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ABSTRACT

There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the
potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and
pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene
transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of
rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach
launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways
linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures.
Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify
both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this
approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as
biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies
of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams
within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from
current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing
approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.

Key words: cancer; risk assessment; toxicogenomics; biomarkers; adverse outcome pathways; error-corrected sequencing.

Most global regulatory safety assessment standards for agrochemi-
cals and pharmaceuticals require the rodent 2-year bioassay for
evaluating the carcinogenic potential of a new chemical entity.
However, assessing the carcinogenic potential of a single chemical
requires considerable resources: the low-end estimate is 3 years
and 600 animals per species at a cost of approximately $2–4M USD.
Two-species carcinogenicity testing is routinely conducted for
small molecule pharmaceuticals as defined under International
Council on Harmonization (ICH) S1 Guidelines (European
Medicines Agency, 1996; ICH, 1995). Similarly, global regulatory
requirements dictate carcinogenicity testing in 2 rodent species for
all agrochemical crop protection substances. Although the 2-year
rodent cancer bioassay has successfully identified both human
carcinogens and those that are rodent-specific when considering
mechanism, exposure, and metabolism (Tomatis et al., 1989;
Wilbourn et al., 1986), compelling drivers to move away from auto-
matic application are growing (Goodman, 2018). For example,
among human pharmaceuticals associated with development of
tumors in 2-year rodent studies, several receive labels indicating
that the rat tumors occur through mechanisms that are of ques-
tionable human relevance or may likely be considered human ir-
relevant (Alden et al., 2011; Friedrich and Olejniczak, 2011). There is
increasing interest across broad sectors of industry and govern-
ment to reduce reliance on these studies (National Research
Council, 2007). The EPA has stated that all animal toxicity tests will
eventually be phased out (Wheeler, 2019), and the European
Medicines Agency (EMA) has been requiring those seeking market-
ing authorization to integrate the 3Rs (replacement, reduction, and
refinement) in all aspects of the development of medicines
(European Medicines Agency, 2021). Experience over the past
50 years from testing of pharmaceuticals, industrial chemicals, and
agrochemicals in short-term tests evaluating endpoints relevant to
tumor prediction has fostered growing acceptance of the

fundamental concept that a 2-year rat study is not always needed
to assess human-relevant carcinogenic potential.

Supported by the above studies and drivers, cross-sector sci-
entific collaborations have formed to support evidence-based
modifications of regional and/or global guidelines for carcinoge-
nicity assessment. Formal discussions on the carcinogenicity
testing scheme for pharmaceuticals were initiated through the
ICH process. A weight-of-evidence (WoE)-based approach was
proposed for identifying those drugs for which a 2-year study in
rats would or would not add value to the assessment of human
carcinogenic risk in S1B(R1) (ICH, 2021). A reporting framework
to support a WoE-based assessment for agrochemicals is also
being developed in a collaboration between the PETA Science
Consortium International (PSCI), the agrochemical industry and
governmental agencies. The framework provides support for
regulatory review of a WoE assessment by structuring informa-
tion for consistent data presentation to objectively assess when
a waiver of rat and/or mouse carcinogenicity studies is war-
ranted (Hilton et al., 2022).

To help define the strength of the information necessary to
predict the outcome of the 2-year bioassay, an ICH Expert
Working Group coordinated a prospective evaluation of approxi-
mately 50 pharmaceuticals by sponsors and 5 drug regulatory
agencies from around the world (ICH, 2016). In the course of this
evaluation, as 2-year rat studies were completed, the results were
examined against WoE assessment-based predictions submitted
within 14 months after the start of the bioassay. Although the
WoE assessments from Sponsors predicted study outcomes well,
drug regulatory agencies did not concur with certain of the
Sponsor’s assessments that a 2-year rat study is not warranted to
assess human carcinogenic hazard. Importantly, there was agree-
ment by Sponsors and drug regulatory agencies that a significant
number of compounds would benefit from a 2-year rodent study,
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underscoring that such studies will continue to contribute signifi-
cant value to human carcinogenicity assessment (ICH, 2016). The
outcome of the prospective evaluation indicated that develop-
ment and validation of additional tools may provide information
that will facilitate assessment of human carcinogenic risk of
pharmaceuticals in lieu of conducting a 2-year rat study by: (1)
providing greater mechanistic understanding and insight into hu-
man relevance underlying frequently observed conventional toxi-
cology study endpoints of concern (eg, tumors or preneoplastic
events); and (2) increasing confidence in negative 6-month rat
study findings with a higher evidentiary data standard that more
rigorously informs absence of target related carcinogenic risk.

The Health and Environmental Sciences Institute (HESI)’s
Emerging System Toxicology for the Assessment of Risk (eSTAR)
Carcinogenomics Workgroup is a multistakeholder scientific col-
laboration. This group is exploring the hypothesis that for a large
proportion of chemicals, measurements of novel genomic bio-
markers in subchronic studies can contribute meaningfully to the
WoE assessment supporting reductions in the need for 2-year bio-
assays. These biomarkers can query established mechanisms of
early carcinogenic processes, can be applied to samples already
collected from required shorter duration studies, and will provide
greater insights to relevancy for predicting human cancer risk.

The Carcinogenomics Workgroup envisions that characterized
genomic biomarkers can be applied to explain conventional study
histopathologic alterations of potential carcinogenic concern in-
cluding hyperplasia, hypertrophy, foci of cellular alteration, and
preneoplastic lesions (Sistare et al., 2011) observed in acute, sub-
chronic, and chronic studies by demonstrating activation of mo-
lecular-initiating events (MIE) of well-accepted and commonly
encountered tumorigenic modes of action. These modes of action
will be considered either human relevant or rodent specific and
thus human irrelevant. These biomarkers can also be applied to
address hypothetical carcinogenic risk of novel pharmacological
agents by querying target tissues for the early emergence of
growth-advantaged clonal cell populations with mutations in
known cancer driver genes. This multisector collaboration seeks
to accelerate the evaluation of such tools to first strengthen inter-
nal industrial decision-making across sectors and, subsequently,
establish utility in formal sponsor WoE evaluations. The expected
result is development and validation of sufficiently robust infor-
mation to support greater alignment for conducting fewer 2-year
mouse and/or rat carcinogenicity studies while maintaining or
enhancing human health protection.

In this call-to-action article, we focus initially on the utility of
gene expression biomarkers as emerging tools to determine the
carcinogenic potential of chemicals and include examples of their
use to identify mechanism of action and tumorigenic dose levels.
We also discuss the application of error-corrected sequencing to
identify early clonal expansion of cells with cancer driver gene
mutations. As part of the call-to-action, we encourage interested
stakeholder groups to contribute data and computational meth-
ods to expedite the translation of these genomic biomarkers into
regulatory testing paradigms and improve the process by which
chemicals are evaluated for carcinogenic potential.

TRANSCRIPTOMIC BIOMARKERS PREDICTIVE
OF TUMORIGENIC MECHANISMS OF ACTION

From Transcriptomic Profiling to Biomarkers
A variety of robust “-omics” approaches, including genomics,
epigenomics, transcriptomics, proteomics, and metabolomics
are available to query mechanisms underlying carcinogenic

responses. Of these approaches, transcriptomics (profiling of
global RNA levels) is arguably the most mature and widely used
and has provided a robust body of evidence for chemical and ge-
netic factors responsible for perturbing molecular pathways
leading to tumors (Hanahan and Weinberg, 2011). Public reposi-
tories of transcriptomic data continue to grow in scale and
number, providing opportunities to build, test, and incorporate
transcriptomics-based molecular tools into cancer assessment
strategies (Yauk et al., 2019). A wide range of computational
methods are available to identify differentially expressed genes
that can be overlaid onto molecular networks of disease or bio-
logical pathways at the systems biology level (Rager and Fry,
2013) and used to formulate hypotheses linking exposure to pa-
thology (Waters et al., 2010). For example, a network model of
gene coexpression in the rat liver built from gene expression
profiling data linked to chemical-dependent and independent
pathologies in rats has been used to make predictions of ad-
verse effects upon exposure to new chemicals (Sutherland et al.,
2018).

The goal of the HESI eSTAR Carcinogenomics Workgroup is
to extend these analyses to develop focused sets of gene
expression-based biomarkers that identify specific mechanisms
of action and the level of expression change in these biomarkers
associated with tumorigenic outcomes. These quantitative
mechanistic transcriptomic biomarker panels lend themselves to
methodical analytical validation, performance evaluation, and
a context-of-use-based qualification strategy. The biomarker
panels can deliver a well-defined set of pragmatic tools to facili-
tate assessment of tumorigenic potential, and to assist agro-
chemical and pharmaceutical discovery, development, and
regulation. Here, we define a transcriptomic carcinogenicity bio-
marker as a set of RNAs providing an accurate and quantitative
measure of molecular change associated with specific transcrip-
tion factors, pathways, or critical genes linked to a carcinogenic
mechanism. These mechanism-focused biomarkers will be in
contrast to sets of genes identified to broadly differentiate
tumorigens from nontumorigens agnostic to carcinogenicity
mechanism, except in some cases broadly separating genotoxic
from nongenotoxic actions (Auerbach et al., 2010; Ellinger-
Ziegelbauer et al., 2009; Fielden et al., 2007, 2008; Nie et al., 2006;
Uehara et al., 2008, 2011; Yamada et al., 2013).

Leveraging the Adverse Outcome Pathway Framework to Build
Comprehensive Sets of Transcriptomic Biomarkers
Organizing evidence-linking chemical exposure to tumor out-
comes has been facilitated by a number of mechanistic pathway
frameworks. Compiling pathway information organized by
mode of action (MOA)/adverse outcome pathways (AOPs)
(Ankley et al., 2010; Boobis et al., 2006; Edwards et al., 2016; Meek
et al., 2014; Vinken, 2019) plays a central role in assessing the ev-
idence for effects in animals and people. The chemical-agnostic
AOP starts with the sentinel MIE followed by a series of key
events (KEs) that proceed through increasing levels of biological
complexity (molecular pathway, cell, organ, and individual) to
an adverse outcome (AO), in this case a tumor response, to de-
scribe how toxicants exert their adverse effects (OECD, 2017).
Key event relationships (KERs) describe the causal relationships
between KEs qualitatively and quantitatively. The weight of evi-
dence for each KER and the overall AOP is assessed using a set
of modified Bradford Hill criteria and a quantitative under-
standing of the AOP is summarized (Bradford Hill, 1965; Meek
et al., 2014).

We postulate that an AOP-guided approach to build sets of
biomarkers that query MIEs in AOPs that are known to lead to
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tumors in specific tissues will be more informative for predict-
ing cancer than seeking to identify a single convergent down-
stream gene set expected to be predictive of the many diverse
mechanisms of tumor induction. Biomarkers accounting for di-
verse upstream MIEs would capture changes at early timepoints
across the target cell population enhancing the predictive
power of short-term studies (terminated well before tumors are
observed) and would also provide mechanistic understanding
for derisking and assessment of human relevance. For example,
constitutive androstane receptor (CAR) altered specific gene ex-
pression in hepatocytes leads to increased cell mitogenic prolif-
eration, then increased preneoplastic foci, leading to increased
hepatocellular adenomas (AOP-Wiki, 2016a). Similar KEs leading
to liver cancer occur for chemicals activating peroxisome
proliferator-activated receptor a (PPARa) (AOP-Wiki, 2016b), and
the aryl hydrocarbon receptor (AhR) (AOP-Wiki, 2016c) and in-
ducing cytotoxicity (AOP-Wiki, 2017) pathways under tumori-
genic exposure conditions. Further, identification of genes
involved in MIEs and KEs in vivo could support more biologically
relevant in vitro screening paradigms for predicting AOPs (Ring
et al., 2021). It should be noted that there are parallel efforts to
use 10 key characteristics of carcinogens (KCC) to identify po-
tential carcinogens in in vitro screening or short-term animal
studies (Guyton et al., 2018). This approach differs from an AOP-
based approach in that KCC are not necessarily MIEs or KEs in
well-defined AOPs and the KCCs can be used in a weight of evi-
dence approach but have not demonstrated accurate prediction
(Becker et al., 2017). Our efforts seek to readily identify mecha-
nisms and tumorigenic dose thresholds as well. The KCC weight
of evidence-based approach could be tested for the chemicals
that are identified as liver tumorigens using the biomarkers.

A central premise of the AOP concept is that while MIEs/KEs
are required at a qualitative level, an MIE and downstream KEs
must be activated to a sufficient level and duration to cause an
AO. Progression through an AOP depends upon a level of disrup-
tion that goes beyond that causing normal adaptation in order
to initiate the downstream KEs (Conolly et al., 2017). This prem-
ise has generated interest in the computational derivation of
quantitative effect levels, or “molecular tipping points,” that
can be used as tools for adversity determinations using shorter-
term data (Hill et al., 2017; Julien et al., 2009; Knudsen et al.,
2015). The challenge is not only how to identify those levels,
taking into consideration both dose and duration, but also to
understand how best to apply the tumorigenic threshold levels
for cancer prediction, especially considering that global gene ex-
pression changes are measured through the use of different
platforms and different durations of exposure.

Rat Liver Transcriptomic Biomarkers Identify the AOP Through
Which a Chemical Causes Tumors
Below we introduce and summarize some of the scientific back-
ground supporting the proposed strategy for selection of MIE-
based in vivo transcriptomic biomarkers being advanced by the
Carcinogenomics Workgroup (Figure 1). The HESI collaborative
strategy will: (1) centralize, quality control, and consistently
process existing publicly available transcriptomic data derived
from several global profiling platforms (microarrays, RNA-Seq,
targeted RNA-Seq); (2) adjudicate the carefully selected proto-
type chemicals activating each MIE; (3) identify training and test
data sets; (4) align on transcriptomic biomarker optimization
approaches for each MIE; (5) identify the consensus panel of
RNAs for each biomarker; (6) identify activation levels that de-
termine MIE activation; (7) identify activation levels associated
with tumorigenicity for each biomarker; (8) define each

transcriptomic biomarker’s strengths and limitations; and (9)
rigorously test and publicly disseminate performance metrics
justifying applications in specific contexts of use and consensus
interpretations of data from in vivo rat studies.

Our initial focus will be on identifying biomarkers of rat liver
tumors for a number of reasons. In conventional pharmaceuti-
cal chronic rat toxicology studies, the liver is the most frequent
target for neoplasia (Sistare et al., 2011; Van Oosterhout et al.,
1997). The liver, along with being a first-pass organ for the oral
route of exposure, is also one of the most common tumor sites
in bioassays of industrial chemicals and agrochemicals
(Heusinkveld et al., 2020; Hill et al., 2017). The extensive set of xe-
nobiotic receptors in liver can serve as transcriptional sensors
and sentinels of activity of a chemical that may or may not be
tumorigenic in rat liver but would be predicted to be tumori-
genic in distant tissues, such as the thyroid or gonads (Foster
et al., 2021; Klaunig et al., 2003; Murphy and Korach, 2006; Ohara
et al., 2018; Sistare et al., 2011; Vansell and Klaassen, 2002). Liver
transcriptomics can inform if a compound with direct or indi-
rect (anti)estrogenic (Singhal et al., 2009; Ståhlberg et al., 2005) or
(anti)androgenic activity (Goetz and Dix, 2009; Klaunig et al.,
2003) may cause tumors in sex organs (Coulson et al., 2003). The
public availability of an extensive amount of microarray and
RNA-Seq data generated from the livers of chemically treated
rats support the rat liver as the priority tissue for building tran-
scriptomic biomarkers of established MIEs and KEs associated
with carcinogenicity (Bushel et al., 2018; Sequencing Quality
Control Consortium, 2014; Wang et al., 2014; Yeakley et al., 2017).
The MicroArray/Sequencing Quality Control (MAQC/SEQC) proj-
ect led by the U.S. Food and Drug Administration (FDA) and
others have demonstrated that the overall agreement of tran-
scriptomic signatures is highly reproducible across platforms
for rat liver transcriptomics from toxicological studies (Wang
et al., 2014; Xu et al., 2016). It is anticipated that our initial ap-
proach will serve as a template for future identification and val-
idation of transcriptomic biomarkers that could inform
carcinogenic potential in additional, nonliver organs. Future
efforts could be expanded beyond the liver to include, for exam-
ple, urinary bladder and thyroid. Although these tissues are not
in the top 3 most frequent human sites in either sex, they are
frequent sites in rat 2-year bioassays.

To construct and characterize such predictive mechanistic
biomarkers, the Carcinogenomics Workgroup will be guided by
published studies describing a growing number of gene expres-
sion biomarkers shown to be useful in a variety of chemical
evaluation contexts. Mouse liver biomarkers were previously
built to predict some of the same MIEs outlined in Figure 2.
These efforts capitalized on available microarray data from
chemically treated wild-type and transcription factor-null mice
allowing for the identification of well-defined mechanistic gene
sets (Corton, 2019; Oshida et al., 2015a–c, 2016a,b; Rooney et al.,
2018b, 2019). These biomarkers have been applied to sets of
chemicals to identify the most likely AOP responsible for rodent
liver tumors (Peffer et al., 2018; Rooney et al., 2017) or to under-
stand the relationships between exposure and hazard (Rosen
et al., 2017). In response to the growing emphasis on tiered
screening of chemicals using high-throughput transcriptomics
in human cell lines (Harrill et al., 2021; Thomas et al., 2019), a
number of groups have constructed biomarkers that identify
important molecular targets underpinning in vivo toxicity in-
cluding estrogen receptor (ER) activation (Ryan et al., 2016), an-
drogen receptor activation (Rooney et al., 2018c), histone
deacetylase inhibition (Cho et al., 2021), stress factor induction
(Cervantes and Corton, 2021; Jackson et al., 2020; Rooney et al.,
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2020) and DNA damage (TgX-DDI biomarker) (Buick et al., 2020;
Corton et al., 2019; Li et al., 2017, 2019).

Resultant signatures in many cases have been further re-
fined to genes directly downstream of KEs of interest, adding
crucial evidentiary data supporting the genes selected to com-
prise the biomarkers. To this end, many of the biomarker genes
selected have been confirmed to be physically associated with
the expected transcription factor using chromatin immunopre-
cipitation-Seq experiments (Podtelezhnikov et al., 2020; Rooney
et al., 2018, 2019; Ryan et al., 2016) or have the expected activity
changes after the factor is knocked down in vitro by factor-
specific siRNAs (Corton et al., 2019; Rooney et al., 2018c; Ryan
et al., 2016). For example, the p53 dependence of genes in the
TGx-DDI biomarker (Corton et al., 2019; Li et al., 2019), and the ER
dependence of genes in the ER biomarker were confirmed
(Rooney et al., 2021) by comparing transcriptional responses in
wild-type cells versus knock-out/knock-down cells. The
Carcinogenomics Workgroup will leverage similar sets of avail-
able evidence to further validate the mechanistic basis for regu-
lation of the identified genes, and also include wild-type versus
factor-null rodents where dependence of the carcinogenic phe-
notype on ligand-activated transcription factors has been con-
firmed, complemented with a large body of published in vitro
trans-activation, electromobility shift, and direct binding data
to further support specific compound MIEs. Data from such ad-
ditional experimental strategies enhance rigor and increase
confidence that relevant gene sets comprising a MIE transcrip-
tomic biomarker have been identified, and that tumorigenic
compound linkages to MIEs are strong and plausible. For some
transcriptomic MIE biomarkers, there is more alignment on spe-
cific RNAs than on others. Although such published demonstra-
tions from individual laboratories exist, scientific consensus is
needed on the specific RNAs to optimize both sensitivity and
specificity across the full target set of MIEs, alignment is needed

on setting tumorigenic activation levels for each transcriptomic
MIE biomarker, and guidance is needed to establish and com-
municate strengths and limitations before more general and
widespread use for internal decision making as well as for regu-
latory applications.

The approach being taken by the Carcinogenomics
Workgroup is to build transcriptomic MIE biomarkers that will
require gene expression profiles of reference chemicals with
well-defined molecular targets adjudicated to be linked to tu-
mor outcomes. These reference chemicals will be used to train
and test predictive models, where several types of machine
learning algorithms will be leveraged to evaluate the predictive
power of these gene signatures and identify which models to
carry forward based on overall model performance metrics.
Recent studies have described building biomarkers that predict
effects in the rat liver entirely from reference chemical profiles.
For example, in 2 studies, a set of 6 transcriptomic biomarkers
were characterized that predict the major MIEs in AOPs by
which chemicals cause liver tumors in rats (Corton et al., 2020a;
Rooney et al., 2018a). These biomarkers predict genotoxicity, cy-
totoxicity, and activation of AhR, CAR, ER, and PPARa. Each of
the biomarkers was built using a set of gene expression profiles
from the livers of rats treated with known inducers of the re-
spective receptor, DNA damage, or cytotoxicity, and could pre-
dict the MIE of a test set of chemicals with excellent predictive
accuracies (91%–97%) across a wide range of doses and times of
exposure. This study thus serves as an example of an approach
that can be taken to identify highly predictive gene sets.

Recent studies have used an alternative approach to identify
and optimize sets of biomarker genes. Using a multivariate re-
gression approach, genes were identified with overlapping tran-
scriptional responses associated with the different MIEs, as well
as the polytropic effects of most drugs on gene expression net-
works to optimize biomarker specificity (Podtelezhnikov et al.,

Figure 1. The structure of the HESI eSTAR Carcinogenomics Project. The Carcinogenomics Workgroup is made up of separate teams including the Mechanisms of

Carcinogenicity and Compound Classification Team, the Data Compilation Team, and the Gene Signature Development Team. The major activities of each team are

listed. The project is coordinated by the Strategy and Outreach Leadership Team. This HESI collaboration strategy: (A) centralize, quality-control, and consistently pro-

cess existing publicly available transcriptomic data derived from several global profiling platforms (microarrays, RNA-Seq, targeted RNA-Seq); (B) adjudicate the care-

fully selected prototype chemicals activating each MIE; (C) identify training and test data sets; (D) align on transcriptomic biomarker optimization approaches for each

MIE; (E) identify the consensus panel of RNAs for each biomarker; (F) identify activation levels that determine MIE activation; (G) identify activation levels associated

with tumorigenicity for each biomarker; (H) define each transcriptomic biomarker’s strengths and limitations; and (I) rigorously test and publicly disseminate perfor-

mance metrics justifying applications in specific contexts of use and consensus interpretations of data from in vivo rat studies.
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2020). Multivariate modeling using liver RNA-Seq data derived
from rats exposed to a diverse reference chemical set enabled
the identification and refinement of genes specifically regulated
by each MIE individually. The resulting biomarkers are predic-
tive of agonists for 5 different canonical xenobiotic receptors
(AhR, CAR, Pregnane X Receptor [PXR], PPARa, ER), 3 mediators
of reactive metabolite-mediated stress responses (NRF2, NRF1,
p53), and activation of the innate immune response. A compos-
ite transcriptional biomarker of tissue injury and regenerative
repair response was discovered by the same group to be con-
served across 8 different tissues (Glaab et al., 2021). These 10 bio-
marker sets have been deployed for routine monitoring in
initial rat tolerability studies just prior to entering drug develop-
ment in an integrated manner to identify drug candidate poten-
tial for activating these MIEs to trigger certain liver and other
organ toxicities with strong (>90%) sensitivity and/or specificity
(Glaab et al., 2021; Monroe et al., 2020). Application of these 10
biomarkers by the same group to 2-year rat carcinogenicity
study outcome prediction has been explored with preliminary
sensitivity exceeding 70% at >95% specificity among a set of ap-
proximately 60 rat liver and non-liver carcinogens and 40 non-
carcinogens (Tanis et al.,, in preparation). The gene sets
identified as biomarkers in the 2 independent studies by Corton
et al. (2020a) and Podtelezhnikov et al. (2020) demonstrate a high
degree of overlap. This supports the concept that multiple com-
putational methods can converge on optimized mechanistic
gene sets and provide increased confidence that the HESI

workgroup will be able to identify and align on a comprehensive
set of transcriptional biomarkers with high predictive accuracy
for induction of MIEs associated with carcinogenicity.

Transcriptomic Biomarkers Have Identifiable Activation Levels
Associated With Tumor Induction
One goal of the HESI eSTAR Carcinogenomics project is to iden-
tify activation levels of the MIEs that can distinguish between
adverse and non-AOs. It will be important to identify not only
statistically significant altered activity but also sufficient MIE
perturbation that can propagate growth signals leading to
tumors (Figure 3). Indeed, there is support in the literature that
relative activation levels of the MIEs can be measured and used
to predict tumorigenesis in rat livers even after short-term
exposures (Hill et al., 2020; Lewis et al., 2020; Qin et al., 2019).
These studies required careful annotation of the known liver tu-
morigenic outcomes of each chemical-dose combination de-
rived from 2-year bioassay data archived in a number of
databases such as the Lhasa database (https://carcdb.lhasalim-
ited.org/, last accessed April 22, 2022; based on the
Carcinogenicity Potency Database). One challenge that the
Carcinogenomics Workgroup faces is how to best move from tu-
mor incidence data across chemical doses that do/do not induce
tumors to establishing a convincing connection to levels of MIE
activation predictive of carcinogenic outcome.

Initial studies integrating measurement of 5 gene expression
biomarkers with nongenomic endpoints such as liver to body

Figure 2. Strategy to reduce the reliance on the 2-year rodent bioassay to identify carcinogens. The strategy is put into the context of the molecular initiating events

(MIEs) and key events (KEs) critical for induction of liver tumors in rats as an example. The overall strategy could be applied to other tissues with sufficient information

about AOPs important in tumor induction. The figure outlines the MIEs (left side) and certain KEs (middle) that could be measured using genomic interrogation techni-

ques including gene expression biomarkers and error-corrected sequencing.
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weights and clinical chemistry associated with MIEs in liver tu-
mor AOPs, found that a WoE approach could perform reason-
ably well (85%–89% predictive accuracy) to identify chemical-
dose combinations that lead to liver tumors (Rooney et al.,
2018a). Using a more precise approach, activation levels of 6
MIEs associated with liver tumor induction had a predictive ac-
curacy of 91%–97% depending on the activation levels used (Hill
et al., 2020), with low false negative rates—a highly desirable
characteristic for regulatory determination of hazard. In follow-
up studies from the same lab (Lewis et al., 2020), an analysis of
approximately 50 chemicals profiled in rat liver from an inde-
pendent dataset yielded approximately 90% predictive
accuracy.

The optimal number of genes constituting a specific MIE bio-
marker is expected to vary and requires careful deliberation and

empirical support. Just 2 genes (Cyp1a1, Cyp1a2) were selected
for a transcriptomic biomarker of AhR activation in rat liver (Qin
et al., 2019; Taylor et al., 2015). The same 2-gene AhR biomarker
was systematically derived by Podtelezhnikov et al. (2020) and
used to differentiate between tumorigenic and nontumorigenic
dose levels of AhR-activating chemicals. Tumorigenic activation
levels of AhR biomarker activation in rat liver (Qin et al., 2019)
were derived that could distinguish nontumorigenic dose levels
of chemicals that exhibit high-level sustained induction (eg,
2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) from AhR-
activating but nontumorigenic pharmaceuticals (Hu et al., 2007;
Jin et al., 2012) that exhibit more modest and transient induc-
tions (eg, omeprazole) at the dose levels used in published rat
carcinogenicity studies. The AhR biomarker and tumorigenic
activation levels were established for internal use in a WoE ap-
proach to determine whether a novel drug candidate with AhR
activity would likely cause sustained high-level tumorigenic
level induction of AhR when administered at dose levels des-
tined for use in future 2-year rodent carcinogenicity registration
studies (Qin et al., 2019; Taylor et al., 2015). In another study ex-
amining 12 genes (2 from each of the 6 biomarkers described
above) (Hill et al., 2020), all genes exhibited activation levels as-
sociated with liver tumorigenicity for individual genes that
were similar across training and test sets of chemicals in the
TG-GATES dataset. The 12 individual activation levels when
used collectively resulted in high predictive accuracies for 77
chemicals (TG-GATES) or 86 chemicals (DrugMatrix) analyzed
(up to 94%) (Hill et al., 2020). In addition to transcriptional bio-
markers, the concept of tumorigenic activation levels can be ap-
plied to liver: body weight and clinical chemistry markers that
have been used to accurately identify chemical-dose pairs that
would lead to a tumor outcome (Corton et al., 2020b). Thus,
these studies provide a high degree of confidence of the feasibil-
ity of using gene expression biomarkers to not only identify the
AOP responsible for liver tumor induction but also the dose lev-
els that would or would not lead to liver tumor induction.

Gaining Regulatory Acceptance of the Biomarkers
The long-term goal of the HESI eSTAR Carcinogenomics
Workgroup is to gain regulatory acceptance of the rat liver bio-
markers. The Workgroup will capitalize on experience the group
has with the TGx-DDI biomarker, a transcriptomic biomarker
currently under regulatory review by the FDA through the
Center for Drug Evaluation and Research Biomarker
Qualification Program (FDA, 2021). This 64-gene biomarker was
developed to enable differentiating true positive DNA damage-
inducing (DDI) agents from non-DDI irrelevant positive agents
using human TK6 cells (Li et al., 2015, 2017) and human liver
HepaRG cells (Buick et al., 2020, 2021; Corton et al., 2018, 2019)
and is composed mostly of genes that are under control of p53
(Corton et al., 2019). Experience with the TGx-DDI biomarker by
the HESI collaborative group has been invaluable in understand-
ing the process required to build toward acceptance of any new
biomarker for regulatory drug development applications, which
first requires precisely defining and acquiring consensus on the
need statement and regulatory context of use, followed by as-
sessment of the benefits and risks of biomarker use (Leptak
et al., 2017). The level of evidence required for qualification is
then determined and is based on both biological (empirical test-
ing that the biomarker predicts the endpoint of concern, appro-
priate study designs, etc.) and technical studies (technical
standards, independent cross-laboratory validation, etc.). These
learnings will be valuable for internal business decision-making

Figure 3. Relationships between chemical exposure and levels of activation of

MIEs in AOPs and clonal expansion of Cancer Driver Gene mutations. A, The re-

lationship of chemical dose to MIE signature response within the liver across

time reaches a steady state with continued daily dosing. The sustained steady-

state activation of a certain MIE may exceed a statistically significant change at

low doses but never achieve sufficient activation to result in tumorigenesis via

this MIE, resulting in no tumor risk via this MIE, and little evident MIE-associ-

ated biological effects. At the mid dose activation of this MIE may only tran-

siently achieve sufficient activation to result in tumorigenesis and drop to levels

of sustained activation at steady state resulting in no tumor outcome but signifi-

cant biological effects (eg, enzyme induction, histopathology, organ weight

gain). High doses result in excessive levels of sustained MIE activation exceeding

the tumorigenic activation level. B, Critical Cancer Driver Gene (CDG) mutations

supporting growth advantaged clonal expansion increases with time and can

differentiate when MIE activation is being sustained at tumorigenic levels. Low

doses of the rat liver tumorigen result in levels of clonal expansion with CDG

mutations that do not exceed the upper range of variability seen among histori-

cal control values (HCV). Mid doses may exceed the upper range of HCV but not

reach levels associated with drugs causing liver tumorigenesis via this MIE in

two-year (2yr) rat studies. The high dose results in levels of targeted CDG mu-

tated clonal expansion known to be caused by this MIE that clearly exceed the

tumorigenic activation level.
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and may be appropriate for case-by-case regulatory application,
well before broad regulatory acceptance is attained.

COUPLING ERROR-CORRECTED SEQUENCING
WITH TRANSCRIPTOMIC BIOMARKER
ANALYSES TO ESTABLISH EARLY DNA
BIOMARKERS OF NONGENOTOXIC
CARCINOGENESIS

Although DNA sequencing has been used for decades to charac-
terize the mutational landscape of tumors, its application for
identifying rare de novo mutational events and clonal expansion
of cancer driver genes has been hampered by the inherent error
rates of conventional next-generation sequencing technologies.
Specifically, current sequencing error rates per nucleotide are
on the order of 10�2–10�3, whereas somatic mutation frequency
is on the order of 10�7 (Salk et al., 2018). Emerging error-cor-
rected sequencing technologies that individually barcode
double-stranded DNA molecules to dramatically reduce the
technical error rates now enable the detection of extremely rare
mutations with exceptional accuracy (Salk and Kennedy, 2020).
One of the most promising technologies available commercially
today is Duplex Sequencing, which can detect spontaneous and
induced de novo mutations following exposure to mutagenic
agents (Salk and Kennedy, 2020). Duplex Sequencing has
achieved unprecedented accuracy and sensitivity, on the order
of less than 1 error per 108 nucleotides sequenced. It offers the
opportunity to accurately detect the early clonal expansion of
mutations in genes that provide growth and survival advan-
tages within rodent tissues after relatively short-term expo-
sures prior to the formation of preneoplastic foci (Mart�ınez-
Jim�enez et al., 2020). These cancer driver gene mutation bio-
markers could provide further early molecular evidence of a
chemical tumorigenic risk when found to occur in cells of a tis-
sue from treated animals at frequencies indicative of a growth
advantaged clonal selection process, when observed in multiple
animals within a dose group that exceeds background control
levels, or when frequencies occur in a dose-dependent manner.
Most importantly, the absence of mutations in cancer driver
genes may provide assurances that hypothetical scenarios of
tumor development in tissues known to express the chemical
target are not in fact reasonable.

The potential of this exciting technology has been described
for in vivo genetic toxicology, for chemical carcinogenesis re-
search, and numerous emerging clinical applications for early
cancer diagnoses (Merrick, 2019; Parsons, 2018; Valentine et al.,
2020). The approach would be especially impactful if shown to
rapidly detect MIE-agnostic nongenotoxic tumorigens as well.
One HESI Workgroup within the eSTAR Committee will be eval-
uating proof-of-principle experiments with a small set of non-
genotoxic rodent carcinogens in the tumor accelerated rasH2-
Tg mouse model, whereas another HESI Committee—the
Genetic Toxicology Technical Committee—leads rigorous ana-
lytical validation and systematic exploration of applications of
this technology for in vivo mutation detection of genotoxic
chemicals (eg, Valentine et al., 2020). The mutational spectra of
genotoxic versus nongenotoxic carcinogens are expected to be
very different (Balmain, 2020) and mutations associated with
chemical MOA that do not directly induce mutations may likely
more closely resemble the spectra of spontaneous tumors
(McKim et al., 2021). Accordingly, a recent study analyzing whole
genomes of tumors from mice chronically exposed to various
known or suspected human carcinogens including genotoxic

and nongenotoxic agents revealed that only a subset of the car-
cinogens yielded mutation signatures that are distinct from
tumors arising spontaneously due to age. Surprisingly, tumors
from a majority of the tested carcinogens exhibited mutation
signatures that are similar to the tumors arising spontaneously
due to various endogenous mutagenic processes (Riva et al.,
2020). Interestingly, mutations in various cancer driver genes
are present in all the tumors regardless of the type of exposure
and were not limited to any tumor etiology. Studies are in prog-
ress to determine if the mutation spectra and the mutated can-
cer driver genes from rat tumors due to various carcinogen
exposures also mimic the mouse tumors. Further studies are
needed to correlate the genomic mutational alterations with
the transcriptomic changes and determine if the mutation spec-
tra and cancer driver genes can be linked to one or more AOPs.
It is known that for some nongenotoxic MOAs, such as CAR/
PXR, clonal populations harboring mutations in the cancer
driver gene beta-Catenin are preferentially promoted (Aydinlik
et al., 2001; Hoenerhoff et al., 2013). Opportunities would open up
to better understand, for human-relevant nongenotoxic MOAs,
where clonal expansion of cells in target organs (that are histo-
logically normal) harboring mutations in one or more cancer
driver genes may be detected in nontumor tissues from sub-
chronic studies using highly sensitive technologies such as er-
ror-corrected duplex sequencing. We expect that insights will
be gained about mechanisms underlying the mutational spectra
and as the technology evolves and becomes less expensive, rou-
tine assessment could be used in dose response modeling to de-
rive a point of departure.

THE HESI ESTAR COMMITTEE WILL ENSURE
SCIENTIFIC RIGOR AND WILL ENCOURAGE
REGULATORY ACCEPTANCE OF GENOMIC
TOOLS FOR EVALUATING THE CONTEXT IN
WHICH A CHEMICAL COULD EXHIBIT
TUMORIGENIC POTENTIAL

The HESI eSTAR Committee provides the strategic direction, col-
laborative framework, and resources to facilitate industrial in-
corporation and regulatory acceptance of genomic tools. The
Committee aims to catalyze adoption of new translational and
predictive tools that guide decision-making based on mechanis-
tic understanding of toxicological response. The committee is
divided into a number of Workgroups that are tasked with vari-
ous aspects of advancing applications of genomics in risk as-
sessment. To implement the goals of this “call-to-action”
article, the eSTAR Committee launched the Carcinogenomics
Workgroup (Figure 1) to implement genomic strategies for pos-
sible application within the evolving WoE-based ICH and indus-
trial and agrochemical frameworks for cancer risk assessment.
Transcriptional biomarkers provide a clear example of viable
opportunities for immediate use driven by proposed changes in
ICH S1 carcinogenicity testing guidance for pharmaceuticals,
and analogous changes evolving for evaluating industrial and
agrochemicals. The availability of quantitative, predictive toxi-
cogenomic biomarkers aligned against cancer-outcome AOPs
will have many applications in assessment of tumorigenic po-
tential in both the pharmaceutical and chemical sectors.
Collaborating across >20 institutions, the Carcinogenomics
Workgroup’s immediate goal is to develop a set of mechanistic
gene expression biomarkers for prediction of carcinogenic
effects in the livers of rats to address critical testing and data
gaps.
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SUMMARY

When early biomarkers of MIEs associated with tumorigenic
AOPs are coupled with error-corrected duplex sequencing strat-
egies, the interpretation of the carcinogenic potential of later
effects including histopathology changes would be robust and
predictive. As scientific evidence expands, there will be in-
creased confidence that lack of effects on cancer driver gene
mutations can be concluded to indicate the absence of tumori-
genic potential and will contribute to the carcinogenicity WoE
assessment. Initially, transcriptomic and DNA mutational bio-
markers are expected to inform internal decision-making and
assist with explanations of outcomes of already completed ro-
dent carcinogenicity studies. Over time, the integration of such
biomarkers with proven sensitivity, specificity, and positive and
negative predictivity into short-term rodent studies will reduce
the need for rodent cancer bioassays in regulatory decision-
making contexts in the assessment of pharmaceuticals, and in-
dustrial and agricultural chemicals.
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