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resistant to anti-cancer therapy.

Background: Human tumor is a complex tissue with multiple heterogeneous hypoxic regions and significant cell-
to-cell variability. Due to the complexity of the disease, the explanation of why anticancer therapies fail cannot be
attributed to intrinsic or acquired drug resistance alone. Furthermore, there are inconsistent reports of hypoxia-
induced kinase activities in different cancer cell-lines, where increase, decreases, or no change has been observed.
Thus, we asked, why are there widely contrasting results in kinase activity under hypoxia in different cancer cell-
lines and how does hypoxia play a role in anti-cancer drug sensitivity?

Results: We took a modeling approach to address these questions by analyzing the model simulation to explain
why hypoxia driven signals can have dissimilar impact on tumor growth and alter the efficacy of anti-cancer drugs.
Repeated simulations with varying concentrations of biomolecules followed by decision tree analysis reveal that the
highly differential effects among heterogeneous subpopulation of tumor cells could be governed by varying
concentrations of just a few key biomolecules. These biomolecules include activated serine/threonine-specific
protein kinases (pRAF), mitogen-activated protein kinase kinase (pMEK), protein kinase B (pAkt), or phosphoinositide-
4,5-bisphosphate 3-kinase (pPI3K). Additionally, the ratio of activated extracellular signal-regulated kinases (pERK) or
pAkt to its respective total was a key factor in determining the sensitivity of pERK or pAkt to hypoxia.

Conclusion: This work offers a mechanistic insight into how hypoxia can affect the efficacy of anti-cancer drug that
targets tumor signaling and provides a framework to identify the types of tumor cells that are either sensitive or
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Introduction

It is well appreciated that many cancers result from dys-
regulation of multiple signaling pathways that alters fun-
damental processes of cell proliferation, growth and
survival [1]. Such insights have led to the successful
development of anti-cancer drugs that target these path-
ways [2, 3]. In the last two decades, advances in systems-
based modeling of cell signaling networks have improved
our ability to predict the effectiveness of drugs targeting
various points of these pathways [4]. Due to the
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extensive cross-talk and compensatory feedback interac-
tions within the network, such predictions would be
otherwise difficult to make without the aid of advanced
mathematical modeling techniques.

However, the effectiveness of anti-cancer drugs cannot
be adequately predicted without also considering how
hypoxia alters the signaling network dynamics [5]. It has
been estimated that many solid tumors contain hypoxic
regions due to poor blood flow resulting from aberrant
development of new blood vessels [6]. Tumor cells
undergo multiple adaptive changes to enable survival
and proliferation under a reduced oxygen environment,
which could impact drug efficacy [7]. Among these
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changes, activation of the hypoxia-inducible-factor (HIF)
signaling pathway leads to increased production of sev-
eral proteins. For example, vascular endothelia growth
factor (VEGF) [8] has been shown to mitigate the
hypoxic conditions in the tumor microenvironment by
inducing angiogenesis. Also, VEGF binding to the VEGF
receptor (VEGFR) can lead to ERK and Akt activation
[9], enhancing proliferation and survival of tumor cells.
However, under severe hypoxic conditions, the depletion
of adenosine triphosphate (ATP) disrupts reactions that
require ATP-dependent phosphorylation that are critical
to ERK and Akt activation [10]. To add to the complex-
ity, it is becoming clear that significant cell-to-cell varia-
bility of biomolecule levels including proteins and
phospholipids, occur within the tumor cell population
[11-13]. These subpopulations of tumor cells with dif-
ferent range of protein expression have been reported to
exhibit categorical differences in their response to exter-
nal stimuli [13]. For example, different cancer cell-lines
have contrasting Akt activity under hypoxic conditions;
There are reports that Akt phosphorylation increases or
remains unchanged under hypoxia [14-16]. However,
the mechanism that drives differences in hypoxia-
induced Akt activity is unclear. Thus, we asked two
questions. Can we build a model that can elucidate the
underlying mechanism of hypoxia-induced cancer cell
growth and explain why such variability between tumor
cell-types exist? Can we increase our ability to design
more effective cancer therapy with further understand-
ing of the prominent role of hypoxia and heterogenicity
on the growing tumor population? We address these
questions by conducting a simulation study to explore
how hypoxia-induced shifts in tumor signaling dynamics
impact tumor growth and drug response.

We developed our model by integrating individual pub-
lished models that reflect the intracellular tumor signaling
pathway and the hypoxia-induced signaling pathway by
using VEGF mRNA output from one model as input to
the next model to drive VEGF production. Additionally,
ATP-dependent phosphorylation was added to all phos-
phorylation reactions in the tumor signaling pathway to
incorporate hypoxia induced ATP depletion. The com-
bined model (illustrated in Fig. 7) and how the individual
model components are integrated are detailed in the
method section. We qualitatively validated our model by
being able to reproduce diverging hypoxia-induced kinase
activity observed in literature. We applied the model to
explain why different subpopulation of tumor cells could
respond differently from the same stimuli. To do this, we
performed a global sensitivity analysis followed by decision
tree modeling to determine patterns in biomolecular con-
centrations that result in diverging network behavior.
Since heterogeneity is a hallmark of cancer, our ability to
predict how different subpopulations of tumor cells would
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respond differently to drug treatments will better equip us
to derive more meaningful predictions to guide drug dis-
covery and development.

Results

All results herein are simulation generated from our
model. Because our model is built upon previously pub-
lished models, each individual model was tested to
ensure that simulated output from the original publica-
tion could be reproduced before moving further. We
developed our model by interfacing the output of one
model as input to the next model. Moreover, the tumor
signaling model, originally developed for normal oxygen
level, was modified to account for hypoxia-induced
changes in the VEGF synthesis rate and phosphorylation
rates of several signaling proteins. As detailed in Egs. 2,
3 and 4 in the method section, these changes were intro-
duced to ensure the same behavior of the combined
model under normoxic condition.

Exploratory analysis reveals that the hypoxia or drug
induced changes in pAkt and pERK levels are highly
dependent on biomolecules concentration. To explore
this dependency, model predicted changes of pAkt and
pERK in response to step changes in O, level and/or
drug concentration were evaluated using 20,000 random
combinations of protein and/or phospholipid levels. All
subsequent mentioning of “responses” is model-
predicted, “cases” refer to simulation cases using differ-
ent initial biomolecule levels and can be considered as
“cells”.

Steady state concentration distribution of biomolecules
Although biomolecule concentrations were initially gener-
ated as a uniform random distribution, the final steady-state
concentrations were not uniformly distributed (6 examples
shown in Fig. 1a). Most (> 85%) of biomolecules exhibited
normal or nearly normal distributions (e.g. RAF), while six
showed skewed distributions and seven showed bimodal
distribution.

As would be expected, the VEGF and various forms of
the receptor-growth factor complex are positively corre-
lated. VEGER is also negatively correlated with pAkt.
Distinct clusters of biomolecule concentrations were also
observed from the simulation as subpopulations. For
example, the concentrations of Akt and PIP3 cluster into
two distinct subpopulations (Fig. 1b, top), whereas the
concentration of Akt and ERK clustered into 4 subpopu-
lations (Fig. 1b, bottom).

Hypoxia-induced effect on mRNA and VEGF productions

Figure 2a shows the simulated effect of prolonged
change in O, (0.001-100%, with 100% defined as 21%
O, under normoxia) on VEGF mRNA transcription.
Both VEGF and its mRNA increase transiently following
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Fig. 1 Steady state biomolecule concentration exhibits normal and bimodal distribution. a Histograms of selected biomolecule levels at steady-state after
repeated simulation (n = 20,000) using randomly selected initial concentration levels. Most biomolecules exhibit normal or near normal distributions. Skewed
distributions were seen in six of them: PI3K, pERK, PIP3_Akt (the complex of PIP3 and Akt), pPIP3_Akt, MEK, PLCR (phosphorylated phospholipase Cy1). Seven
biomolecules exhibit bimodal distribution: Akt, ERK, PIP3 (phosphatidylinositol-4,5-bisphosphate 3-kinase), Rafi (inhibited RAF), pRsk (phosphorylated
ribosomal s6 kinase), Rsk, Pip3_PDK (the complex of PIP3 and phosphoinositide dependent protein kinase). b Examples of two-dimensional histograms
showing correlation of biomolecule concentrations clustering into distinct subpopulations
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mild hypoxia. As hypoxia becomes more severe, the
VEGF response is amplified and more sustained. Inter-
estingly, the magnitude of steady-state VEGF response
depends significantly on the concentrations of specific
biomolecules when simulated with the same degree of
hypoxia (two cases in Fig. 2c) that can be clustered into
“big” versus “small” increases in mRNA transcription
(Fig. 2d).

Decision tree analysis revealed that pAkt level is the
most principal factor that determines whether the model
results in a big or small hypoxia—induced VEGF
response (Fig. 2e). At the 0.5% O, hypoxic level, cells
with pAkt greater than 47 nM mostly produce a substan-
tial change, while cells with pAkt <47 nM mostly pro-
duce a small change. However, the impact of pAkt on
VEGF response diminishes as severity of hypoxia
decreases.

Effect of hypoxia on ERK and Akt activation

Our model shows that, although pERK and pAkt gener-
ally decrease with increasing hypoxia, both the magni-
tude and direction of the hypoxia-induced changes are

highly dependent on the concentration of those biomo-
lecules. For some cases, the model predicts that the
levels of pERK and pAkt will remain unchanged or even
increase during severe hypoxia.

Hypoxia and pERK

Our model simulation show that hypoxia can decrease
or have minimal effect on pERK levels (Fig. 3a). Our
model predicts that the 5% O, level has minimal effect
on ERK activity. About 96% of cases show no change in
pERK (Fig. 3b; hypoxia/normoxia pERK ratio between
0.9 and 1.1) when simulated at the 5% O, hypoxic level.
Our model also shows that as hypoxia level increases,
ERK activation decreases. At the 0.5% O, level, a multi-
modal distribution was observed where 66% of cases
with greater than 20% reduction in pERK fell into one
cluster (hypoxia/normoxia pERK ratio < 0.8), while 28%
with minimal change in pERK (hypoxia/normoxia pERK
ratio between 0.9 and 1.1) fell into another cluster. Inter-
estingly, the model predicts that even at a low O, level
of 0.5%, a subpopulation of tumor cells still exhibits
minimal change in ERK activity.
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Fig. 2 Increasing hypoxia amplifies VEGF production. a Each solid line represents the response of mMRNA to step reduction of O, from normoxia
(100% O,) to a reduced O, level. The response is normalized to the mRNA baseline level at normoxia (baseline =1). b and ¢ Two simulation cases
demonstrating that, by using different initial levels of biomolecules, either a “small” or “large” change in VEGF level (maximal changes of either
12-fold or 160-fold) can be elicited in response to the same mRNA response to hypoxia depicted in (a). Note the difference in the scale of y-axis.
d Histogram depicting the distribution of VEGF response magnitude from 20,000 simulations in response to one step changes of O, level from
100 to 0.5%. e Decision tree showing that pAkt level is the sole factor dictating the magnitude to “large” (> 100) versus “small” (< 100) VEGF response

Decision tree analysis (Fig. 3c) identified pERK/tERK,
the ratio of phosphorylated ERK over total ERK, rather
than the absolute levels of either pERK or ERK, as the
single most important feature in determining the sensi-
tivity of pERK to hypoxia. Cells with pERK/tERK ratio
less than 0.9 at 0.1% O, will most likely result in a
decrease in pERK (defined as > 10% reduction in pERK).
Cells with pERK/tERK ratio greater than 0.9, hypoxia
will have a minimal or no effect on ERK activity.

Hypoxia and pAkt

For Akt activity, we observed a more complicated
hypoxia-induced response. In some cases, we saw a
decrease in pAtk levels as hypoxic condition increases
(Fig. 4a). In other cases, we noticed that pAkt levels
increase under milder hypoxia, where only under severe

hypoxic conditions did we finally see a decrease in pAkt
levels (Fig. 4a). Deconvolution of the model revealed that
such bimodal behavior results from the two opposing
effects, the hypoxia-induced increase in VEGF response
and the simultaneous ATP depletion. At mild to moder-
ate hypoxic condition, there is minimal change in ATP
concentration, yet the increase in HIF-1a signaling from
VEGER stimulation activates Akt that ultimately result
in increased pAkt levels. At moderate hypoxic condition,
VEGF production remains saturated, whereas the loss of
ATP depletion becomes significant resulting in reduced
pAkt level.

Because of this hypoxia-induced bimodal behavior, a
tumor cell can either have elevated, suppressed, or
unchanged pAkt at any given O, level (Fig. 4b). At the
5% O, level, hypoxia caused an increase in pAkt level in
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Fig. 3 Hypoxia induces a decrease or no change in ERK activation. a Two simulation cases showing differential sensitivity in steady-state pERK
response to step reduction in O, levels of various severity (normoxia = 100%). The time course for pERK responses to 0.1% O is illustrated in the
insert, where x-axis is time and y-axis is the level of phosphorylated ERK. The solid bar above the line trace indicates when 0.1% O, was applied
in the simulation. b Histograms summarizing the distribution of pERK responses from all 20,000 simulation cases at various degree of hypoxia.
c Decision tree analysis was used to identify which biomolecule levels are most important in determining the sensitivity of pERK to hypoxia by
categorizing the simulation cases into “no change” or “decreased (within £10% change or > 10% reduction from the normoxia level). The
resultant decision tree showing that pERK/tERK ratio is the primary factor deciding if pERK is sensitive to hypoxia (0.1% O,) or not

76% of simulated cases, while having minimal or no
effect on pAkt levels (defined as within £10% change) in
24% of the cases. Interestingly, multi-modal distribution
can clearly be seen at 0.5% O,, where the pAkt level can
be elevated (22%), unchanged (67%), or suppressed
(11%) by hypoxia. As O, was further reduced to 0.1%,
the hypoxia-induced increase in pAkt is lost (4%). Addi-
tionally, 47% of the cases with minimal or no change in
the pAkt level remains and the number of cases with
decreased pAkt level is increased to 41%.

To identify factors that drive the three types of
hypoxia-induced responses in pAkt levels we performed
a decision tree analysis in two stages using the cases
simulated at 0.5% O,. The first tree (Fig. 4c, top tree)

was built to distinguish between no change (within +
10% change from normoxia level) versus change (greater
than 10% change in either direction). Then, a second
tree (Fig. 4c, bottom tree) was built to further separate
the cases from the change category into either pAkt
increase (>10% change) or pAkt decrease (<-10%
change).

Our decision tree analysis identified pAkt/tAkt, the
ratio of phosphorylated Akt over total Akt, as the most
important variable in distinguishing between no change
versus change categories. For tumor cells with pAkt/tAkt
>0.68, hypoxia will most likely have no effect on pAkt
levels (97.1% accuracy). Ratio of pAkt/tAkt < 0.68, does
not automatically imply that pAkt will likely change with
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hypoxia (28.2% misclassification error). Applying the
second decision tree node (pPI3K<4nM or EEGFR
(complex of EGF and its receptor) < 0.22 nM) is required
to further reduce the misclassification error from 28.2%
down to 17%.

There is a report that the bimodal response of Akt
activity occurs in culture and suggests that this behavior
is dependent on EGF stimulation and correlates with
PI3K levels [13]. In agreement with the above study, our
decision tree analysis also implicates pPI3K and EGFR as

the two most crucial factors that determine the bimodal
distribution of pAKT response in tumors under hypoxia.
Our decision tree predicts that for cells with pPI3K
levels greater than 17.6 nM and EEGEFR levels lower than
0.45 nM, hypoxia will probably cause pAkt to go up
(84% accuracy). Otherwise, pAkt will mostly go down
with hypoxia (96% accuracy). An additional decision
mode, VVR_P_PI3K (complex of PI3K and phosphory-
lated dimer of VVEGFRP) < 308.2nM, is needed to
further refine the classification.
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Effect of hypoxia on drug sensitivity

We used the model to investigate how hypoxia can alter
the efficacy of different potential therapies. We exam-
ined the effect of hypoxia on inhibitors that target phos-
phorylation of RAS, MEK or Akt phosphorylation.
Additionally, we also explored if hypoxia affects drugs
that inhibit VEGF binding to VEGFR and how this
affects ERK and Akt activation. Despite the interconnec-
tivity of Ras-Raf-MEK-ERK and Akt signaling pathways,
the model predicts that the inhibition of RAF or MEK
primarily affects ERK activation and not Akt under
hypoxia. Instead, the model predicts that the inhibition
of Akt phosphorylation or VEGF binding to VEGEFR
mostly affects Akt activation.

Effect of RAF and MEK inhibition on ERK activation under
hypoxia

Figure 5a shows that in one specific case, the suppression
of pERK levels by inhibition of RAF phosphorylation is
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enhanced under hypoxia. When tested across a range of
drug concentrations (expressed as drug concentration to
K; ratios, [D]/K;), we observed that reducing the O, level
to 0.5% shifts pERK with 50% inhibition about 10-fold
(Fig. 5b). When we repeated the simulation using different
biomolecule concentrations, we observed that the same
drug concentration (e.g. (/DJ/K; =100) can either strongly
inhibit pERK level (>40% reduction in pERK) or become
ineffective (< 10% reduction in pERK) (Fig. 5c). Along with
hypoxia (0.5% O,, red histogram), this bimodal response
distribution also occurred under normoxia (blue histo-
gram). However, a larger proportion of cases had greater
PERK reduction under hypoxia.

Decision tree analysis (Fig. 5d and e) revealed that the
concentration of pRAF was the major contributor for
the model sensitivity to RAF inhibitor, with minor con-
tributions from ERK and RAFi levels. By combining the
normoxia and hypoxia trees (Fig. 5d bottom), we saw
that tumor cells with pRAF levels less than 1.4nM are
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Fig. 5 pRAF or pMEK concentration determines the level of pERK suppression by RAF or MEK inhibitors, respectively, under different hypoxic
conditions. a One simulation case showing the pERK responses to inhibition of RAF phosphorylation under normoxia or sustained reduction of
O, from 100 to 0.5%. b Concentration response curves from one simulation case showing hypoxia increases the sensitivity of pERK reduction to
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sensitive to RAF inhibition, whereas, tumor cells above
10 nM are insensitive to RAF inhibition regardless of O,
accessibility. Additionally, tumor cells with pRAF level
that fall in-between 1.4 and 10 nM, that has accessibility
to O, (e.g. near the tumor surface with good vasculariza-
tion) will be resistant to RAF inhibition. Yet, if these
tumor cells are in hypoxic condition (e.g. cells near the
tumor core with poor vascularization), they will be more
sensitive to RAF inhibition.

Similarly, inhibition of MEK phosphorylation can also
lead to a reduction in pERK levels and this effect is also
more pronounced under hypoxia than under normoxia.
Like RAF inhibition, not all cases are responsive to a
given level of MEK inhibition, where the primary contri-
butor of pERK bimodality is pMEK, with minor contri-
butions from ERK (Fig. 5e). Tumor cells with pMEK
level less than 52nM are sensitive to MEK inhibition
regardless of O, accessibility and anything above pMEK
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levels of 188nM are insensitive to MEK inhibition.
Finally, for tumor cells with pMEK levels within the 52
and 188 nM range, the sensitivity depends on accessibil-
ity to O,.

Inhibition of VEGF binding and Akt phosphorylation on
Akt activation

Inhibition of Akt phosphorylation or VEGF binding to
VEGER resulted in the suppression of pAkt levels (Fig. 6).
Although hypoxia enhances the effect of Akt inhibition
on pAkt level, the ability of VEGF inhibition to reduce
pAkt is diminished under hypoxia (Fig. 6a and b). Deci-
sion tree analysis revealed that the pAkt/tAkt ratio is the
primary factor that determines if pAkt levels of the
tumor cell will be sensitive to either inhibition. Tumor
cells with less than complete Akt activation (pAkt/tAkt
< 1) would likely be sensitive to Akt inhibition (essen-
tially all tumor cells) (Fig. 6a). For VEGF inhibition,
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tumor cells with pAkt/tAkt ratio below 0.72 will be
responsive regardless of O, accessibility and tumor cells
above 0.77 will be unresponsive. For tumor cells that fall
in between the 0.72 and 0.77 pAkt/tAkt level, the sensi-
tivity to VEGF inhibition will depend on O, accessibility.

Discussion

The rapid growth of solid tumors often leads to highly
hypoxic regions with poor blood circulation. This can
result in hypoxia-driven signaling that changes tumor
growth dynamics and anti-cancer drug efficacy. Addi-
tionally, the growing tumor imposes a physical barrier
that limits drug penetration towards the tumor core. To
explore hypoxia driven tumor signaling, we developed a
theoretical model by building upon published models,
one that describes hypoxia signaling and the other that
describes tumor growth signaling. We validated our
combined mathematical model by replicating divergent
hypoxia-induced Akt and ERK responses reported in lit-
erature. Additionally, by integrating ATP signaling to
the model, we provide a mechanistic insight on how
varying degrees of hypoxia affects current anti-cancer
drugs. Our model suggests that the effect of hypoxia on
ERK and Akt activation, two biomarkers of tumor prolif-
eration and survival, and on the effectiveness of kinase
and VEGF inhibitors is complex and highly dependent
on the intracellular biomolecule concentrations. Using
random number generation to simulate cell-to-cell varia-
bility in biomolecule concentrations followed by decision
tree analysis, we identified several biomolecules whose
intracellular concentration can potentially dictate the
behavior of the cells.

Effect of hypoxia on ERK and Akt activation

Experimental reports of hypoxia-induced effect on ERK
and Akt activation varies considerably. For example,
hypoxia (5% O,) was shown to decrease ERK activation
[17], while a similar degree of hypoxia (7% O,) was
shown to induce transient activation [14]. Mild hypoxia
(30% O,) can either have no effect or cause an increase
in ERK activation depending on the duration of expo-
sure [17]. Similar divergence was also found in the effect
of hypoxia on Akt activation, where it was reported to
either have no effect or an increase in Akt phosphoryla-
tion [14-16].

Our analysis suggests that the differences in biomole-
cule concentrations among tumor cells can be an expla-
nation for the divergent literature results. For instance,
the pAkt/tAkt ratio in tumor cells in human cancer
patients is highly variable, ranging from below 0.2 to
higher than 0.8 [18, 19]. Our model predicts that tumor
cells with pAkt/tAkt above 0.6-0.7 are likely to be unre-
sponsive to hypoxia (Fig. 4c). For tumor cells with pAkt/
tAkt below 0.6, concentrations of pPik3, EEGFR and
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VVR_P_PI3K become important in deciding whether the
Akt activation will increase or decrease by hypoxia.

In contrast, our model suggests that ERK activation is
likely to decrease with hypoxia in most cases because
the criterion for “no change” (pERK/tERK < 0.9, Fig. 3c)
is above those found in most tumor cells [18]. However,
it is possible hypoxia can stimulate other growth factor
signaling pathways that may induce an increase in ERK
activity, a connection not included in our current model.
With the new connection, it is feasible that there would
be scenarios where hypoxia can increase or decrease
ERK activity like Akt.

Effectiveness of drug treatments

The present model provides a framework for predicting
which types of tumor cells are more susceptible to anti-
cancer drug treatments. For example, our analysis suggests
that whether ERK activation is responsive to RAF or MEK
inhibition by pharmaceutical agents depends on the intra-
tumor concentration of pRAF (Fig. 5d) or pMEK (Fig. 5e).
With the highly variable pRAF and pMEK levels in human
tumor cells centered around 5nM and 500 nM, respectively
[20, 21], drugs acting through RAF and MEK inhibitions will
be effective only in the cells with relatively low activation.

For drugs acting through inhibition of VEGF binding,
the deciding factor is the pAkt/tAkt ratio (Fig. 6b). Our
model predicts that tumor cells with pAkt/tAkt above
0.7 will not respond to VEGF inhibition. For cells with
ratio below 0.7, the concentration of VVR_P_PI3K and
EEGFR become important in deciding the effectiveness
of VEGF inhibition. In contrast, the model predicts that
any cells whose Akt is not completely phosphorylated
(pAkt/tAkt< 1), which includes most if not all cells, will
be responsive to drugs acting via Akt inhibition (Fig. 6a).

Our model also provides a framework for predicting
the effectiveness of anti-cancer drugs in the hypoxic
regions of tumors. Cytotoxic anti-cancer drugs whose
activity depends on cell cycle progression are often less
effective in hypoxic regions of tumors with reduced
blood flow, not only because of the drug delivery limita-
tion to these regions, but also because hypoxia can
induce cell cycle arrest (quiescence) which protects them
from these types of drugs [12, 22, 23].

However, for drugs acting through ERK, MEK or Akt
inhibitions, our model predicts an augmented effect on
ERK and Akt activation in hypoxic tumor regions. If
drug action is not dependent on cell cycle progression
(e.g. apoptosis), it is conceivable that hypoxia-induced
increase in drug efficacy could partially counteract the
reduced drug penetration in these hypoxic tumor
regions. In contrast, our model predicts the effect of
VEGF inhibiting drugs in the hypoxic regions is attenu-
ated, thereby amplifying the already decreased effective-
ness due to diminished drug reaching these regions.
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Future directions

The current model can be expanded to add additional
signaling pathways such as ERK1 ability to directly phos-
phorylate HIF-1a [24], PI3K/Akt-induced stimulation of
HIF-1a protein synthesis [25], platelet derived growth
factor stimulation of glutamatergic receptors that result
in the activation of ERK and Akt [26, 27], other HIF-1a
independent pathways [28], or the effect of acidic pH
levels in a solid tumor microenvironment [29].

While adding these pathways into the model could
potentially modify the findings summarized above, the
decision-tree based model analysis employed here may
find general utility in the analysis of complex mathema-
tical models. Uncertainty in parameters could influence
the behavior of complex models that result in multiple
signaling states or switch-like behavior [30]. Decision-
tree based model approaches can be a powerful tool that
can be used together with the more common sensitivity
analysis to elucidate key behavior patterns in the models.

The role of hypoxia in combination therapy is a topic
of interest in our lab and is currently on going. Our abil-
ity to successfully predict how several types of tumor
cells within the tumor landscape respond to different
drug-action modalities will be critical in identifying opti-
mal targets, dosing regimen, and potential combo-
therapies to achieve maximal therapeutic benefit.

Conclusions

The interplay between hypoxic response signaling path-
ways and tumor signaling pathways is known to be impor-
tant in the progression of cancer and the efficacy of anti-
cancer therapies. We present a mathematical model that
integrates hypoxia-inducible factor signaling with a tumor
signaling network to explore how hypoxia and cellular
heterogeneity can influence the effect of kinase or VEGF
binding inhibitors. To do this we first validated our model
by showing divergent response types can be generated
under hypoxia using varying intracellular biomolecular
concentrations. Using decision tree analysis on our model
output, we were able to identify biomolecules that could
be responsible for this phenomenon. Furthermore, our
model provides a mechanism to explain why different cells
under varying degree of hypoxia can impact drug efficacy.
Overall, our modeling approach provides a framework to
identify types of tumor cells that could be susceptible to
anti-cancer drug treatments.

The trends revealed by our simulation study suggests a
direction for future in-vitro experimental analysis, where
quantifying concentrations of specific biomolecules
under different hypoxic levels should be included as part
of the investigative process. If verified, this would further
encourage the practice of quantifying biomolecule con-
centrations in tumor biopsies from patients as part of
the strategy toward individualized medicine. If our
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simulation study is not verified, then the mathematical
models can be improved with the new data. In this con-
text, the approach outlined in this work offers a hypoth-
esis testing paradigm, rather than a tool for prediction.

Methods

Model structure

The model (Fig. 7a) consists of three modules: the HIF
signaling module (Fig. 7b), the tumor signaling module
(Fig. 7c), and the ATP depletion module. Both HIF and
tumor signaling modulse were adopted from already
published works that were integrated along with the
ATP depletion module into the full model. With this full
model, we examine how two hypoxia-induced mechan-
isms, listed below, regulate tumor signaling.

1. Hypoxia triggers HIF-1a signaling, resulting in an
increase in VEGF production and VEGF receptor
binding, triggering the subsequent signaling cascade
through the tumor signaling network.

2. Sufficient hypoxia will cause cellular ATP depletion
and thereby affects the ATP-dependent phosphory-
lation of signaling proteins. ATP depletion is
assumed to have negligible effect on protein synth-
esis over the range of hypoxia considered [31].

The model inputs are: (a) level of O, (% of normoxia),
which can be reduced (hypoxia) due to reduced blood
supply to tumors, and (b) drugs that inhibit various
points of the signal transduction pathways. The model
outputs are activation of ERK and Akt, chosen for their
critical roles in tumor proliferation and survival.

Reactions in the model are described by set of ordinary
differential equations derived from mass action laws and
enzyme kinetics. The model contains 189 biomolecule
species, 86 reactions and 163 parameters (see Addi-
tional files 2 and 3 for more details).

The hypoxia-inducible factor signaling module

The hypoxia signaling module was adapted from a pub-
lished work by Kohn et al. [32] that showed how
reduced oxygen levels can induce a switch-like behavior
of rapid increase in HIF-1la transcription factors, which
is consistent with reported observation (Jewell et al.
2001, Induction of HIF-1 a in response to hypoxia).
Since it has been shown that HIF-la increases VEGF
expression [8], we expanded the model to include the
increased VEGF production as the result of hypoxia-
induced up-regulation of HIF-1 a.

Tumor signaling module

To describe VEGER signaling in the tumor, we incorpo-
rated a published model by Zhang et al. [33] to our full
model. Zhang et al. model was validated by reproducing
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ERK and Akt dynamics in response to VEGF stimulation
[33]. We further expanded the model by Zhang et al. to
include signaling by endothelial growth factor (EGEF),
ATP-dependent reactions involving phospholipase C
Y1(PLCR) and deactivation of Son of Sevenless (SOS) by
pERK [34, 35].

Hypoxia induced ATP-depletion module

ATP levels only drop under severe hypoxia as cells
attempt to maintain ATP homeostasis by activating
compensatory changes [36, 37]. We approximated this
nonlinear relationship between ATP and O, using the
Michaelis—Menten equation with a maximal ATP
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concentration of 3000 pM [38] under normoxia and a
half-maximal occurring at 3.3% O, [37].

[A P ] normaxia [02]

ATP] = 0.033[0;]

0] (1)

normaxia + [

Modeling the effect of hypoxia on ATP-dependent
phosphorylation

Protein phosphorylation requires binding of both ATP
and protein substrates [10]. In concordance to reactions
described in literature [39-41], all phosphorylation reac-
tions follow a sequential order kinetic mechanism by
which ATP binds to the enzyme first and protein sub-
strate binding is dependent on the ATP binding [42]:

V ynax|ATP][Protein]

Reaction Rate =
KararpKAE + KAB[ATP) 4 [ATP][Protein]

V max|Protein|

= [Kyiarr A @)
, B .
< ATE] + 1>K + [Protein]

Viax IS the maximal reaction rate, [ATP], and [Pro-
tein] are the cellular concentration of ATP and the pro-
tein substrate (e.g. RAF, MEK or Akt), respectively. K,
arp and KB are the dissociation constant of ATP with
the enzyme and the ATP-enzyme complex with its pro-
tein substrate, respectively. However, Zhang et al
described their reaction without including ATP as part
of the equation (Eq. 3).

’

V., . |Protein]

max

Reaction Rate = —
K + [Protein|

(3)

Instead, the reaction rate is solely dependent on the
substrate concentration. We modified Eq. 3 to explicitly
include ATP as part of the ATP-dependent phosphoryla-
tion reaction in Eq. 2. To do keep K in Eq. 3 unchanged
under normoxia, we calculated K*® for each protein

such that ([A]I";’% + 1)K4B matches K value from the

original paper, using Kj; a7p of 100 nM based on values
reported in Knight et al. 2005 [43] for a range of pro-
teins, and the normoxic ATP level reported in the litera-
ture [38].

Interfacing the HIF and tumor signaling models

The generic variable mRNA is the output of the HIF
model, which represents any one of many mRNAs
affected by hypoxia. In our work, we used mRNA to sig-
nify VEGF production to link HIF and tumor signaling
modules. VEGF in the Zhang et al. model is synthesized
at a constant rate because hypoxia induced changes in
VEGF production was not considered in their original
model. We modified VEGF production rate in the tumor
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signaling model to allow modulation of VEGF mRNA
from the HIF model, thus connecting the two model
components (Eq. 4).

[mRNA] \ **

(4)

keyn (integrated model) = kqyy, (original) - <

The [mRNA] and [mRNA,] are from the original
HIF model, where [mRNA,] is the mRNA concentra-
tion under normoxia. The exponent k, was set to
equal to 2 to account for cases where protein expres-
sion is greater than the respective mRNA level. This
equation makes certain that the production of VEGF
is unchanged from the value found in the original
publication under normoxia. We also defined the
degradation rate of VEGF protein such that the base-
line VEGF level is kept equal to the value from the
original paper under normoxia. Both steps ensure that
the model behaves as intended in the original publi-
cation under normoxia.

Model validation

Although our model was developed by integrating two
separate published models that were validated individu-
ally, we qualitatively validated the combined full model
by demonstrating the ability of our model to capture the
considerable variability of hypoxia-induced effects on
ERK and Akt reported in literature. There is evidence
that the activation of the Akt pathway under hypoxia is
cell-type specific. For example, no change in Akt
response was observed in human hepatoma cells,
whereas PC12 and HelLa cell-lines showed robust Akt
phosphorylation under hypoxic conditions [15, 16].
Thus, we checked if our model can generate categori-
cally dissimilar hypoxia-induced Akt responses by using
different initial biomolecule values from a range that
have been reported in literature (to represent different
cell types where expression of these biomolecules can be
very different). Indeed, our model was able to capture
diverging Akt phosphorylation levels that can increase,
decrease, or remain unchanged (Fig. 8) depending on
initial biomolecule values under hypoxia.

Drug actions

The four types of drug action considered in the model
are: the inhibition of RAF, MEK and Akt phosphoryla-
tion and inhibition of VEGF binding to VEGFR. Since
the kinase inhibitors on the market or currently in the
clinic are mostly directed against the ATP-binding site
of the kinase [2], we modeled inhibition of phosphoryla-
tion reactions by modifying Eq. (2) as below,
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Reaction Rate = max[ATP][Protein]

1
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(5)

[I] is the concentration of drugs that inhibit RAF,
MEK or Akt, and K; is the inhibition constant.
For inhibition of VEGF binding to VEGEFR,

ky;[VEGF] - [VEGER]
D
K
(6)

[VEGEF], [VEGFR] and [VVEGEFR] are the concentra-
tion of VEGF, VEGF receptor, and the VEGF-VEGF
receptor complex, respectively.

Reaction Rate = —k1,[VVEGFR]

Modeling and analysis approaches

We next proceeded to identify conditions that dictate
the differences in cellular responses from the same sti-
muli and how varying degrees of hypoxia can change
tumor growth and drug efficacy (see Additional file 1 for
more details). Specifically:

1. How do various levels of hypoxia affect the
activation of Akt and ERK?

2. How do various levels of hypoxia affect the
sensitivity of Akt and ERK activation to inhibition
of phosphorylation of RAF, MEK and Akt and
VEGF binding by drugs?

These questions cannot be adequately addressed by
evaluating the model prediction from a single set of
biomolecular concentrations. Several reports have
revealed cell-to-cell variability in biomolecular con-
centrations occur and that some even exhibit a bimo-
dal distribution [11-13]. Furthermore, depending on
the concentration of certain biomolecules, the cells
may respond categorically differently to external

stimuli [13]. One could view the variability in the bio-
molecule concentrations as subpopulations of tumor
cells, each with a characteristic range of biomolecule
concentrations and each could respond categorically
differently from one another to the same stimuli.

In this context, a meaningful understanding of the
model prediction to drug treatment under varying
degrees of hypoxia requires us to (1) identify all the
diverse ways the system could respond to the same sti-
muli because of variations in biomolecular concentra-
tions and (2) determine which characteristics of
biomolecular concentrations are responsible for inducing
a deviation in the network response. To do this, we car-
ried out the following protocol (additional details in
Additional file 1):

1. For each simulation, we randomly varied the
initial concentration of every biomolecules in the
tumor signaling module. Latin Hypercube
Sampling was used to generate evenly
logarithmically spaced concentration levels over a
100-fold range to ensure coverage of the range
reported in literature [11-13, 18-21]. We ran a
total of 20,000 simulations, because our explora-
tory analysis indicated that 20,000 repetitions
were sufficient to ensure statistically reproducible
results. Each simulation reached steady-state
before external stimuli such as changes in oxygen
levels and/or addition of different drugs were
introduced.

2. The simulated results of Akt and ERK activation
were then categorized based on the type of
response (an increase, a decrease, or no change)
induced by the external stimuli.

3. For each response category, respective sets of initial
biomolecule concentrations were analyzed with the
decision tree algorithm [44] to identify
biomolecule(s) that most likely caused the actual
response.
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The present study only explored the effect of variabil-
ity in the tumor signaling module on the behavior of the
overall model while holding the variables in other mod-
ules constant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3098-5.
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