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Abstract

Background: Reproductive functions controlled by the hypothalamus are highly sexually differentiated. One of the
most dramatic differences involves estrogen positive feedback, which leads to ovulation. A crucial feature of this
positive feedback is the ability of estradiol to facilitate progesterone synthesis in female hypothalamic astrocytes.
Conversely, estradiol fails to elevate hypothalamic progesterone levels in male rodents, which lack the estrogen
positive feedback-induced luteinizing hormone (LH) surge. To determine whether hypothalamic astrocytes are
sexually differentiated, we examined the cellular responses of female and male astrocytes to estradiol stimulation.

Methods: Primary adult hypothalamic astrocyte cultures were established from wild type rats and mice, estrogen
receptor-a knockout (ERKO) mice, and four core genotype (FCG) mice, with the sex determining region of the Y
chromosome (Sry) deleted and inserted into an autosome. Astrocytes were analyzed for Sry expression with reverse
transcription PCR. Responses to estradiol stimulation were tested by measuring free cytoplasmic calcium
concentration ([Ca2+]i) with fluo-4 AM, and progesterone synthesis with column chromatography and
radioimmunoassay. Membrane estrogen receptor-a (mERa) levels were examined using surface biotinylation and
western blotting.

Results: Estradiol stimulated both [Ca2+]i release and progesterone synthesis in hypothalamic astrocytes from adult
female mice. Male astrocytes had a significantly elevated [Ca2+]i response but it was significantly lower than in
females, and progesterone synthesis was not enhanced. Surface biotinylation demonstrated mERa in both female
and male astrocytes, but only in female astrocytes did estradiol treatment increase insertion of the receptor into
the membrane, a necessary step for maximal [Ca2+]i release. Regardless of the chromosomal sex, estradiol
facilitated progesterone synthesis in astrocytes from mice with ovaries (XX and XY-), but not in mice with testes
(XY-Sry and XXSry).

Conclusions: Astrocytes are sexually differentiated, and in adulthood reflect the actions of sex steroids during
development. The response of hypothalamic astrocytes to estradiol stimulation was determined by the presence or
absence of ovaries, regardless of chromosomal sex. The trafficking of mERa in female, but not male, astrocytes
further suggests that cell signaling mechanisms are sexually differentiated.

Background
Sex differences affect the physiological function of both
gonadal and non-gonadal cellular systems. When gene
expression was studied by microarray in a large number
of mice, 55 to 72% of active genes showed sexual
dimorphism in the liver, fat and muscle, and 13% of
genes were sexually dimorphic in the brain [1]. These sex

differences influence a variety of neural functions, both
physiological and pathological.
One of the most robust sex differences is the estrogen-

positive feedback, which signals the luteinizing hormone
(LH) surge essential for ovulation. In post-pubertal
females, rising levels of estradiol originating from devel-
oping ovarian follicles peak on proestrus, and induce the
gonadotropin releasing hormone (GnRH) regulatory cir-
cuit to massively release GnRH, which stimulates estro-
gen primed gonadotrophs to release LH, resulting in
ovulation and the formation of corpora lutea. Males,
especially male rodents, do not exhibit this phenomenon.
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Their relatively constant levels of testosterone produce a
negative feedback on the regulatory circuitry for GnRH
release from the hypothalamus and gonadotropin release
from the pituitary, an effect similar to that in females
outside of proestrus. The inability of males to produce
the estrogen positive feedback leading to a surge in LH
has been attributed to the effects of androgen action on
the central nervous system [2-7].
A mechanism for mediating estrogen positive feedback

involves the synthesis of neuroprogesterone in the
hypothalamus. Estradiol treatment of ovariectomized
and adrenalectomized female rats increased hypothala-
mic progesterone levels and induced an LH surge [8].
Disruption of central (hypothalamic) progesterone
synthesis blocked the LH surge in gonadally intact,
cycling rats [9]. Interestingly, only adult females, which
have an estrogen positive feedback mechanism, show an
increase in hypothalamic progesterone in response to
estradiol [8,10]. In other words, males and reproductive
senescent females do not show an increase in hypothala-
mic progesterone synthesis. The cells responsible for the
elevated neuroprogesterone levels in the hypothalamus
after estradiol treatment are astrocytes [11].
In astrocytes from post-pubertal female rats, estradiol

induces a rapid increase in free cytoplasmic calcium con-
centration ([Ca2+]i) that facilitates progesterone synthesis
essential for positive estrogen feedback, the LH surge and
ovulation in females [10,12-16]. We have not determined
whether astrocytes derived from male rats similarly
respond to estradiol stimulation by increasing [Ca2+]i
release and progesterone synthesis. The present experi-
ments were performed to determine whether astrocytes
derived from male and females respond differently to
estradiol stimulation. In addition, Sry is expressed in the
brain, and has been shown to directly influence the bio-
chemical properties of the dopaminergic neurons of the
nigrostriatal system and the specific motor behaviors
they control [17]. To this end, the ‘four core genotype’
(FCG) mouse model, in which the sex chromosome com-
plement is independent of gonadal phenotype [18], was
used to determine whether sex differences are due to
direct sex chromosome effects or to Sry transgene effects
that determine gonadal differentiation and its dramatic
influence on the sex steroid environment during early
development.

Methods
All experimental procedures were approved by the
Chancellor’s Animal Research Committee at the Univer-
sity of California at Los Angeles.

Primary cell cultures
Primary hypothalamic astrocyte cultures pooled from
two to six animals were obtained from 50-day-old adult

Long-Evans rats (Charles River, Wilmington, MA, USA)
and from 60-day-old adult mice (C57/Bl6 wild type and
estrogen receptor-alpha (ERa) knockout (Jackson
Laboratory, Bar Harbor, ME, USA) and C57BL/6J FCG
mice (gift from Dr. Arthur Arnold, UCLA, Los Angeles,
CA, USA)). FCG mice were obtained by breeding XX
female mice with XY-Sry male mice, which possess a Y
chromosome with the Sry gene deleted and a functional
Sry transgene inserted onto an autosome. The presence
of the Sry gene leads to differentiation of the indetermi-
nate gonads into testes, and its absence results in forma-
tion of ovaries [19,20]. This cross generates four
genotypes: XY-Sry gonadal males (XYM), XY- gonadal
females (XYF), XXSry gonadal males (XXM) and XX
gonadal females (XXF) [21].
The hypothalamus was dissected with the following

boundaries: rostral extent of the optic chiasm, rostral
extent of the mammillary bodies, lateral edges of the tuber
cinereum and the top of the third ventricle. Hypothalamic
tissue was dissociated with 2.5% trypsin solution (Invitro-
gen, Eugene, OR, USA) and a fire polished glass Pasteur
pipette. Cultures were grown in Dulbecco’s modified
Eagle’s medium (DMEM)/F12 (Mediatech, Manassas, VA,
USA) with 10% fetal bovine serum (FBS) (Hyclone, Logan,
UT, USA) and 1% penicillin (10,000 IU/ml)-streptomycin
(10,000 μg/ml) solution (PS) (Mediatech) at 37°C in 5%
CO2. Astrocyte cultures were grown to confluency and
purified from other glial cells [14-16] using a technique
modified from McCarthy and de Vellis [22]. Sry expression
in the astrocytes of FCG mice was analyzed and confirmed
by reverse transcription (RT)-PCR.
Before the experiments, the DMEM/F12 medium with

10% FBS and 1% PS was removed, and primary astrocyte
cultures were washed with Hanks’ balanced salt solution
(HBSS) (Mediatech), dissociated with a 2.5% trypsin
solution and resuspended in DMEM/F12 medium with
10% FBS. Astrocytes were centrifuged for 3 minutes at
80 g, then the supernatant was removed and the pellet
containing astrocytes resuspended. Astrocytes were
counted, plated and incubated in DMEM/F12 medium
with 10% FBS and 1% PS at 37°C in 5% CO2 for 24 to
48 hours before Ca2+ imaging and progesterone radio-
immunoassay (RIA). For biotinylation, astrocytes were
counted, plated and grown in flasks for 2 weeks before
experimentation. Cultures were routinely checked for
purity using immunocytochemistry for glial fibrillary
acidic protein (Chemicon, Temecula, CA, USA) with
Hoechst 3342 nuclear stain (Sigma-Aldrich, St. Louis,
MO, USA). Cultures were determined to be > 95% pure
astrocytes, as previously reported [14-16],

Intracellular Ca2+ measurements
Astrocytes (5000) were plated onto 15 mm glass coverslips
coated with 0.1 mg/ml poly-D lysine (Sigma-Aldrich) in
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12-well culture plates and grown in DMEM/F12 medium
with 10% FBS and 1% PS at 37°C in 5% CO2 for 24 to
48 hours. The astrocytes were then starved of steroid for
18 hours by incubating in DMEM/F12 medium with 5%
charcoal-stripped FBS at 37°C in 5% CO2. Before imaging,
astrocytes were incubated for 45 minutes with HBSS and
4.5 μmol/l of the calcium indicator Fluo-4 AM (Invitro-
gen) dissolved in dimethyl sulfoxide (DMSO) and metha-
nol. Glass coverslips were placed into a 50 mm chamber
insert (Warner Instruments, Hamden, CT, USA) fixed into
a 60 × 15 mm cell culture dish (Corning Inc., Corning,
NY, USA) and placed into a quick exchange platform
(QE-2; Warner Instruments) for imaging under a laser
confocal microscope (Axioplan2-LSM 510 Meta; Zeiss,
Thornwood, New York, NY, USA). Astrocytes were gravity
perfused with HBSS, and media were removed by vacuum
suction. Cyclodextrin encapsulated 17b-estradiol (1
nmol/l) (Sigma-Aldrich) was prepared in HBSS and
used to induce [Ca2+]i release. Controls were stimu-
lated with HBSS only. For Fluo-4 AM imaging, a water
immersion objective (IR-Achroplan 40X/0.80; Zeiss,
Jena, Germany) was used with 488 nm laser excitation
and emission monitored through a low-pass filter with
a cutoff at 505 nm. The increase in Ca2+ fluorescence
(relative fluorescence units (RFU)) was calculated for
each astrocyte as the difference between baseline fluor-
escence and peak response to drug stimulation.

Progesterone RIA
Approximately 500,000 astrocytes were plated into six-
well culture plates and grown for 24 hours. Astrocytes
were then starved of steroid in DMEM/F12 medium with
5% charcoal-stripped FBS for 18 hours before treatment
with cyclodextrin encapsulated 17b-estradiol (1 or 100
nmol/l dissolved in HBSS) (Sigma-Aldrich) or HBSS with
no steroids for 60 minutes at 37°C. After 1 hour of drug
treatment, the supernatant for each well was collected
and frozen at -20°C for up to 1 week before the RIA.
For the progesterone assay, samples were thawed,

mixed with diethyl ether (Fisher Scientific, Fair Lawn,
NJ, USA) and then mixed by vortex for 2 minutes. To
freeze the aqueous layer, samples were placed into a
methanol and dry ice bath. The upper ether layer was
decanted into a separate tube and the ether was allowed
to evaporate overnight. The extract was reconstituted in
isooctane (Mallinkrodt Baker, Phillipsburg, NJ, USA)
and a diatomaceous earth column (Celite column™;
Celite Corp., Lompoc, CA, USA) with ethylene glycol as
the stationary phase was used to isolate the progester-
one. Progesterone was then eluted off the column using
4 ml of isooctane. Standards and samples (100 μl) were
incubated with rabbit polyclonal antibody against pro-
gesterone (Sigma-Aldrich) for 30 minutes at 37°C. Tri-
tium radiolabeled progesterone (2000 counts/minute/ml)

was added and incubated for an additional 60 minutes
at 37°C. Standards and samples were cooled to 4°C, and
a 0.05% charcoal dextran solution (Sigma-Aldrich)
added to remove all unbound progesterone. The mix-
ture was centrifuged at 1500 × g for 15 minutes at 4°C.
The supernatant was then collected for chromatographic
detection of progesterone. All samples were run in
duplicate, and sample progesterone concentrations
determined by extrapolation from a curve determined
from the progesterone standards.

Surface biotinylation
Primary astrocyte cultures were starved of steroids
in DMEM/F12 medium with 5% charcoal-stripped FBS
12 hours before treatment with vehicle or 1 nmol/l of
17b-estradiol (Sigma-Aldrich) for 30 minutes at 37°C.
Cells in each flask were washed three times with ice cold
phosphate buffered saline (PBS) and incubated with
freshly prepared biotin (0.5 mg/ml) (EZ-Link Sulfo-NHS-
LC-Biotin; Pierce Biotechnology Inc., Rockford, IL, USA)
in PBS for 30 minutes at 4°C with gentle agitation. Excess
biotin reagent was quenched by rinsing the cells three
times with ice cold glycine buffer (50 mmol/l glycine in
PBS). Cells were scraped into 10 ml of PBS solution,
transferred into a 50 ml conical tube and centrifuged at
500 × g for 3 minutes. The pellet was washed twice with
ice-cold PBS and resuspended in 200 ml radioimmuno-
precipitation assay (RIPA) lysis buffer containing the pro-
tease inhibitors 1 mmol/l phenylmethylsulfonyl fluoride,
1 mmol/l EDTA, 1 μg/ml pepstatin, 1 μg/ml leupeptin,
1 μg/ml aprotinin and 1 mmol/l sodium orthovanadate
(all from Santa Cruz Biotechnology, Santa Cruz, CA,
USA). The cells were homogenized by passing them
through a 25-gauge needle, and the cell extract was cen-
trifuged at 10,000 × g for 2 minutes at 4°C. The protein
concentration of the supernatant was determined using
the Bradford Assay (Bio-Rad, Hercules, CA, USA). Sam-
ples with equal protein concentration were added to a
washed immobilized gel (NeutrAvidin™Gel; Pierce Bio-
technology Inc.) for 2 hours at room temperature and
then centrifuged at 1,000 × g for 1 minute. The beads
were washed four times with 1 ml of RIPA buffer (Santa
Cruz Biotechnology) containing the protease inhibitors
previously mentioned. The bound proteins were eluted
with SDS-PAGE sample buffer supplemented with
50 mmol/l dithiothreitol (DTT) for 1 hour at 37°C.

Western blotting
Samples were separated in a 10% Tris-HCl gel (Ready
Gel; Bio-Rad) and transferred to polyvinylidene fluoride
membranes (GE Healthcare, Piscataway, NJ, USA). ERa
was detected with primary rabbit polyclonal antibody
(1:1000) (C1355; Upstate Biotechnology, Inc., Lake Pla-
cid, NY, USA). b-actin was used as a loading control
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and detected by rabbit polyclonal antibody (1:5000)
(Abcam, Cambridge, MA, USA). A secondary donkey
anti-rabbit IgG (H+L) antibody (1:5000) (Jackson Immu-
noResearch, West Grove, PA, USA) and an anti-biotin
horseradish peroxidase-linked antibody (1:1000) (Cell
Signaling Technology, Danvers, MA, USA) were then
used (1.5 hour incubation). To estimate the molecular
weight, samples were run alongside a biotinylated pro-
tein ladder (Cell Signaling Technology). Immunoreactive
bands were visualized using an enhanced chemolumine-
sence (ECL) kit and ECL hyperfilm (GE Healthcare).
Routine exposures varied from 0.5 to 2 minutes. The
optical density of each immunoreactive band was deter-
mined. For each sample, immunoreactive ERa was nor-
malized with b-actin to obtain the percentage of ERa
protein to b-actin protein ratio (% relative ratio).

RT-PCR
Total RNA was extracted from several primary cultures of
astrocytes from Long-Evans post-pubertal rats using Trizol
reagent (Invitrogen), following the manufacturer’s recom-
mended protocol. To prevent DNA contamination, RNA
was treated with DNase I (Ambion, Austin, TX, USA) at
37°C for 30 minutes followed by inactivation with DNase
inactivation reagent (Ambion). Total RNA quality and
concentration were assessed using a spectrophotometer
(NanoDrop 1000; Thermo Scientific, Wilmington, DE,
USA). RT was then performed using 1 μg of total RNA to
synthesize single-stranded cDNA in a 20 μl reaction with
a reverse transcriptase (SuperScript III; Invitrogen) and a
combination of random hexamers and oligo (dT)20 pri-
mers, following the manufacturer’s protocol. Briefly, RT
was performed at 50°C for 50 minutes, then the reaction
terminated at 85°C for 5 minutes and the RNA destroyed
with 1 μl of RNase H at 37°C for 20 minutes. cDNAs
were subjected to PCR with primers specific to rat Sry
(Fwd: 5-GCAGCGTGAAGTTGCCTCAAC-3 and Rev:
5-TGCAGCTCTAGCCCAGTCCTG-3) in an RT-PCR
system (Mx3000p Real-Time PCR System; Stratagene,
Santa Clara, CA, USA). PCR conditions used for amplifica-
tion were as follows: initial denaturation at 94°C for
10 minutes, 35 cycles of denaturation at 94°C for 45 sec-
onds, annealing at 60°C for 45 seconds and elongation at
72°C for 1 minute, with a final extension at 72°C for 7 min-
utes. Amplified products were separated by electrophoresis
in a 2% agarose gel with ethidium bromide and visualized
with ultraviolet light. Gel images were captured digitally to
confirm product size and the absence of non-specific pro-
ducts. Negative controls (no cDNA) were included in
every PCR run.

Statistical analysis
Data are presented as means ± standard error (SEM) in
RFU, pg/ml or % relative ratio. Statistical comparisons

were made using one-way analysis of variance
(ANOVA) with Student-Newman-Keuls post hoc test
when comparing means across at least three indepen-
dent groups. For the FCG mice, mean comparisons and
contrasts under the ANOVA model were made using
the Tukey-Fisher least significant difference (LSD) cri-
terion. Statistical calculations were carried out using
SAS (version 9.2; SAS Institute, Cary, NC, USA) and
GraphPad Prism (version 5; GraphPad Software, La
Jolla, CA, USA) software programs. P < 0.05 was con-
sidered significant.

Results
Sex differences of [Ca2+]i release in response
to estradiol stimulation
Calcium imaging was used to confirm the sexual differen-
tiation of hypothalamic astrocyte function in adult mice.
Although 1 nmol/l estradiol induced a significant (P <
0.05) [Ca2+]i response in both female and male wild
type astrocytes (ΔF Ca2+ = 630 ± 13 RFU (n = 31) and
ΔF Ca2+ = 340 ± 17 RFU (n = 24), respectively) compared
with control (ΔF Ca2+ = 135 ± 6 RFU (n = 21) and ΔF
Ca2+ = 152 ± 7 RFU (n = 24), respectively), the estradiol-
induced [Ca2+]i release in male astrocytes was signifi-
cantly(P < 0.05) smaller than the [Ca2+]i release in female
astrocytes (Figure 1). We previously reported that the
estradiol-induced [Ca2+]i response seen in female wild
type astrocytes was abolished in female hypothalamic
astrocytes from estrogen receptor-a knockout (ERKO)
mice [12].
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Figure 1 Gender and estrogen receptor-a affect the estradiol-
induced [Ca2+]i release in adult hypothalamic astrocytes. The
estradiol (1 nmol/l)-induced [Ca2+]i release was greater in female
compared with male wild type astrocytes (P < 0.05). In female
estrogen receptor-a knockout (ERKO) astrocytes, 1 nmol/l estradiol
failed to induce a significant [Ca2+]i response (P > 0.05) [12].
*Significantly different compared with all controls and female ERKO
mice (P < 0.05, one-way ANOVA with Student-Newman-Keuls post
hoc test). †Significantly different compared with male wild type
astrocytes stimulated with 1 nmol/l estradiol (P < 0.05, one-way
ANOVA with Student-Newman-Keuls post hoc test).
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Sex differences in astrocytic progesterone synthesis to
estradiol stimulation
We previously demonstrated that 1 nmol/l estradiol sig-
nificantly increased progesterone synthesis in primary
cultures of adult female hypothalamic astrocytes in rats
[12]. Using the same culture conditions in adult female
hypothalamic astrocytes obtained from mice, we now
confirm that 1 and 100 nmol/l estradiol stimulates signif-
icant (P < 0.05) progesterone synthesis (69.4 ± 2.0 pg/ml
(n = 4) and 99.9 ± 13.0 pg/ml (n = 4), respectively) com-
pared with control (21.6 ± 3.3 pg/ml (n = 4)) (Figure 2).
Furthermore, 100 nmol/l estradiol stimulated greater
progesterone synthesis compared with 1 nmol/l estradiol
(P < 0.05) (Figure 2). However, hypothalamic astrocytes
from adult male mice did not synthesize progesterone
above control levels (15.8 ± 0.8 pg/ml (n = 4)) when
stimulated with estradiol at 1 or 100 nmol/l (22.2 ± 1.7
pg/ml (n = 4; P > 0.05 versus control) and 14.3 ± 2.4
pg/ml (n = 4; P > 0.05 versus control), respectively) (Fig-
ure 2). Adult male rat hypothalamic astrocytes similarly
failed to synthesize progesterone when exposed to 1 or
100 nmol/l estradiol (20.0 ± 0.6 pg/ml (n = 4) and 18.9 ±
2.4 pg/ml (n = 4), respectively) compared with control
(12.7 ± 2.9 pg/ml (n = 4; P > 0.05)). These results demon-
strate sexual differentiation of hypothalamic astrocyte
function in response to estradiol stimulation.

Sex differences do not result from the sex
chromosome complement
Using FCG mice, we compared genetic sex chromosome
effects versus Sry transgene effects. Baseline progester-
one synthesis by control astrocytes from XYM mice
(0.0 ± 5.3 pg/ml (n = 4)) was significantly lower than
control astrocytes from XXF (21.8 ± 5.3 pg/ml (n = 4;
P < 0.05)), XYF (16.0 ± 5.3 pg/ml (n = 4; P < 0.05)) and
XXM mice (17.2 ± 5.3 pg/ml (n = 4; P < 0.05)), all of
which were similar to each other (P > 0.05) (Figure 3).
Estradiol (1 nmol/l) significantly increased progesterone
synthesis in both types of gonadal female (XXF and
XYF) astrocytes (51.9 ± 5.3 pg/ml (n = 4; P < 0.05 ver-
sus control) and 47.4 ± 5.3 pg/ml (n = 4; P < 0.05 versus
control), respectively), but failed to increased progester-
one synthesis in gonadal male (XXM and XYM) astro-
cytes (16.6 ± 5.3 pg/ml (n = 4; P > 0.05 versus control)
and 3.0 ± 5.3 pg/ml (n = 4; P > 0.05 versus control),
respectively) (Figure 3). Comparison of progesterone
changes after estradiol (1 nmol/l) versus control revealed
a similar increase in progesterone synthesis in XXF and
XYF astrocytes, whereas there was a lack of progester-
one increase in both XXM and XYM astrocytes (P <
0.05), suggesting a steroid-induced sex effect due to
early differential gonadal (testes versus ovaries) hormone
secretion.
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Figure 2 Sex differences in estradiol stimulated progesterone
synthesis in adult hypothalamic astrocytes. Estradiol at 1 and
100 nmol/l stimulated significant progesterone synthesis in female
wild type astrocytes (P < 0.05 versus control). Conversely, male wild
type astrocytes were not stimulated by estradiol (1 or 100 nmol/l)
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Figure 3 Sex differences due to gonadal hormone effects in
adult hypothalamic astrocytes. In four core genotype (FCG) mice,
control astrocytes from XYM mice synthesized significantly less
progesterone (P < 0.05) than control astrocytes from XXF, XYF and
XXM mice. XXF and XYF astrocytes responded to estradiol (1 nmol/l)
with increased progesterone synthesis (P < 0.05 versus their control),
but XXM and XYM astrocytes did not (P > 0.05 versus their control).
*Significantly different compared with all other controls (P < 0.05,
ANOVA with Tukey-Fisher least significant difference post hoc test).
†Significantly greater progesterone synthesis with 1 nmol/l estradiol
compared with the control (P < 0.05, ANOVA with Tukey-Fisher least
significant difference post hoc test).

Kuo et al. Biology of Sex Differences 2010, 1:7
http://www.bsd-journal.com/content/1/1/7

Page 5 of 9



Sex differences in astrocytic mERa trafficking in response
to estradiol
We previously used surface biotinylation to demonstrate
the presence of two ERa immunoreactive bands
(66 kDa and 52 kDa) in the cell membrane of female
wild type hypothalamic astrocytes, which were not pre-
sent in female ERKO mouse astrocytes [23]. Immunor-
eactive mERa is transiently increased by estradiol
exposure, reaching maximum levels after 30 minutes
[23]. As in the previous study, the major ERa immunor-
eactive band was at 52 kDa, and was thus used for
quantification. Basal levels of mERa were similar in
both female and male wild type hypothalamic mouse
astrocytes (27 ± 7% relative ratio (n = 3) and 22 ± 5%
relative ratio (n = 3), respectively; P > 0.05) (Figure 4).
Stimulation with 1 nmol/l estradiol for 30 minutes sig-
nificantly increased mERa levels in female astrocytes
(41 ± 10% relative ratio (n = 3; P < 0.05 versus control)).
An equimolar concentration of estradiol did not change
mERa levels in male astrocytes (28 ± 8% relative ratio
(n = 3; P > 0.05 versus control)) (Figure 4). These
results demonstrate a sex difference in the regulation of

mERa trafficking in response to estradiol exposure in
hypothalamic astrocytes.

Discussion
Although both male and female rodents have a well
developed negative feedback mechanism regulating the
release of GnRH and LH, one of the most robust sexually
differentiated physiological responses is estrogen positive
feedback, which induces the surge release of LH in
response to estradiol stimulation. This phenomenon of
estrogen positive feedback is a hallmark of various female
animal species. For rodents, once the ability to produce
estrogen positive feedback is lost during development,
the deficit is permanent. In primates, including humans,
many years of continuous estrogen exposure in males
can result in an estrogen positive feedback response,
although it is much attenuated [24]. According to the
epigenetic theory of sexual differentiation of the brain,
the sex difference in estrogen positive feedback is said to
arise from the action of estradiol (aromatized from tes-
tosterone) during organization of the neural circuit(s)
controlling GnRH neurons. Several mechanisms have
been proposed to account for this differentiation, includ-
ing the lack of estrogen-induced synaptic plasticity in the
male arcuate nucleus [25] and an attenuated distribution
of kisspeptin neurons in males [26]. Various structural
sex differences that result from perinatal exposure to
estradiol have been identified. In terms of regulating
GnRH, males have greater postnatal apoptosis in the
developing anteroventral periventricular nucleus (AVPV),
a region crucial for estrogen positive feedback in females
[27-29]. Although it is not clear whether such a sex dif-
ference in apoptosis is an important mechanism for elim-
ination of estrogen positive feedback, it does support a
role for postnatal sex steroids in organizing brain
mechanisms involved in reproduction [30].
Over the past several years we have been investigating

the role of neuroprogesterone in regulating estrogen
positive feedback [31]. Experimental evidence is consis-
tent with the hypothesis that synthesis of progesterone
in the hypothalamus is needed for an LH surge and the
transition from proestrus to estrus [8,10]. Significantly,
estrogen treatment increases progesterone levels in the
female but not male hypothalamus [8,31]. The cells
responsible for neuroprogesterone production are
hypothalamic astrocytes [11]. It has been reported that
astrocytes are sexually differentiated by the neonatal
hormonal milieu, especially estradiol, which profoundly
influences their morphology and function [32,33].
Female astrocytes express ERs that are targeted to the
cell membrane and directly regulated by estradiol levels
[13,23]. Estradiol stimulated mERa transactivates the
metabotropic glutamate receptor (mGluR) type 1a,
which activates a phospholipase C-inositol trisphosphate
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Figure 4 Sex differences in the regulation of mERa levels in
adult hypothalamic astrocytes. Using surface biotinylation,
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(PLC-IP3) cascade, resulting in the release of intracellu-
lar Ca2+ from the smooth endoplasmic reticulum via an
IP3 receptor dependent mechanism [13,15]. The robust
increase of [Ca2+]i release stimulates neuroprogesterone
synthesis in hypothalamic astrocytes, which is required
for the LH surge [11]. Alternatively, astrocytes can
potentially modulate GnRH neurons in the arcuate
nucleus directly through ensheathment or unensheath-
ment of synaptic connections or restriction of GnRH
nerve terminal access to the portal vasculature, and
indirectly through release of growth factors and prosta-
gladins [34,35].
In the present study, we investigated astrocytic sex dif-

ferences by examining the response to estradiol of adult
hypothalamic astrocytes derived from male or female
rats and mice. First, both male and female astrocytes
have mERa that can be labeled using surface biotinyla-
tion [23]. Estradiol exposure increased the amount of
ERa at the cell membrane in adult female astrocytes,
but did not increase levels of mERa in male astrocytes.
Second, male astrocytes did have an estradiol-induced
[Ca2+]i response, which was significantly attenuated
compared with that of female astrocytes. These results
are consistent with our previous observations that maxi-
mum [Ca2+]i release is correlated with elevations in
estradiol-induced mERa levels [23]. The importance of
mERa was emphasized by the lack of estradiol-induced
[Ca2+]i release in female ERKO astrocytes [12]. This sti-
mulation of [Ca2+]i release involved mERa transactiva-
tion of mGluR1a, a G protein coupled receptor [15].
Furthermore, the estradiol-induced progesterone synth-
esis in adult female astrocytes similarly required this
mERa-mGluR1a interaction [12]. Third, only astrocytes
derived from adult female rats [10,12,14] and mice (pre-
sent results) had an increase in progesterone synthesis,
consistent with previous observations that only adult
female rodents have increased levels of progesterone in
the hypothalamus before the LH surge [8]. These results
support the hypothesis that estrogen positive feedback
requires a robust [Ca2+]i release that triggers progester-
one synthesis in the hypothalamus. The data also sug-
gest that although a rise in [Ca2+]i is necessary for
progesterone synthesis, there appears to be a crucial
concentration required, as male astrocytes have an atte-
nuated [Ca2+]i response that was unable to facilitate pro-
gesterone synthesis in the present study, consistent with
previous reports in neonatal astrocytes [14] and in post-
pubertal astrocytes, in which 0.1 nmol/l estradiol stimu-
lated [Ca2+]i release, but not progesterone synthesis [12].
Biological differences between males and females can

result genetically from direct sex chromosome differ-
ences, developmentally through differential exposure to
sex steroids during developmental ‘organization’, or
functionally from acute ‘activational’ effects of gonadal

steroids operating at many life stages, which can be con-
trolled through gonadectomy [36]. Perinatal gonadal
hormone secretions have been shown to have powerful
and permanent actions on physiology, including pitui-
tary function, gene expression in the brain and sexual
behavior [37-40]. In spite of these epigenetic effects, sev-
eral chromosomal dependent sex differences have been
demonstrated in the brain. Specifically, the FCG mice
model has demonstrated purely chromosomal XX versus
XY differences in behaviors, including aggression, par-
enting, habit formation, nociception and social interac-
tions [21]. For example, a chromosomal sex effect was
demonstrated for vasopressin innervation of the septum
[41,42]. At embryonic day 13, mesencephalic neurons
express tyrosine hydroxylase, which is earlier than any
sex steroid actions [43]. More importantly, neurons in
the adult male substantia nigra were shown to express
Sry, which maintained the expression of tyrosine hydro-
xylase, the rate limiting enzyme of catecholamine (dopa-
mine) synthesis [17]. A reduction in Sry gene expression
led to motor deficits in male rats, suggesting a function
for Sry in the maintenance of dopamine neurons needed
for motoric behaviors regulated by the nigrostriatal
pathway that is affected in Parkinson’s disease. These
studies suggest that Sry directly affects the biochemical
properties of the dopaminergic neurons of the nigros-
triatal system and the specific motor behaviors they
control.
Both male and female astrocytes have mERa, respond

to estradiol stimulation by elevating [Ca2+]i levels and
synthesize progesterone. However, only in female astro-
cytes can estradiol increase the synthesis of progesterone
(4- to 6.5-fold), a critical step in estrogen positive feed-
back [10]. Although we demonstrated a stark difference
between male and female astrocytic response to estra-
diol, it was not clear whether this cellular differentiation
was due to differences in the sex chromosome comple-
ment or to the presence of the Sry transgene with its
influence on gonadal development and early sex steroid
environment. Astrocytes from FCG mice were used to
specifically differentiate the effects of sex chromosomes
versus those of the Sry transgene. Animals with ovaries
(XXF and XYF) had astrocytes in which estradiol facili-
tated progesterone synthesis, regardless of whether they
had one or two X chromosomes. Conversely, mice with
testes (XYM and XXM) were unresponsive to estradiol
and did not increase progesterone synthesis. These
results suggest a Sry transgene effect and not a sex chro-
mosome effect on hypothalamic astrocyte response to
estradiol. The effects from the Sry transgene could be
due to direct effects of the Sry gene itself or its influence
on gonadal differentiation and the sex steroid environ-
ment during early development. Interestingly, XYM
from FCG mice synthesized little or no progesterone.
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This may reveal a potential chromosomal effect. How-
ever, male wild type astrocytes, without Sry translocation
to an autosome, synthesized basal progesterone levels
similar to female wild type astrocytes. Therefore, this
difference could potentially be caused by the deletion
and transgenic insertion of Sry, resulting in the inactiva-
tion of surrounding gene(s), positional effects or differ-
ential expression of the Sry transgene. Differences
between wild type XY males and FCG XYM have been
previously reported for mounting behavior, social
exploration and concentration of tyrosine hydroxylase-
immunoreactive neurons within the AVPV [41]. Unfor-
tunately, the steroid profile of XYM in FCG mice has
not yet been characterized and will require further
experimentation.

Conclusions
Although there may have been a hint of a chromosomal
sex difference in the basal level of progesterone synthesis,
the overwhelming effect appeared to be from the Sry
transgene, probably from its dramatic influence on gona-
dal differentiation and the steroid environment during
early development. Wild type male astrocytes expressed
Sry, and were sexually differentiated from wild type female
astrocytes in terms of their [Ca2+]i and progesterone
responses to estradiol. These results are consistent with
the stark sexual differentiation of estrogen positive feed-
back, which is dependent on the postnatal gonadal steroid
environment. A potential mechanism for this sex differ-
ence in estradiol response was the trafficking of mERa in
females but not in males. The estradiol-induced transient
increase in mERa levels has been correlated with the
robust [Ca2+]i release necessary for progesterone synthesis.
These results suggest that cell signaling in hypothalamic
astrocytes is sexually differentiated, mainly as a result of
postnatal gonadal steroid exposure, which may also mask
the influence of possibly minor chromosomal effects.
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