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To protect host against immune-mediated damage, immune responses are tightly regulated.The regulation of immune responses is
mediated by various populations ofmature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells
of different origins. In this review, we discuss regulatory properties andmechanisms whereby two distinct populations of immature
cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities,
discrepancies, and potential clinical applications.

1. Introduction

Immune response protects host against pathogen invasion
and cancer. However, if uncontrolled, it may induce severe
tissue damage and therefore under steady-state conditions is
tightly regulated. Understanding cells and mechanisms that
regulate immune response is critical to unravel pathogenesis
of many diseases and develop new strategies for immune
modulation during cancer, chronic infections, autoimmune
disorders, allergies, and following organ transplantation.

Several populations of immune cells have been impli-
cated in the control of immune response including natural
and induced CD4+ T regulatory cells (Treg), CD8+ Treg,
Breg, macrophages, and dendritic cells. To control immune
response, these cells utilize a set of core suppressive mech-
anisms, the main of which are the secretion of inhibitory
cytokines (e.g., IL-10, TGF-𝛽, and IL-35), the expression of
inhibitory receptors (e.g., PD-L1), the inhibition of antigen-
presenting cell maturation, and cytolysis [1–4].

Besides mature immunocompetent cells designated to
control immune response, other populations may also con-
tribute to immune regulation. In particular, two distinct
populations of functionally immature cells, mesenchymal
stem cells (MSCs), and a population of immature myeloid
cells, myeloid derived suppressor cells (MDSCs), have

been implicated in immune suppression and regulation
[5, 6].

MSCs and MDSCs belong to distinct differentiation
lineages; however, their immunoregulatory properties have
several common traits. Here, we review the underlying
mechanisms and regulatory properties of MSCs and MDSCs
focusing on their similarities and distinctions.

2. MSCs and MDSCs: General Characteristics

2.1. MSCs. MSCs are multipotent stromal self-renewing
cells capable to differentiate into mesenchymal tissues like
osteocytes, chondrocytes, and adipocytes [7]. MSCs exhibit
paracrine effects and participate in immunomodulation and
tissue repair. The cells are found in the bone marrow (BM)
and other embryonic and adult tissues such as cord blood,
placenta, adipose tissue, and perivascular sources. In the BM,
MSCs fulfill a supportive function for hematopoietic cells and
participate in the control of their renewal and differentiation
[8–10]. Phenotypically,MSCs are characterized by the expres-
sion of CD105, CD90, and CD73 and lack of the expression of
haemopoietic markers, such as CD45, CD34, CD14, CD11b,
CD79𝛼, CD19, and HLA-DR [11–13].

The immunomodulatory properties of MSCs were first
demonstrated by Di Nicola and coauthors, who showed that
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BM-MSCs inhibited T cell proliferation inmixed lymphocyte
reaction (MLR) [14]. Since then, the ability of MSCs to sup-
press immune responses has been extensively studied. Cur-
rently, it is understood thatMSCs possess rather immunoreg-
ulatory than immunosuppressive properties: depending on
the microenvironment they can inhibit, modulate or even
enhance immune function of various immune cells [5, 15].
Proinflammatory conditions induce suppressive properties
in MSCs. Due to their immunoregulatory properties and
the feasibility of generating the large numbers of autologous
MSCs, MSCs are considered as a potentially valuable tool for
clinical immunomodulation.

2.2. MDSCs. MDSCs belong to the hematopoietic lineage
and represent the heterogeneous population of early myeloid
progenitors/precursors of granulocytes, macrophages, and
dendritic cells (DCs) able to mediate immune suppression
[6]. In steady-state conditions, MDSCs are rare and are
primarily found in the BM. During different pathologies
accompanied by inflammation, MDSCs accumulate abun-
dantly in the BM, blood, spleen, lungs, and other organs [16–
19].

In mice, MDSCs are defined as Gr-1+/dimCD11b+ cells.
In human, MDSCs are generally identified based on the
expression of CD33 and CD11b and lack of the expression
of HLA-DR. Two main subsets of MDSCs, monocytic and
granulocytic, have been described according to their nuclear
morphology and phenotype. In mice, monocytic and gran-
ulocytic MDSCs are identified as Ly-6G−/lowLy-6ChiCD11b+

(F4/80+CD115+CD49d+) and Ly-6G+Ly-6ClowCD11b+ (F4-
80−CD115−CD49d−) cells, respectively. In human, they are
CD14+HLA-DR− and CD15+/CD66b+, respectively [6, 19–
22].

MDSCs are the main negative regulators of immune
response in cancer [6, 23] and are also involved in the
immune suppression in many other pathological conditions
[19, 24–26]. Similar to MSCs, the suppressive activity of
MDSCs is inducible and dramatically increases under proin-
flammatory conditions [6]. Expressed immunosuppressive
properties and abundant accumulation of MDSCs under
proinflammatory conditions make them an attractive target
for immunomodulation in cancer and other diseases.

3. Molecular Mediators of
Immune Suppression

To regulate immune response, MSCs and MDSCs utilize a
set of mediators and mechanisms, which they partially share
with other immune regulatory cells. In this section, we sum-
marize the main mechanisms whereby MSCs and MDSCs
mediate immune regulation focusing on their cellular targets
and activation.

3.1. Indoleamine 2,3-dioxygenase (IDO) and
Tryptophan Metabolism

3.1.1. Effects. IDO enzymes (expressed as two distinct
enzymes, IDO1 and IDO2) catalyze the essential amino acid
tryptophan into metabolites, that is, kynurenine, quinolinic

acid, and picolinic acid. Tryptophan consumption increases
the level of uncharged tryptophan tRNA in immune cells.
This activates general control nonderepressible 2 (GCN2)
stress-response kinase, eukaryotic translation initiation fac-
tor 2 (eIF2), and GCN2-eIF2-mediated pathway, which
leads to the reduction in protein synthesis, retards cellu-
lar proliferation, arrests T cells in G0/G1 cell cycle, and
increases lymphocyte sensitivity to Fas-mediated apoptosis
[27, 28]. The activation of GCN2-mediated pathway also
downregulates IL-6 supporting the suppressive status of
Tregs and restricting their conversion to Th17-like cells [29].
In a model of Th17-associated experimental autoimmune
encephalomyelitis (EAE), halofuginone, a small molecule
that induces amino acid starvation, selectively inhibited the
differentiation of Th17, verifying a role of amino acid defi-
ciency in the suppression ofTh17 [30]. Tryptophan depletion
decreases the expression of costimulatory molecules and
increases the expression of the inhibitory receptors ILT3
and ILT4 by DCs; DCs differentiated under low-tryptophan
conditions become tolerogenic [31] (Figure 1).

Tryptophan metabolites are directly toxic to CD8+ and
CD4+ Th1 cells, whereas Th2 cells are more resistant to
their toxicity.Therefore, IDO releasesTh2 fromTh1-mediated
suppression and skews T helper response towards Th2 type
[27, 32, 33]. Kynurenines are also natural ligands for the
aryl hydrocarbon receptor (AhR); their interaction with
AhR promotes the differentiation of CD4+Foxp3+ Treg cells,
interferes with the generation of Th17, and decreases the
immunogenicity of DCs [34].

3.1.2. IDO Expression by MSCs and MDSCs. In the immune
system, IDO are expressed primarily by professional antigen-
presenting cells [28]. Both MSCs and MDSCs express IDO
and utilize IDO mediated mechanisms for immune suppres-
sion [35–37].

3.1.3. Regulation of IDO Expression. The IDO gene is
inducible in the presence of IFN-𝛾 and regulated by upstream
IFN-𝛾-responsive elements that bind activated STAT1, inter-
feron regulatory factor-1 (IRF-1), and NF-𝜅B [27, 35, 38,
39]. IRF-8 contributes to IFN-𝛾-induced IDO expression by
enhancing the expression of IDO and decreasing DAP12
which basally opposes IDO expression [40]. It was suggested
that MSCs utilize IDO mediated mechanism in the presence
of IFN-𝛾 but not in basal state [41]. IDO expression is also
increased by PGE2 [42], thus relating the two mechanisms of
immune control utilized by MSCs and MDSCs.

3.2. Cyclooxygenase-2 and Prostaglandin E2

3.2.1. Effects. PGE2 synthesizes from the arachidonic acid
after the latter releases from membrane phospholipids and
is metabolized by either the constitutive cyclooxygenase-1
(COX-1) or the inducible cyclooxygenase-2 (COX-2) [43].
PGE2 mediates pain, edema, and fever, the main fea-
tures of inflammation. At the same time, it exerts anti-
inflammatory effects. The interaction of PGE2 with EP2
and EP4 receptors expressed by immune cells leads to
increase in cyclic AMP, activates protein kinase A and
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Figure 1: Main mediators utilized by MSCs and MDSCs to suppress T cell responses and their effects.

phosphatidylinositol-3 kinase dependent signaling pathways,
and inhibits Ca2+ mobilization. Cyclic AMP interferes with
IL-2-mediated pathways, inhibits the expression of proin-
flammatory cytokines and chemokines (i.e., IL-12p70, TNF-
𝛼, CCL3, and CCL4), and induces the expression of IL-10,
IL-4, and IL-5 [43, 44]. This suppresses cell proliferation,
induces alternative macrophages (M2), stimulates Th2, and
weakens Th1 responses [44–47]. Besides inducing immuno-
suppression, PGE2 may play proinflammatory role in T cell
function. In some studies, exogenous PGE2 enhanced DC
maturation and T cell proliferation (reviewed in [44]). The
above-mentioned inhibition of IL-12p70 induced by PGE2
is due to the inhibition of IL-12p35 chain. IL-12p40 chain
is not affected by PGE2. IL-12p40 and p19 form IL-23, the
cytokine involved in the generation of Th17. PGE2 increases
the expression of p19 resulting in the increased production
of IL-23 and Th17 polarization [43, 48]. In a model of EAE,
EP4 antagonist decreased the accumulation of Th17 and
Th1 cells and suppressed disease progression [49]. However,
in some other studies, PGE2 inhibited Th17 differentiation
[50]. Recent advances suggest that effects of PGE2 on Th17
and even Th1 depend on its concentration in such a way
that micromolar concentrations suppress the responses while
nanomolar concentrations promote the responses [44].

PGE2 enhances the differentiation of Foxp3+ Treg cells
[51], elevates TGF-𝛽 secretion by monocytes, and induces
the generation of MDSCs and their accumulation in tumor
environment. The inhibition of COX-2 suppresses these
processes [52–54].

3.2.2. Regulation of COX-2/PGE2 and Their Expression by
MSCs and MDSCs. Both MSCs and MDSCs express COX-
2 [41] and can produce PGE2 [41, 54–58]. PGE2 production
increases in inflammatory conditions, that is, in the presence
of IFN-𝛾 and TNF-𝛼 and after cell coculture with peripheral
blood cells [41, 59].

3.3. Arginase-1, Inducible Nitric Oxide Synthase,
and Arginine Metabolism

3.3.1. Effects. Arginase-1 (ARG1) hydrolyses L-arginine to
ornithine and urea reducing local arginine concentration.
The latter activates GCN2, which inhibits cell cycling [60].
ARG1 downregulates the 𝜁-chain of the T cell receptor (TCR)
complex, disturbing the process of T cell activation [6, 61].
There is only limited data on the subset-specific effects of
ARG1. The studies have reported the inhibition of IFN-𝛾
[62] and Th17 [63], and both the stimulation [64, 65] and
the suppression [66] of Th2 responses by ARG1 produced by
various cells. Tregs are expanded by ARG1; the inhibitor of
ARG1 N-hydroxy-L-arginine (NOHA) abrogates this effect
[67, 68].

Besides ARG1, L-arginine is metabolized by inducible
nitric oxide (NO) synthase (iNOS) that generates NO. NO
suppresses T cell function through the inhibition of JAK3,
STAT5, ERK, and AKT involved in IL-2 signaling and the
control of T cell proliferation [69, 70]. NO also inhibits the
expression of MHC class II and induces T cell apoptosis
[6, 71]. In murine T cells, NO was shown to suppress
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the secretion of Th1 cytokines [72]; in human T cells, it
suppressed the secretion of bothTh1 andTh2 cytokines [73].

3.3.2. ARG1 and iNOS Expression by MSCs and MDSCs.
In the immune system, ARG1 and iNOS are generally
expressed by polymorphonuclear cells (PMN) and mono-
cyte/macrophages [74]; T helper cells are also able to produce
NO [72]. In M1 and M2 macrophages, ARG1 and iNOS are
expressed reciprocally: ARG1 is expressed by M2, whereas
iNOS by M1 subset [75]. MDSCs express both ARG1 and
iNOS [6, 70]; however, the levels of their expression in
monocytic and granulocytic populations may differ so that
ARG1 is expressed predominantly by granulocytic MDSCs
[76] and iNOSbymonocyticMDSCs [6].MSCs express iNOS
and can produce NO [77], but there is no evidence for their
expression of ARG1. In spite of this, MSCs can contribute to
the depletion of L-arginine by promoting the generation of
MDSCs [78].

3.3.3. The Regulation of ARG1 and iNOS. Generally, ARG1
and iNOS undergo reciprocal induction: ARG1 is induced
by Th2 cytokines, whereas iNOS by Th1 cytokines [79].
Recently, IL-17 was shown to contribute to iNOS expression
by enhancing its mRNA stability [80]. PGE2 stimulates ARG1
[81].

3.4. Reactive Oxygen Species and Peroxynitrite

3.4.1. Effects. Reactive oxygen species (ROS) are generated
by NADPH oxidase which produces superoxide anion (O

2

−).
Superoxide anion reacts with NO to form peroxynitrite.
Peroxynitrate oxidates membrane molecules and nitrates
amino acids. Nitration of TCRs alters antigen-recognition
and inhibits the responses of CD4+ and CD8+ cells [82].
Nitration of the chemokine CCL2 was shown to block T cell
migration to the inflammatory site [83].

3.4.2. ROS Production by MSCs and MDSCs. NADPH oxi-
dase is generally expressed by leukocytes. In MDSCs, it is
expressed predominantly by the granulocytic population [6].
MSCs do not generate ROS, but they are responsive to them:
ROS promote MSCs’ aging. In physiological levels, ROS
improve MSCs’ proliferation and differentiation [84].

3.5. Cytokines and Growth Factors. The main immunoregu-
latory cytokines produced by MSCs and MDSCs are TGF-𝛽
and IL-10.

3.5.1. TGF-𝛽. TGF-𝛽 binds to the heterodimeric TGF-𝛽
receptor and initiates SMAD-dependent and SMAD-
independent signal transduction pathways. SMAD-
dependent pathway induces the recruitment of histone
acetyltransferase and deacetylase to the promoters of target
genes [85]. This leads to the blockade of IL-2 production,
downregulates cell cycle promoting factors, upregulates
cyclin-dependent kinase inhibitors, and inhibits the
expression of MHC class II and costimulatory molecules in
DCs and effector molecules (i.e., IFN-𝛾 and perforin) in T
cells. Consequently, the proliferation, helper, and cytotoxic

activity of T and NK cells are suppressed. TGF-𝛽 inhibits
the differentiation of both Th1 and Th2 cells [86, 87]. In
contrast, it promotes the generation of Treg and Breg cells.
TGF-𝛽 is a key regulator of Foxp3 expression [5, 15, 88].
In the presence of IL-6, IL-1𝛽 or IL-23 TGF-𝛽 promotes
the generation of Th17 [88]. Recently, TGF-𝛽 was shown
to inhibit the expression of iNOS in MSCs reversing their
suppressive effect on T cell proliferation and manifesting
immunostimulatory effect [89].

MSCs constitutively secrete TGF-𝛽 [90] and upregulate
its production in the inflammatory environment, that is, in
the presence of IFN-𝛾 and TNF-𝛼 [35, 59, 91]. In MDSCs, the
expression of TGF-𝛽 was induced by IL-13 [92].

3.5.2. IL-10. IL-10 is produced by various immune cells,
including DCs, macrophages, Th1, Th2, Th17, Treg, CD8+ T
cells, and B lymphocytes, and also by MSCs and MDSCs. IL-
10 directly acts on antigen-presenting cells (APC), decreasing
their maturation, and the expression of MHC and cos-
timulatory molecules [93]. IL-10 inhibits the production
of proinflammatory cytokines and chemokines (i.e., IL-1𝛼,
IL-1𝛽, IL-6, IL-12, TNF-𝛼, CCL2, and CCL5, IL-8) and
hampers DC migration to lymph nodes and the generation
of effector T cells. Direct effects of IL-10 on T lymphocytes
include the inhibition of proliferation, IL-2, IFN-𝛾, TNF-
𝛼, IL-4, and IL-5 production and memory formation [93,
94]. IL-10 also inhibits the differentiation of Th17 [95] but
enhances the differentiation of IL-10 producing Treg cells
and M2 macrophages [96, 97]. The anti-inflammatory effects
of IL-10 are mediated through the phosphorylation of JAK1,
TYK2, the activation of STAT3, and the induction of SOCS3,
which negatively regulates various cytokine genes [98]. Apart
from the immunosuppressive activity, IL-10 may display
immunostimulatory properties: it inhibited or stimulated
CD8+ T cells depending on the type of pathogen and cell
microenvironment [99]. Induction of IL-10 goes on as a result
of toll-like receptors (TLR4 and others) activation [100].
PGE2 is a potent inducer of IL-10 [101].

3.5.3. Hepatocyte Growth Factor (HGF). HGF is primarily
produced by MSCs. HGF displays pleiotropic immunosup-
pressive activity. It stimulates IL-10 production bymonocytes,
downregulates costimulatory molecules on DCs, inhibits
Th1, and induces IL-10 producing Treg cells [102–105]. HGF
produced by MSCs expanded human MDSCs [78]. One
study reported the production of HGF by tumor-infiltrating
MDSCs [106], which highlights the similarities between the
two populations.

MSCs and MDSCs produce a number of other cytokines
that contribute to cell biological activity, for example, IL-6,
IL-8, and GM-CSF.

3.6. Other Mechanisms

3.6.1. HLA-G. HLA-G are nonclassical class I tolerogenic
molecules expressed as four membrane-bound (HLA-G1 and
HLA-G4) and three secreted (HLA-5 andHLA-G7) isoforms.
In the immune system, HLA-G are largely expressed by
DCs and macrophages. HLA-G act through the inhibitory
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Figure 2: Cellular targets and modulatory effects of MSCs and MDSCs.

receptors ILT2 and ILT4 expressed by myeloid DCs, CD4+
and CD8+ T cells, B cells, monocytes/macrophages, and
NK cells [107–109]. HLA-G inhibit alloproliferative T cell
response, Th1 cell migration, Th1, andTh17 cytokine produc-
tion, induce Treg cells, and suppress the cytotoxic function
of NK cells [110–114]. This general pattern has been reported
by several groups. However, the effect of HLA-Gmay depend
on their concentration: in the study by Kapasi and coauthors,
high doses of HLA-G promoted Tregs, whereas low doses
fostered the development of Th1 cells [115].

HumanMSCs express and secreteHLA-G5.The secretion
of HLA-G5 byMSCs is stimulated by IL-10, IFN-𝛾, and TNF-
𝛼 [112–114]. Myeloid APCs were shown to express HLA-G in
pathological context (e.g., in cancer and viral infections); it
was suggested that HLA-G-expressing myeloid APCs may be
viewed as suppressor cells [108]. Yet, the role for HLA-G in
the regulatory functions of MDSCs remains to be evaluated.

3.6.2. CD39 andCD73. MSCs express ectonucleotidaseCD73
that catabolizes AMP to adenosine. AMP is generated from
ATP under the action of ectonucleoside CD39 that is
expressed at low levels byMSCs and at high levels by activated
T cells. Extracellular ATP exhibits proinflammatory effects;
adenosine triggers inhibitory pathways mediated by cAMP
and protein kinase A. Thus, the concerted action of CD39
and CD73 cleaves ATP to adenosine resulting in the immune
suppression [116, 117].Our search for data on the expression of
CD39 and/or CD73 by MDSCs resulted in two original stud-
ies. One study reported the expression of CD73 by granulo-
cyticMDSCs and the involvement of the nucleotidase activity
in MDSCs-mediated suppression [118]. In another study, the
anticancerogenic drug 𝛼-difluoromethylornithine hampered
MDSC suppressive activity, in particular, by inhibiting the
CD39/CD73-mediated pathway [119].

3.6.3. Galectins. Galectins (Gal), soluble glycan-binding pro-
teins, bind to cell surface glycoproteins. MSCs express Gal-1
and Gal-9. Gal-1 inhibits tissue emigration of immunogenic
DCs [120] and selectively binds toTh1 andTh17 cells inducing
their apoptosis but does not affect Th2 cells [121, 122]. Gal-
1 upregulates the expression of AhR in T cells and the pro-
duction of IL-10 by Th1 and Th17 cells [122]. Gal-9 mediates
antiproliferative effects on T and B cells. In B lymphocytes,
it also reduces immunoglobulin release. Gal-9 is upregulated

by IFN-𝛾 [123].We found no reports on the usage of galectins
byMDSCs in the available literature. However, galectins were
shown to participate in the induction and the accumulation
of MDSCs at tumor site [124].

3.6.4. CCL2. The chemokine CCL2 interacts with CCR2
receptor expressed by myeloid cells and NK cells, activated
Th1 andTh17 cells, and recruits them to the site of inflamma-
tion.MSCs produceCCL2 and expressmetalloproteinase that
truncates CCL2, generating CCR2 antagonist that suppresses
the migration of inflammatory cells. This mechanism seems
to be critical for MSC-mediated suppression during autoim-
mune disorders. Defects in CCL2 processing have been asso-
ciated with the pathogenesis of SLE [125]. In EAE, adoptively
transferred wild-type MSCs induced immune suppression,
whereas CCL2−/− MSCs did not [126]. We found no reports
on the usage of CCL2-mediated mechanism by MDSCs.
However,MDSCs expressCCR2 and readily respond toCCL2
by accumulating at the corresponding inflammatory sites
[127].

3.6.5. B7-H1. MSCs and MDSCs express negative costimu-
latory molecules, in particular, B7-H1. B7-H1 interacts with
PD-1 [128]. The expression of B7-H1 by MSCs was induced
by IFN-𝛾 [129], whereas on MDSCs it could be induced by
IL-13 [37]. Whether these differences are due to different
experimental settings or are characteristic for MSCs and
MDSCs remains to be clarified.

4. Cellular Targets

This section reviews immunomodulatory effects ofMSCs and
MDSCs on different immune cells (Figure 2).

4.1. T Lymphocytes. Effector T lymphocytes generate after
näıve T cells recognize antigen, activate, proliferate, and
differentiate into effector subsets.MSCs andMDSCs interfere
with T cells at different stages of their differentiation and
function.

4.1.1. MSCs. MSCs hamper antigenic presentation by DCs
and thus interfere with the antigenic stimulation of T cells,
both in vitro and in vivo (see below). Activation of T cells,
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measured by the expression ofCD69 andCD25,was inhibited
by MSCs in some [130] but not in all [131, 132] studies. MSCs
readily suppress T cell proliferation induced by mitogens,
anti-CD3/CD28 stimulation, or transplantation antigens in
MLR [14, 131–133]. The inhibitory effect is due to cell arrest
in G0/G1 phase of cell cycle [131] and can be mediated by
iNOS, PGE2 [134], IDO [135], TGF-𝛽 [14, 130], IL-10 [136],
or PD-1 [134, 137]. The role for these molecular mediators
in the suppression of T cell proliferation varies in different
experimental settings. For example, the inhibition depended
on IDO in some studies [135] but was IDO-independent in
others [134, 137].

Functional activity of various T helper subsets is dif-
ferentially affected by MSCs. Th1 and the production of
IFN-𝛾 are inhibited by MSCs through the production of
PGE2 [55], IL-10 [136], IDO [138], cell contacts, and other
mechanisms [139]. MSCs also suppress the generation of
Th17, the expression of RORc in differentiating cells, and
the production of IL-17 and IL-22 by Th17. The effects are
mediated by PGE2 [50, 140, 141], IDO [50], and IL-10 [142].

MSCs do not suppress Th2 proliferation [138], stimulate
the production of IL-4, and may switch from Th1 to Th2
response augmenting the production of IL-4, IL-10, and IL-13,
supposedly through the PGE2-dependent mechanism [55].

MSCs promote the generation of Treg and enhance their
activity and IL-10 production. The effect is mediated by
TGF-𝛽 [90], by HLA-G5 [112], and indirectly through the
generation of tolerogenic DCs (reviewed in detail in [91]).

This pattern is characteristic for MSCs derived from
various sources and examined at different experimental
settings. However, several exemptions have been reported.
MSCs promoted the survival of quiescent T cells [143]. In
Th2-predominating conditions, MSCs inhibited IL-4 and IL-
5 and increased the production of IFN-𝛾 and IL-2 [144]. BM-
MSCs derived from rheumatoid arthritis and osteoarthritis
patients induced the activation and the expansion of Th17
[145]. Dysfunction of MSCs has been associated with several
autoimmune disorders [125, 145].

4.1.2.MDSCs. In general, there are less data on the regulatory
properties of MDSCs compared to MSCs. MDSCs inhibit
the proliferation, IL-2, and IFN-𝛾 production by T cells
stimulated in vitrowith anti-CD3/CD28, specific antigens, or
in MLR [146–151]. The suppression is mediated through the
production IL-10 [150], NO, and peroxynitrite [19, 26, 148,
151], andARG1 [151, 152] and indirectly through the formation
of M2 [153].

Data on the effects of MDSCs on Th2 and Th17 cells
are limited. Several studies have reported that endogenous
or adoptively transferred MDSCs increase Th2 response and
inhibit graft-versus-host disease (GVHD) [154–156]. Both,
promotion and suppression of Th17 by MDSCs have been
shown [157, 158].

MDSCs promote de novo development of Foxp3+ Tregs
in vivo. Different studies have associated this effect with the
production of ARG-1 [67], IDO [159], IL-10 [160], CD40, and
direct MDSC-Treg contacts [161, 162].

Comparison of the effects, which MSCs and MDSCs
exert on T cells, shows similarities in (i) the inhibition of T

cell proliferation and Th1 responses and (ii) the stimulation
of Treg cells (Figure 2). This pattern corresponds to the
mode of action of molecular mediators produced by MSCs
and MDSCs (Figure 1). Th17 are generally suppressed by
MSCs, although there are exemptions. Data on MDSCs-Th17
interactions are limited and contradictory. In line with this,
differentmolecularmediators, utilized byMSCs andMDSCs,
affect Th17 in different ways, suggesting that the final effect
may depend on the combination of mediators that the cells
produce in a giving experimental setting. The same is likely
true for Th2 cells.

As discussed above, most of the mediators produced by
MSCs and MDSCs are induced by proinflammatory type
1 cytokines (e.g., IFN-𝛾). This suggests that the cells play
immunoregulatory role and control Th1 responses through
the negative feedback loop. On the other hand, several
mediators (i.e., ARG-1, TGF-𝛽, and HLA-G5) can be induced
by type 2 and regulatory cytokines (i.e., IL-13, IL-4, IL-10,
and TGF-𝛽). Whether in these “type 2 conditions” MSCs
and MDSCs inhibit Th1 and support Th2 responses in a
positive feedback manner, or switch their activity towards
the suppression of Th2 (as it was demonstrated by Cho and
coauthors [144]), is not completely clear. Further complica-
tion comes from the observations that the same mediator
may play stimulatory or suppressive role depending on its
concentration [44, 115] and that mediators produced by
MSCs/MDSCs influence each other (see Figure 1). Evidently,
studies are needed to create a quantitative model of cel-
lular and molecular interactions that determine the final
immunoregulatory properties of MSCs and MDSCs.

4.2. DCs and Macrophages

4.2.1. MSCs. MSCs suppress monocyte differentiation into
DCs, decrease the expression of MHC class II, CD80, CD86,
CD83, and CD40 by DCs, lower DC capacity for endocytosis,
suppress the production of IL-12 and TNF-𝛼 by DC type 1,
and stimulate the production of IL-10 by DC type 2. Overall,
MSCs inhibit antigen presentation and T cell stimulation
and promote the generation of tolerogenic DCs [163–170].
These effects have been attributed to the production of PGE2
[166], IL-6 [164, 167], IL-10 [168, 171], HGF [104, 165, 172],
and TNF-stimulated gene 6 protein (TSG-6) [169]. Many
of these factors operate by activating JAK/STAT pathway
and suppressing the activation of mitogen-activated protein
kinases (MAPKs) and NF-𝜅B signaling pathways within DCs
responding to TLR4 stimulation [168, 169, 173, 174]. Direct
MSCs-DC contacts inhibit DC maturation and induce their
tolerization by activating the Notch pathway [175] and alter-
ing actin cytoskeleton in theDCs [176]. In vivo administration
of MSCs decreased DC migration to the draining lymph
node and hampered local CD4 T cell priming. The effect was
attributed to the inhibition of MyD88 and the impairment
of MAPKs and NF-𝜅B signaling pathways within DCs after
TLR4 stimulation [177].

Two main and opposite types of macrophages have
been defined, classically activated inflammatory (M1) and
alternatively activated anti-inflammatory (M2) [178]. MSCs
inhibit M1 and stimulate the generation of M2 macropahges:
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coculture of MSCs with BM-derived macrophages decreased
the expression of iNOS, TNF-𝛼, IL-6, IL-12, and CCL2 (i.e.,
the markers of M1) and upregulated the expression of IL-
10, ARG-1, CD206, and STAT3 (i.e., the markers of M2)
[179, 180]. Similar effects were observed in vivo [181]. The
underlying factors were PGE2 [181], TSG-6 [182], IDO [183],
IL-6 [184], and direct cell contacts.

The activation of M2 likely plays a role in the therapeu-
tic effects of MSCs. In experimental settings, systemically
infused gingival MSCs homed to the wound site, promoted
host macrophage differentiation into M2, and enhanced
wound repair [184]. In the models of acute lung injury, MSCs
shifted macrophage phenotype from M1 to M2 attenuating
lung tissue inflammation [185, 186]. In one study, the effect
was partially due to insulin-like growth factor I (IGF-I)
secreted by MSCs [186].

4.2.2. MDSCs. MDSCs are cells that in the presence of
appropriate cytokines differentiate into mature DCs and
macrophages [6]. However, in pathology this differentia-
tion is inhibited and MDSCs accumulate to affect different
branches of immune response. Information on MDSCs-DCs
and MDSCs-macrophages interactions is limited. In most
studies, the effects were similar to those mediated by MSCs;
that is, MDSCs inhibited DC maturation and polarized
macrophages towards M2 phenotype, largely through the
production of IL-10. In a clinical vaccine study, MDSCs cop-
urified with monocytes suppressed DC maturation, antigen
uptake, migration, and Th1 induction in a dose-dependent
manner [187]. MDSCs isolated from hepatocellular carci-
noma mice decreased the production of IL-12 by DCs [188].

When cocultured with macrophages, MDSCs reduced
macrophage expression of MHC class II [17]. MDSCs from
mice with spontaneous metastatic 4T1 mouse mammary
carcinoma skewed macrophages towards the generation of
M2 through IL-10 and cell contact dependent mechanisms
[153]. In patients with esophageal cancer, increased ratio
of MDSCs and augmented plasma levels of ARG1 were
associated with high tissue expression of CD163, decreased
IL-12 and IFN-𝛾, and increased GATA3, IL-4, IL-13, and IL-6
expressions (evidences of M2 polarization) [156].

In tumor environment, MDSCs can directly differentiate
into suppressive tumor-associated macrophages (TAM) [6].
Of note, suppressive macrophages were shown to stimulate
MDSCs for the production of IL-10 [17]. Thus, MDSCs may
form a positive feedback loop with TAM.

4.3. B Cells

4.3.1. MSCs. Data on MSCs-B lymphocyte interactions is
not uniform. In some studies, MSCs inhibited proliferation,
plasma-cell differentiation, IgM, IgG, and IgA production by
B cells stimulated in vitro with CpG, recombinant CD40L,
anti-Ig antibodies or IL-2, IL-4, and IL-10 cytokines. MSCs
also suppressed B cell expression of CXCR4, CXCR5, and
CCR7 and reduced B cell chemotaxis [131, 189–191].

In other studies, MSCs did not affect B cell proliferation
[138] or even augmented it. In the study by Traggiai and
coauthors, MSCs enhanced the proliferation of purified B

cells obtained from healthy donors or pediatric systemic
lupus erythematous (SLE) patients and their differentiation
into plasma cells [192]. One possible explanation for these
discrepancies comes from the study by Rasmusson and
coauthors. The study suggests that MSCs’ activity depends
on the level of basal B cell response: MSCs reduced high-
level IgG response and enhanced low-level production of IgG
induced by LPS, cytomegalovirus, or varicella zoster virus,
that is, played a homeostatic role [193].

Breg cells are induced by MSCs. The induction has been
registered both in vitro and in vivo and resulted in the
amelioration of GVHD [190, 194, 195].

Mechanisms underlying MSCs-B-cell interactions are
complex and not fully understood. Different authors reported
the involvement of IDO [195], MSC-T-cell contacts [190, 191],
IL-10, soluble factor other than IDO, TGF-𝛽 or IL-10 [196],
Galectin-9 [123], and CCL2 [125]. In SLE patients, BM-MSCs
had reduced production of CCL2, which was associated with
their defective capacity to suppress B cells. These findings
suggest a potential role for MSCs in disease pathogenesis and
demonstrate that MSCs generated in healthy and patholog-
ical conditions can exhibit different properties, uncovering
another potential cause for conflicting data on MSCs-B cell
interactions.

4.3.2. MDSCs. Data on MDSCs-B lymphocytes interactions
are highly limited and only start to accumulate. Most of
existing data report inhibitory effect of MDSCs on B lym-
phocytes. Following murine retroviral LP-BM5 infection,
MDSCs expanded and suppressed ex vivo B cell responses,
partially through iNOS/NO- and VISTA-mediated mech-
anisms [197, 198]. MDSCs generated in the presence of
adipocyte-conditioned medium inhibited B lymphopoiesis
largely through IL-1 [199]. MDSCs from mice with collagen-
induced arthritis inhibited autologous B cell proliferation
and antibody production in NO, PGE2, and cell-cell con-
tact dependent manner [200]. Administration of mono-
cytic MDSCs reduced autoantibody production and rescued
CCR2−/−mice from the exacerbated collagen-induced arthri-
tis [125, 200].

4.4. NK Cells

4.4.1. MSCs. MSCs inhibit NK cell proliferation, expres-
sion of activating receptors, and decrease NK cytotoxic-
ity and IFN-𝛾 production [36]. In different settings, the
effects were mediated by IDO, PGE2, TGF-𝛽, HLA-5, and
cell contacts [36, 112, 201]. Following their coculture with
MSCs, NK upregulate the expression of CD73 that has anti-
inflammatory effect [202].

4.4.2.MDSCs. NKculturedwithMDSCs produce less IFN-𝛾.
The suppression has been attributed to the production of
ARG1 [203], COX2/PGE2 [204], cell-cell contacts involving
NK cell activation receptor NKG2D, and membrane-bound
TGF𝛽 [205]. The role for MDSCs in the inhibition of NK
in vivo was demonstrated in the study by Zhu and coau-
thors, who described the generation of granulocytic MDSCs
following the administration of adenoviral vectors in mice;
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depletion ofMDSCs enhanced NK responses and accelerated
virus clearance [206].

4.5. Neutrophils. Neutrophils are nonproliferating short-
living cells that rapidly migrate to the site of infection/
inflammation and eliminate pathogens or cellular debris.

4.5.1. MSCs. MSCs generally exhibit proneutrophilic action
supporting neutrophil survival and inhibiting their apopto-
sis. The proneutrophilic effect was demonstrated for MSCs
derived fromvarious sources (i.e., BM, glandular, and adipose
tissue) and was largely mediated by IL-6 [207]. It has been
suggested that the proneutrophilic effect of MSCs plays a
role in supporting this short-living population in the BM.
MSCs activated by LPS stimulate the expression of CD11b by
neutrophils [208] and are able to recruit neutrophils in IL-
8 and MIF-dependent manner [209]. Data on the influence
of MSCs on antibacterial properties of neutrophils are not
uniform. In some studies, BM-MSCs dampened neutrophil
respiratory burst [207], while in others enhanced it [208].
The stimulatory effect depended on IL-6, IFN-𝛽, and GM-
CSF [208]. Hall and coauthors have demonstrated that MSCs
may affect neutrophil function in vivo: the administration
of BM-MSCs to septic mice stimulated bacteria clearance;
neutrophil depletion abrogated the effect [210]. In one study,
proneutrophilic effect of MSCs was mediated through the
induction of Th17 [211].

4.5.2. MDSCs. The influence of MDSCs on neutrophils
remains underinvestigated. Existing data are largely lim-
ited by the observation that the accumulation of MDSCs
is accompanied by gradual disappearance of mature neu-
trophils [19]. These opposing relationships between MDSCs
and neutrophils may be due to the incomplete differentiation
of immature myeloid cells in inflammatory conditions lead-
ing to the accumulation of MDSCs and simultaneously to the
reduction of mature neutrophils. Another suggested mech-
anism is efferocytosis of apoptotic neutrophils by MDSCs,
which has been described in mice infected with Klebsiella
pneumoniae or challenged with LPS [212, 213]. Thus, dif-
ferentially from MSCs, MDSCs and neutrophils seem to be
mutually exclusive. However, this speculation needs further
investigation.

4.6. Interactions betweenMSCs andMDSCs. Only few studies
directly addressed the interplay between MSCs and MDSCs.
In the study by Yen and coauthors, human MSCs expanded
CD14−CD11b+CD33+ MDSCs that expressed ARG1 and NO,
suppressed lymphocyte proliferation, and promoted Treg
generation. The effect was mediated through the secretion
of HGF and the induction of STAT3 [78]. In another
study, growth-regulated oncogene GRO-𝛾 secreted by MSCs
suppressed the generation of monocyte-derived DCs and
stimulated the formation of MDSCs. The latter secreted IL-
10 and IL-4 and expressed ARG1 and iNOS [214]. Galectins,
known to be produced byMSCs, were reported to participate
in the expansion of MDSCs at tumor sites [124]. MDSCs
produce ROS. In physiological levels, ROS support MSCs’
proliferation and differentiation, and, in higher amount, ROS

promote MSCs’ aging [84]. Other mediators produced by
MSCs andMDSCs (e.g., PGE2) can activate both populations
of cells in a positive feedback manner.

5. Concluding Remarks

In this review, we have compared mechanisms and modes of
immunoregulatory action of two immature cell populations:
MSCs and MDSCs. The populations belong to two distinct
differentiation lineages, but both are able to regulate immune
response. MSCs and MDSCs share many immunomodula-
tory mechanisms and exert similar effects. In particular, they
inhibit DC and macrophage maturation, antigen presenta-
tion, and suppress T cell proliferation, Th1 responses and
NK activity. Both populations promote the generation of
tolerogenic DCs, M2 macrophages, and regulatory T cells.
Proinflammatory conditions activate suppressor capacities of
both MSCs and MDSCs. This likeness is largely due to the
usage of similar set of mediators, for example, IDO, PGE2,
IL-10, and TGF-𝛽 (Figure 1).

In spite of these similarities, comparative analysis reveals
the discrepancies between the two populations. First, some
mediators are produced by one but not by another subset. In
particular, ARG1 and ROS seem to be restricted to MDSCs;
the production of galectins and HLA-G has been attributed
to MSCs but not to MDSCs. Second, MSCs and MDSCs
are generally activated by proinflammatory type 1 cytokines.
However, in some conditions, they can be stimulated by type
2 cytokines, and MDSCs seem to be more prone to this type
of stimulation. Indeed, ARG1, which is expressed in MDSCs
but not in MSCs, can be induced by IL-4, IL-13, and TGF-
𝛽. In MSCs, the expression of B7-H1 and the production of
TGF-𝛽 were induced by IFN-𝛾, whereas in MDSCs by IL-
10 and IL-13 [37, 129]. Third, MSCs exert proneutrophilic
effects, supporting neutrophil survival and function [207–
210]. MDSCs, in contrast, seem to oppose neutrophilic
inflammation [19, 212, 213]. Fourth, MSCs expand MDSCs.
Whether and how MDSCs affect MSCs is largely unknown.
Fifth, MSCs are generally considered as immunoregulatory
cells that can inhibit or enhance immune function depending
on cell microenvironment [5, 15]. MDSCs are currently
regarded as immunosuppressive cells. Whether MDSCs may
be considered as immunoregulatory cells that act by support-
ing immune homeostasis is not yet clear.

Several other questions remain unanswered and need
further investigation.

In particular, the pattern of the interplay between
MSCs/MDSCs andTh2, Th17, and B lymphocytes is not fully
clear. Both stimulation and inhibition of these responses by
MSCs and MDSCs have been documented [55, 144, 154–156,
189–193, 231], and exact factors that determine the ultimate
result are yet to be determined. One group of factors is rep-
resented by TLR ligands. The contribution of different TLR-
mediated pathways to pro- or anti-inflammatory functions
of MSCs/MDSCs is one of the recently emerged areas of
research [213, 215].

In proinflammatory conditions, MSCs and MDSCs are
activated to inhibit type 1 response, that is, act in a negative
feedback manner. Whether in “type 2 conditions” the cells
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inhibit Th1 or Th2 responses, that is, participate in positive
or negative feedback loop, remains unclear.

As noted above, MSCs and MDSCs share a set of core
regulatory mediators and mechanisms. However, they dif-
ferentially affect some immune cells. Molecular mechanisms
underlying these discrepancies remain unknown.

MSCs and MDSC can simultaneously produce a wide
range of immunoregulatory factors that have similar but
not identical activity (Figure 1). Furthermore, the subsets of
the produced factors and the amounts secreted may vary
in different conditions. Overall, this creates the possibility
for MSCs/MDSCs to fine-tune different branches of the
immune response and simultaneously makes their final effect
difficult to predict.Quantitativemodels of cellular andmolec-
ular interactions that determine the final immunoregulatory
properties of MSCs and MDSCs would help to predict their
effects in various microenvironments, both in vitro and in
vivo.

Speaking about possible clinical applications, MSCs are
widely considered for the purposes of clinical immunomod-
ulation due to their homeostatic properties and the feasibility
of generating the large numbers of autologous cells. MSCs
have been suggested as a mean to treat severe life-threatening
forms of autoimmune and autoinflammatory diseases (e.g.,
SLE, systemic sclerosis, and inflammatory bowel disease
[216–219]), prevent and treat steroid-refractory graft-versus-
host disease [220], improve the outcome after organ trans-
plantation [221], and stimulate tissue repair, regeneration,
and wound healing [222–227]. Detailed analysis of MSC
therapeutic potential, risks, and limitations of their applica-
tion is beyond the focus of the current review. In contrast
to MSCs, MDSCs are usually regarded as the target for
immunomodulation, particularly, in cancer where they accu-
mulate abundantly and contribute to pathology [228, 229].
However, in autoimmune pathology, MDSC dysfunction
may be a factor driving disease progression and can be
limited by the administration of exogenous MDSCs [24].
Thus, the question whether MDSCs can be used for thera-
peutic immunomodulation in some pathological conditions
remains to be explored. It is important to note that MDSCs
can be grown in vitro and they are more differentiated
compared to MSCs; thus, they have a lower risk of cell
transformation.

In conclusion, this review does not imply to describe all
effects and mechanisms mediated by MSCs/MDSCs, as they
are multiple and vary in different conditions. Rather, it is
an attempt to compare the main patterns of MSCs/MDSCs’
activities in a way to detect cell similarities and discrepancies
and identify new directions for their investigation.
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