islet-like

clusters in vivo. Stem Cells Dev 16: 757–770.
10. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, et al. (2007) Differentiation of

bone marrow-derived mesenchymal stem cells from diabetic patients into
insulin-producing cells in vitro. Chin Med J (Engl) 120: 771–776.

11. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, et al. (2004) In vivo

and in vitro characterization of insulin-producing cells obtained from murine
bone marrow. Diabetes 53: 1721–1732.

12. Naselli G, Deaizpurua HJ, Thomas HE, Johnston AM, Kay TW (2001) Lack of

expression of Gp-130 makes pancreatic beta cell lines unresponsive to the IL-6

family of cytokines. Int J Exp Diabetes Res 1: 239–248.

13. Kang EM, Zickler PP, Burns S, Langemeijer SM, Brenner S, et al. (2005)

Hematopoietic stem cell transplantation prevents diabetes in NOD mice but

does not contribute to significant islet cell regeneration once disease is

established. Exp Hematol 33: 699–705.

14. Hasegawa Y, Ogihara T, Yamada T, Ishigaki Y, Imai J, et al. (2007) Bone

marrow (BM) transplantation promotes beta-cell regeneration after acute injury

through BM cell mobilization. Endocrinology 148: 2006–2015.

15. Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, et al. (2007) Increased

number of islet-associated macrophages in type 2 diabetes. Diabetes 56:

2356–2370.

16. Zanone MM, Favaro E, Ferioli E, Huang GC, Klein NJ, et al. (2007) Human

pancreatic islet endothelial cells express coxsackievirus and adenovirus receptor

and are activated by coxsackie B virus infection. FASEB J 21: 3308–3317.

17. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, et al. (2005) Bone

marrow mesenchymal stem cells express a restricted set of functionally active

chemokine receptors capable of promoting migration to pancreatic islets. Blood

106: 419–427.

18. Chang KH, Chan-Ling T, McFarland EL, Afzal A, Pan H, et al. (2007) IGF

binding protein-3 regulates hematopoietic stem cell and endothelial precursor

cell function during vascular development. Proc Natl Acad Sci (USA) 104:

10595–10600.

19. Zhang CC, Lodish HF (2004) Insulin-like growth factor 2 expressed in a novel

fetal liver cell population is a growth factor for hematopoietic stem cells. Blood

103: 2513–2521.

20. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, et al. (2003)

Characterization of mesenchymal stem cells isolated from murine bone marrow

by negative selection. J Cell Biochem 89: 1235–1249.

21. Zhang CC, Lodish HF (2005) Murine hematopoietic stem cells change their

surface phenotype during ex vivo expansion. Blood 105: 4314–4320.

Bone Marrow Sca Cells in Islet

PLoS ONE | www.plosone.org 7 February 2009 | Volume 4 | Issue 2 | e4504


