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Abstract

Cellular functions are shaped by reaction networks whose dynamics are determined by the

concentrations of underlying components. However, cellular mechanisms ensuring that a

component’s concentration resides in a given range remain elusive. We present network

properties which suffice to identify components whose concentration ranges can be efficiently

computed in mass-action metabolic networks. We show that the derived ranges are in excel-

lent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli.

We demonstrate that the approach can be used with genome-scale metabolic models to

arrive at predictions concordant with measurements from Escherichia coli under different

growth scenarios. By application to 14 genome-scale metabolic models from diverse species,

our approach specifies the cellular determinants of concentration ranges that can be effec-

tively employed to make predictions for a variety of biotechnological and medical applications.

Author summary

We present a computational approach for inferring concentration ranges from genome-

scale metabolic models. The approach specifies a determinant and molecular mechanism

underling facile control of concentration ranges for components in large-scale cellular

networks. Most importantly, the predictions about concentration ranges do not require

knowledge of kinetic parameters (which are difficult to specify at a genome scale), pro-

vided measurements of concentrations in a reference state. The approach assumes that

reaction rates follow the mass action law used in the derivations of other types of kinetics.

We apply the approach with large-scale kinetic and stoichiometric metabolic models of

organisms from different kingdoms of life to show that we can identify a proportion of

metabolites to which our approach is applicable. By challenging the predictions of concen-

tration ranges in the genome-scale metabolic network of E. coli with real-world data sets,

we further demonstrate the prediction power and limitations of the approach.
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Introduction

Advances in systems biology studies have been propelled by the availability of high-quality

genome-scale metabolic reconstructions for many organisms across all kingdoms of life [1].

Metabolic network reconstructions contain information about metabolites and reactions

through which they are transformed to support different cellular processes [2, 3]. Alongside

enzyme concentrations and phenomenological constants, reaction rates and metabolite con-

centrations—as two faces of the metabolic phenotype—characterize key aspects of the meta-

bolic capabilities of an organism. Since metabolic concentrations are important determinants

of reaction rates [4], understanding what controls their physiological ranges can point to cellu-

lar mechanisms that control phenotypic plasticity to ensure viability of organisms under

changing conditions [5].

A naïve approach to determine a concentration range for a given component is to assume

that it is present with a single molecule or that the entire cell dry weight under an investigated

scenario is composed solely of that component. This derivation requires only knowledge of the

component’s molecular weight, which is readily available. However, the derived ranges are

vast and largely invariant under different scenarios; therefore, they are not informative. Here

we ask whether large-scale metabolic models can be used for accurate prediction of concentra-

tion ranges. Resolving this question is tantamount to identifying a cellular mechanism under-

lying the control of concentration range for given cellular component.

The change in concentration of metabolites can be described by a system of coupled ordi-

nary differential equations (ODEs),
dxðtÞ
dt ¼ Nv tð Þ, where v(t) = (v1(t), � � �, vn(t))T denotes reac-

tion rates and x(t) = (x1(t), � � �, xm(t)) the metabolite concentrations at time t, and N represents

the stoichiometric matrix. The rows of the stoichiometric matrix correspond to metabolites,

columns stand for reactions, and its entries denote the stoichiometric coefficients with which

metabolites participate in reactions as substrates or products [6]. Reaction rates are modeled

according to a kinetic law, v(t) = f(x(t), θ), which often leads to nonlinearities and involves

multiple parameters, denoted by θ [7]. As a result, the coupled nonlinear ODEs are often not

analytically tractable and their simulations are challenging. These issues arise since parameters

remain poorly specified at a genome scale for the majority of model organisms [8, 9] and the

nonlinear ODEs may lead to numerical issues [10]. In addition, determining the steady-state

concentration ranges by characterizing the solutions to the system of non-linear equations Nf
(x(t), θ) = 0 is intractable for large-scale networks even when the equations have a simplified

mass action form often used in metabolic modeling [11].

Feasible steady-state reaction rates, v, for which Nv = 0, can be predicted based solely on the

structure of the network with computational approaches from the constraint-based modeling

framework [12]. However, since intracellular reaction rates cannot be measured directly, the

validation of these predictions requires laborious labeling experiments and model fitting pro-

cedures [13]. By neglecting the effect of concentrations on reaction rates, constraint-based

approaches do not facilitate the usage of metabolic network reconstructions to predict concen-

trations of metabolites, which are becoming more accessible by quantitative metabolomics

technologies [14].

The existing constraint-based approaches that can make predictions of metabolite concen-

trations and their ranges are based on consideration of thermodynamics constraints. Thermo-

dynamics-based metabolic flux analysis (TMFA) produces flux distributions that do not

contain any thermodynamically infeasible reactions or pathways, and it provides information

about the free energy change of reactions and the range of metabolite concentrations in addi-

tion to reaction fluxes [15]. However, due to uncertainty in the estimation of the standard

Gibbs free energies, TMFA usually predicts unconstrained ranges for metabolite
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concentrations (see Discussion in Henry et al. [15]). Metabolic Tug-of-War (mTOW) extends

TMFA but is based on a non-convex optimization approach which comes at a cost of local

optima and lack of robustness of predictions (validated by correlation [16]). A method to pre-

dict metabolite concentration ranges with limited knowledge about the underlying kinetic

laws and parameter values would allow direct integration and validation of genome-scale mod-

els with experimental data from metabolomics technologies, enabling systems biology applica-

tions, from engineering of intervention strategies to design of new drugs [17–19].

Here we provide an approach which relies on the structure of the network, encoded in the

stoichiometric matrix, to provide simulation-free prediction of steady-state concentration

ranges by employing mass action kinetics. We focus on mass action kinetics since it under-

lies the derivation of more involved types of kinetics for different reaction mechanisms [20],

allows for consideration of enzyme concentration if enzymes appear as reaction substrates,

and provides a simple mathematical form that may be amenable to analytical treatment. The

usage of mass action was here also favored due to lack of information about reaction mecha-

nisms at a genome-scale level. The approach expands on the well-established concept of full

coupling of reactions [21] to consider pairs of reactions whose ratio of mass-action-compati-

ble fluxes depends only on the respective rate constants. Thus, this flux ratio is invariant at

any, not necessarily steady, state of the system. The approach is also refined to predict

concentration ranges for unseen cellular scenarios provided concentration data from a refer-

ence experiment. Our method complements the constraint-based modeling framework,

focused on analysis of steady-state reaction rates, and thus enables a comprehensive charac-

terization of feasible concentrations in genome-scale metabolic networks under specified

conditions.

Results

Metabolites with structurally constrained concentrations (SCC)

Consider a metabolic network composed of m metabolites that participate in n reactions. The

(m × n) stoichiometric matrix, N, can be written as a difference of two non-negative matrices,

N = N+ − N−, where N+ includes the stoichiometry of the products and N− comprises the stoi-

chiometry of the substrates of each reaction. For instance, the stoichiometry of substrates and

products given in Fig 1b describes the metabolic network on Fig 1a. We assume that the rate of

reaction Ri is modeled according to mass action kinetic, whereby vi ¼ yi
Q

j x
N�ji
j , where θi> 0

is the reaction constant and the concentration of each substrate molecule appears in vi as a

multiplicative factor.

To state our main result, we require some concepts and terminology which we next intro-

duce and illustrate. We will say that a reaction Rk lacks one substrate molecule of Xi in compar-

ison to reaction Rl, if N �il � N �ik ¼ 1 and for every i0 6¼ i, N �i0 l � N �i0k ¼ 0. For the network in Fig

1a, reaction R7 lacks one substrate molecule of component B in comparison to reaction R2.

Under the assumption of mass action kinetic, if a reaction lacks one substrate molecule in

comparison to another, the reactions differ in their orders by one. As a result, the ratio of

fluxes for such reactions at any state of the system depends only on the rate constants and the

concentration of the substrate in which the reactions differ.

Furthermore, two reactions Rk and Rl are fully coupled if there exists λ> 0, such that vl =

λvk for any positive steady-state reaction rate v, i.e., Nv = 0 [21]. Therefore, fully coupled reac-

tions have an invariant ratio over all positive steady states that the network admits, and full

coupling is a transitive relation. For the network in Fig 1a, reaction R3 is fully coupled to R4

and R5 is fully coupled to R6. Such reactions, which are fully coupled irrespective of the kinetic
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law, can be efficiently determined based on the stoichiometry of large-scale networks by linear

programming [21, 22] (see Materials and methods).

Under the assumption of mass action kinetic, two reactions that share the same substrates

of same stoichiometry are also fully coupled [23]. In this case, the coupling holds for any, not

necessarily steady, state of the system. Therefore, the consideration of mass action kinetic

expands the set of fully coupled reactions. For instance, this is the case for reactions R3 and R5

that have the substrate components of same stoichiometry in Fig 1a, whereby
v3

v5
¼

y3

y5
.

Consider now a metabolite Xj with an ODE given by
dxj
dt ¼

P
k2Pj

Nþjk vk �
P

l2Sj
N �jl vl, where

Pj is the set of reactions with Xj as one of their products and Sj is the set of reactions which

have metabolite Xj as one of their substrates. A metabolite Xi, not necessarily different from Xj,

has structurally constrained concentration (SCC), if the following conditions hold: (i) for each

reaction Rl in Sj, there exists a non-empty subset Q� il of reactions lacking one substrate

Fig 1. Network with a component exhibiting structurally constrained concentration. (a) Reaction diagram that includes seven reactions, R1–R7, and

three components, A–C. (b) stoichiometric matrices associated with substrates, N−, and products, N+, for the network in (a). Reaction R7 lacks one substrate

molecule of B in comparison to R2, since N �
22
� N �

27
¼ 1 and N �i2 � N �i7 ¼ 0 for every i 6¼ 2. Reactions R3 and R5 share the same substrate components with same

stoichiometry, and hence their fluxes are fully coupled under the assumption of mass action kinetic. Reaction R3 is fully coupled to reaction R4, as are reactions R5

and R6. (c) Component B exhibits structurally constrained concentration from the ODEs of components A and C. The network exhibits different positive steady

states with changing rate of reaction R1.

https://doi.org/10.1371/journal.pcbi.1006687.g001
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molecule of Xi in comparison to Rl; the union of all Q� il yields the set of reactions S� ij ; (ii) all

reactions in S� ij are mutually fully coupled; and (iii) all reactions in Pj are mutually fully cou-

pled. A similar argument can be made with respect to condition (i) in terms of reactions in the

set Pj (Materials and methods). A metabolite Xi that satisfies the conditions above will be

referred to as a SCC metabolite.

In the following, we use the ODE for metabolite Xj to derive the concentration bounds for a

metabolite Xi with SCC. Let Q be a subset of S� ij that contains one and only one reaction from

each of Q� il . Under mass action, for the flux of every reaction Rl 2 Sj, it then holds that vl ¼

xi
yl
y� il
v� il (see Materials and methods), where y

� i
l is the reaction constant and v� il the flux of a

reaction R� il 2 Q. The expression for
dxj
dt above then becomes

P
k2Pj

Nþjk vk � xi
P

l2Sj
N �jl

yl
y� il
v� il .

At any positive steady state, it then holds that

dxj
dt ¼ vp

P
k2Pj

Nþjk
vk
vp
� xiv� is

P
l2Sj

N �jl
yl
y� il

v� il
v� is
¼ 0, for any flux vp of reaction Rp 2 Pj and flux v� is of

reaction R� is 2 Q. Due to the conditions (iii), above, the sum sp ¼
P

k2Pj
Nþjk

vk
vp

is a constant

which, in the simplest case, when all reactions in Pj are fully coupled irrespective of the kinetic

rate law, depends only on the network structure. In addition, due to condition (ii), above, the

value of s� is ¼
P

l2Sj
N �jl

yl
y� il

v� il
v� is

is also a constant which depends on both the network structure

and a subset of rate constants. The rate constants which appear in the expression for s� is and σp
for any Q � S� ij will be referred to as relevant rate constants, while the flux ratio

vp
v� is

will be

called relevant flux ratio.

Therefore, given a steady-state flux distribution, v, a set Q � S� ij , and two reactions Rp 2 Pj
and R� is 2 Q, we have that xi ¼

sp
s� is

vp
v� is

. This derivation establishes a direct relation between a

flux distribution, under specified inputs from the environment, and the concentration of a

SCC metabolite. We can also use the derived expression to obtain the concentration bounds

for xi over any set, F, of steady-state flux distributions and subset Q (per definition above),

yielding the following:

minfQ;Fg
sp

s� is

vp
v� is
� xi � maxfQ;Fg

sp

s� is

vp
v� is

: ð1Þ

For instance, component B in Fig 1a is SCC, derived from the ODE of component A,

whereby the relevant flux ratio is
v4

v7
and the relevant rate constants are θ3 and θ7 (Fig 1c). Simi-

larly, one can show that component B is SCC from the ODE of component C.

Let the lower and upper bounds for the concentration of metabolite Xi derived from the

ODE of metabolite Xj in Eq (1) be denoted by Lj
i ¼ minfQ;Fg

sp
s� is

vp
v� is

and Uj
i ¼ maxfQ;Fg

sp
s� is

vp
v� is

,

respectively. If there are r metabolites Xd, 1� d� r for which Eq (1) applies, then the lower

and upper bounds for the concentration of Xi are given by the intersection of the ranges

derived from the ODEs of Xd, i.e..

maxdL
d
i � xi � mindU

d
i : ð2Þ

Therefore, the lower bound is the minimum of the maxima, while the upper bound is the

maximum of the minima derived from the individual ODEs. In case that the SCC of a metabo-

lite can be derived from multiple ODEs, Eq (2) provides more constrained predictions about

metabolite concentration ranges than Eq (1) alone. For instance, component B in Fig 1a is

SCC not only from the ODE of component A but also from that of C, whereby the relevant

flux ratio is
v6

v7
and the relevant rate constants are θ5 and θ7 (Fig 1c). In case that the upper
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bound is smaller than the lower bound in Eq (2) then the system of ODEs does not have a posi-

tive solution for Xi, which implies that the network does not allow a positive steady state.

Therefore, the approach can also be used to check for existence of positive steady state with

respect to a SCC metabolite under mass action kinetics.

Validation of the approach with a large-scale kinetic model of E. coli
The proposed approach can be employed to determine metabolite concentration ranges by

using information about full coupling of reactions, fluxes entering relevant flux ratios, and the

relevant reaction rate constants. To validate the predictions, we employ a detailed kinetic

model of elementary metabolic reactions of E. coli [8] from which these inputs are readily

available. Of the 830 metabolites interconverted by 1,474 elementary reactions in the model,

our approach determines that 23 metabolites exhibit SCC. The ranges for these SCC metabo-

lites are fully determined by 67 relevant rate constants (4.6% of all rate constants) and fluxes of

67 reactions (4.6% of all reactions) which enter in the relevant flux ratios. We use the kinetic

model to simulate 100 steady states from different initial conditions (Supplementary S1 Table).

We determined the Euclidean distance between the predicted and simulated lower and

upper bounds to demonstrate their quantitative agreement. Since metabolite concentrations

vary over several orders of magnitude, the results based on Euclidean distance will be biased

by the presence of very large metabolic pools; therefore, we also considered two variants of rel-

ative Euclidean distance (see Materials and methods). Our results from the quantitative com-

parison demonstrate a very good agreement between the predicted and simulated bounds

(Supplementary S2 Table, Supplementary S1 Fig). We also employ the Pearson correlation to

assess if the predicted and simulated bounds agree qualitatively across the metabolites with

SCC. We determine that there is a perfect qualitative match between the predicted and simu-

lated lower (1, p-value < 10−6) and upper bounds (1, p-value< 10−6) of the SCC metabolites

(Supplementary S2 Table).

It has been recently proposed that the shadow prices of metabolites can be used to quantify

the ranges of metabolite concentrations, under the assumption that the cellular system opti-

mizes an objective [24]. To compare the performance of shadow prices as a measure of metab-

olite concentration ranges, we employ the stoichiometric matrix of the analyzed kinetic model

by using the maximization of metabolic exchange fluxes as cellular objective, shown to outper-

form yield as a predictor of growth rate [25]. We used the kinetic model, since it provides

full control in the comparison of simulated and predicted concentration ranges. We did

not use optimization of yield, most widely used in flux balance analysis, since the model has

been parameterized without consideration of a biomass reaction. We observe that for the ana-

lyzed model and the physiologically relevant objective, the calculated shadow prices for the 23

SCC metabolites cannot be used as indicators of concentration variability due to the weak neg-

ative correlation with the concentration ranges as well as with the coefficients of variation of

the SCC metabolites (Supplementary S2 Table). These findings point out that our approach, in

absence of a cellular objective but with knowledge about a few rate constants and selected flux

ratios, outperforms the existing contender for quantifying concentration ranges in large-scale

metabolic networks.

Effects of missing information about rate constants

While the full reaction couplings considered by our approach can be readily obtained given

the structure of the network and flux ratios are increasingly available from labeling approaches

[26], the resulting predictions can be affected by missing information about rate constants. To

assess the effect of missing information on the accuracy of predictions, we consider the cases

Cellular determinants of concentration ranges
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that 10–90% of rate constants used in the derivation of the ranges for the metabolites with SCC

are known (see Methods). We consider three scenarios whereby the missing ratios of rate con-

stants, appearing in Eq (1), are substituted by: (i) a value of one, simulating a scenario in which

all relevant rate constants are of the same value, (ii) the mean, or (iii) the median of the ratios

of relevant rate constants that are present (i.e., known) in the model equation from which the

conditions for SCC are established. We note that the units of the rate constants are not relevant

since rate constants enter Eq (1), above, as ratios.

We find that the substitutions for the missing ratios of rate constants according to the three

scenarios, as expected, decrease the Pearson correlation between predicted and simulated

ranges over 100 instances of models in which relevant rate constants were removed at random

(Fig 2). Nevertheless, even when only 30% of the relevant rate constants are known for the

cases (i) and (iii), we obtain a median Pearson correlation coefficient between the predicted

and simulated ranges of at least 0.6 (Fig 2). Substituting the missing ratio of rate constants with

the mean of the ratios shows the largest variability over the 100 instances of models with partial

knowledge of rate constants. The reason for this finding is that the distribution of rate con-

stants and their ratios are highly left-skewed (Supplementary S2 Fig). Therefore, we conclude

that even in the absence of information about rate constants that matches the current state-of-

the-art of knowledge about E. coli (Supplementary S3 Table), our approach provides qualita-

tively reliable estimates of concentration ranges in large-scale models. The ordering of lower

and upper bounds between metabolites can be predicted well (median significant Spearman

correlation above 0.75 at significance level of 0.05 for all scenarios). However, we observe that

the median over relative and log-transformed Euclidean distances between predicted and sim-

ulated lower as well as upper bounds over the 23 SCC metabolites are small (<0.71 and<0.08,

Fig 2. Effect of missing information about relevant rate constants on the accuracy of concentration range predictions for a large-scale kinetic model of E. coli. We

consider 10–90% of the relevant rate constants to be unknown by random removal. We consider three scenarios for the substitution of missing ratios of rate constants: (i)
equality (i.e., kinetic rate constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant rate constants that are still present in the model.

Shown are the boxplots (red lines inside each box denote the corresponding medians) of the resulting Pearson correlation coefficients between the predicted and

simulated ranges over the SCC metabolites in the kinetic model of E. coli.

https://doi.org/10.1371/journal.pcbi.1006687.g002
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respectively) when more than 50% of the relevant rate constants are known (Supplementary

S3–S6 Figs). Therefore, the approach can be used for the frequently employed comparison of

metabolite concentration ranges within and between conditions.

Effect of missing information about flux ratios

We also investigate the accuracy of the predictions of concentration ranges when full informa-

tion about relevant rate constants is available and relevant flux ratios are obtained from con-

straint-based modeling approaches. To obtain physiologically relevant predictions, we

constrain the model with the simulated exchange fluxes (Supplementary S1 Table), since they

can be readily obtained from experiments (e.g. by following substrate depletion). As the

employed kinetic model does not specify a biomass reaction, we optimize a weighted average

of ATP production and total flux, known to lead to predictions in line with flux estimates from

labeling experiments [2]. To this end, we determine the range for the relevant flux ratios at the

optimal value for the objective and used them together with Eq (2) to obtain concentration

ranges for the 23 SCC metabolites (Materials and methods). We find that for 13 out of 23 SCC

metabolites the predicted concentration range reside inside the respective simulated range.

For additional 6 metabolites the ranges overlap, while the remaining metabolites show no

overlap in the predicted and simulated range using the objective of optimized ATP production

and total flux (Fig 3). Since the approach provided accurate quantitative and qualitative predic-

tions with perfect information in the case of kinetic modeling, the discrepancy is due to the

objective used to constrain the physiologically reasonable fluxes.

Fig 3. Effect of missing information about relevant flux ratios on the accuracy of concentration range predictions for a large-scale kinetic model of E. coli. Relevant

flux ratios are obtained by constraint-based modeling in which the objective of weighted ATP production and total flux is maximized. Red bars denote simulated ranges

resulting from 100 different initial conditions of the large-scale kinetic model of E. coli. Black bars denote the predicted ranges following Eq (2). Concentration ranges are

predicted for 23 SCC metabolites in the employed metabolic model.

https://doi.org/10.1371/journal.pcbi.1006687.g003
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Concentration ranges in a genome-scale metabolic model of E. coli
Arguably the most interesting scenario for application of our approach is with genome-scale

metabolic networks. We find 199 SCC metabolites in the cytosol and 168 in the periplasm and

extracellular space of the most recent genome-scale metabolic network of E. coli [27] (Supple-

mentary S8 Table). However, for this model, we observe that there are data available for only

28% of relevant rate constants (Supplementary S3 Table), and we have no estimates of the rele-

vant flux ratios available from labeling experiments [28–30]. Therefore, the approach cannot

be used without extensions. Given a steady-state flux distribution, v, the concentration of a

SCC metabolite Xi is given by xi ¼
sp
s� is

vp
v� is

. If we have data on concentration of SCC metabolites

and flux predictions from the constraint-based modeling framework, we can readily obtain

estimates for the ratio
sp
s� is

. By definition, this ratio is invariant over the conditions where all

steady-state fluxes appearing in relevant flux ratios are non-zero. Therefore, we can use the

estimates for
sp
s� is

together with flux predictions to make predictions about concentration ranges

following Eq (2) for another scenario. We note that the prediction about concentration ranges

inherit the uncertainty in the estimation of
sp
s� is

as well as the flux ratios from flux balance analy-

sis, which may contribute to the size of the predicted ranges.

Metabolite concentration data set of Ishii et al. [28]. We use the measurements of

steady-state concentrations of 182 metabolites from E. coli under different growth scenarios

[28]. This data set includes 15 of the 199 cytosolic SCC metabolites found in the genome-scale

model. We also have access to rates of glucose and oxygen uptakes, carbon dioxide release as

well as growth from the same experiments [28], which we use as constraints to a genome-scale

metabolic network of E. coli. It has been shown that E. coli does not optimize a single objective

(e.g., growth), but its steady-state flux distributions result from the trade-off between tasks of

optimizing growth, ATP synthesis, and total flux [2]. Since growth rate is fixed from measure-

ments, we optimize the weighted average of ATP synthesis and total flux, with a weighting

factor of 0.1 on ATP synthesis to reduce the effect of the order difference in the respective opti-

mum observed when ATP production and total flux are optimized individually. Here, too, at

the obtained optimum we can efficiently estimate ranges for the relevant flux ratios (Materials

and methods). In addition, we compare obtained concentration ranges with those predicted

when maximization of ATP is used as the only objective. To obtain estimates for
sp
s� is
; we use

three replicates for the concentration data and predictions of ranges for relevant flux ratios at

growth rate of 0.2h−1 (Supplementary S4 Table). Eq (2) can then be applied to determine con-

centration ranges based on
sp
s� is

for a combination of replicates, to investigate the effect of outli-

ers. We predict in turn the concentration ranges for three other growth rates (i.e., 0.4, 0.5, and

0.7h−1).

For the objective of optimizing ATP synthesis and total flux, our results demonstrate that

measurements for 9, 10, and 6 of the 15 SCC metabolites fall in the predicted concentration

range for the three growth rates, respectively (Fig 4). Nevertheless, the Spearman correlation

between the measured values and the predicted lower and upper bounds is significant and

larger than 0.57 and 0.56, respectively (Supplementary S5 Table). Therefore, the approach can

be used to compare the ordering of lower or upper bounds between different experimental sce-

narios (Supplementary S7 Fig). In addition, this analysis highlights the effect of the replicates

of metabolite concentrations used in calculating the values of
sp
s� is

, since estimates for some of

the replicates may be outliers (Fig 4). In contrast, we find that 4, 5 and 2 of the 15 SCC metabo-

lites fall in the measured range for the three growth rates when maximization of ATP is used as

objective (Supplementary S9 Fig). Moreover, we cannot predict concentrations for 8 out of the
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Fig 4. Comparison of predicted ranges with measured metabolite concentrations under the objective of

optimizing ATP synthesis and sum of total flux. Comparison of the predicted concentration ranges for 15

intracellular metabolites in E. coli with absolute concentrations measured at growth rates (GR) of (a) 0.4, (b) 0.5 and

(c) 0.7h−1. For metabolites with grey background, there is no access to measurements. The colored bars denote the
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15 SCC metabolites due to numerical instabilities arising when using this objective under the

additionally imposed constraints on growth. The reasons for the discrepancy between the pre-

dicted and measured values under both objectives include the combination of at least three fac-

tors: the inability to distinguish the concentrations of free metabolites from those bound to

macromolecules experimentally [31], model (and objective) inaccuracies, and the simplifying

assumption of mass action kinetic. Nevertheless, the approach can be extended to consider

networks with kinetic laws derived from mass action which involve enzyme forms (e.g.,

Michaelis-Menten, see Discussion) at cost of increased data requirements for application.

Metabolite concentration data set of Gerosa et al. [32]. We use the measurements of

steady-state concentrations of 43 metabolites from E. coli grown in eight different carbon

sources [32]. This data set includes ten of the 199 cytosolic SCC metabolites found in the

genome-scale model. We also have access to rates of carbon uptake, some secretion rates, as

well as growth from the same experiments (see Supplementary S10 Table), which we use as

constraints to a genome-scale metabolic network of E. coli. Since growth rate is fixed from

measurements, as above, we optimize the weighted average of ATP synthesis and total flux,

with weighting factors 0.001 for ATP synthesis and 1000 for total flux to reduce the effect of

the order difference and make the comparison to optimization of ATP synthesis. Different

weighting factors are used in comparison to the analysis of the data set from Ishii et al., above,

since different constraints are used that affect the optimal values of the individual objectives.

Here, too, at the obtained optimum we can efficiently estimate ranges for the relevant flux

ratios (Materials and methods). To obtain estimates for
sp
s� is
; we use the metabolite concentra-

tions from growth on acetate (Supplementary S10 Table). We then predict the concentration

ranges for the ten SCC metabolites for the seven other carbon sources (Supplementary S10

and S11 Figs).

In Supplementary S10 and S11 Figs measured concentration ranges are denoted by red bars

and predicted concentration ranges are shown in black. In case of succinate as only carbon

source we obtain a model with no feasible solution, so no concentrations could be predicted

for that case without further model adaptations. In the remaining growth conditions, depend-

ing on the objective and growth condition analyzed, three to five predictions of concentrations

resulted in minimum values larger than the respective maximum (missing black bars). This

observation is a result of numerical instabilities occurring if flux values vp and v� is in Eq (1) dif-

fer by several orders of magnitude. The Spearman correlation between the average measured

and predicted concentrations (Fig 5) when optimizing ATP synthesis is 0.63 (p-value 3�10−4),

while it is only 0.33 (p-value 0.03) when ATP synthesis and total flux are optimized. In addi-

tion, the Spearman correlation between the measured and predicted upper and lower bounds

when maximization of ATP is used results in higher correlation values (upper bounds 0.61 (p-

value 4.3�10−4), lower bounds 0.85 (p-value 5.9�10−9)) than those when optimization of ATP

synthesis and total flux are employed (upper bounds 0.21 (p-value 0.17), lower bounds 0.54 (p-

value 1.6�10−4)). These findings imply that the usage of different objectives to estimate flux

ratios and through them concentrations of metabolites can also be used to discern importance

of optimized objectives in a particular experiment.

predicted ranges from each of the three different replicates, while the black bar represents the prediction over all

replicates. The red cross denotes the measured value at the respective GR. For some metabolites there is no overlap

between the colored bars, indicating poor reproducibility over the replicates in the reference scenario. The

nomenclature of the metabolites is provided in Supplementary S5 Table.

https://doi.org/10.1371/journal.pcbi.1006687.g004
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Changes in metabolite concentrations in knock-out mutants

The fully parameterized kinetic model of E. coli can be used to test the applicability of the

approach to predict changes in metabolite concentrations in metabolic engineering scenarios.

Here, we test the performance of the approach with knock-out mutants based on the following

procedure: We make use of the model parameterization to simulate a steady-state concentra-

tion and flux distribution from initial physiologically reasonable values for metabolite concen-

trations. The resulting steady-state concentrations and fluxes yield a wild type reference. We

then knock-out each reaction and predict positive steady state flux distribution closest to the

wild type reference, following the Minimization of Metabolic Adjustment (MOMA) approach

[33]. The resulting flux distribution is used to calculate the concentrations of the 23 SCC

metabolites following our approach (Eq (1)). In the last step, the predicted changes in concen-

tration of the SCC metabolites with respect to the reference are compared to the changes from

kinetic simulations of the knock-out with the wild-type reference specifying the initial condi-

tions. We observe similar ranges for the predicted and simulated fold-changes in SCC concen-

tration over all 23 SCC metabolites and knock-outs of 929 reactions for which we were able to

simulate a steady-state knock-out flux distribution (Fig 6, fold changes for individual SCC

metabolites are shown in Supplementary S12 Fig). We grouped the fold-changes into 12 bins,

given in the x-axis of Fig 6. For ten SCC metabolites, the predicted fold change of at least 29%

of the knock-outs is in the same bin as the simulated fold change. The highest overlaps are

observed for AMP (39%), phosphoenolpyruvate (38%) and isocitrate (37%). In contrast, the

fold changes in concentration for metabolites like succinyl-CoA, acetyl-CoA, oxaloacetate,

malate and pyruvate are in the same class as simulated for at most 1% of the knock-outs. The

lack of correspondence between simulated and predicted concentrations for some SCC

Fig 5. Average measured and predicted concentration of SCC metabolites under different carbon sources. Each data point represents a SCC metabolite (different

colors, see legend) under one carbon source (● fructose,■ galactose, ♦ glucose, � glycerol, × gluconate,▲ pyruvate). The plotted predicted concentration value is the

(max(c) − min(c)) / 2, where max(c) is the maximum predicted and min(c) the minimum predicted concentration. Note that due to numerical instabilities a

concentration could not be calculated for all (SCC metabolite, carbon source) combinations, see also Supplementary S10 and S11 Figs; (a) concentration prediction

using optimization of ATP synthesis and total flux (Spearman correlation 0.33) (b) concentration prediction using optimization of ATP synthesis (Spearman

correlation 0.63).

https://doi.org/10.1371/journal.pcbi.1006687.g005
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metabolites (Supplementary S12 Fig) indicates that principles others than those used in

MOMA shape the metabolic adjustment of knock-out mutants. In contrast to our findings,

application of TMFA (briefly reviewed in the introduction) resulted in unconstrained

ranges for concentrations (see Materials and methods); therefore, no correlation between

upper / lower simulated and predicted bounds could be observed.

Metabolites with SCC across species

We next apply Eq (1) to 14 large-scale metabolic networks which differ in complexity due to

the number of considered metabolites and reactions as well as their organization in subcellular

compartments (Supplementary S6 Table). The investigated metabolic networks are mass- and

charge-balanced and support positive steady-state reaction rates (see Methods). Since reliable

Fig 6. Fold change in concentration of SCC metabolites upon reaction knock-out. The distribution of predicted and simulated fold

change in concentration of 23 SCC metabolites over 929 single knock-out mutants for which a steady-state flux distribution could be

simulated.

https://doi.org/10.1371/journal.pcbi.1006687.g006
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kinetic information and measurements of absolute concentration measurements are currently

missing across diverse species, we report only the number of the metabolites with SCC across

the analyzed large-scale networks.

We find that the percentage of metabolites with SCC ranges from 7.74% and 8.02% in the

models of N. pharaonis and C. reinhardtii to 33.66% and 36.53% in the models of A. thaliana
and Y. pestis (Fig 7a). Interestingly, the number of metabolites with SCC scales linearly with

the total number of metabolites (Fig 7b, R2 = 0.82) and the number of reactions in the exam-

ined networks (Fig 7c, R2 = 0.76). This finding indicates that the proposed approach is not lim-

ited to networks of a particular size.

Different reasons can be used to explain the observation that larger networks contain

more metabolites with SCC. For instance, larger networks may include more linear

Fig 7. Metabolites with structurally constrained concentration across species. (a) The fraction of metabolites with structurally constrained

concentrations in 14 large-scale metabolic networks from all kingdoms of life. The number of these metabolites scales linearly with (b) the total

number of metabolites (R2 = 0.82) and (c) the total number of reactions (R2 = 0.76).

https://doi.org/10.1371/journal.pcbi.1006687.g007
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pathways, whereby the number of reactions which are fully coupled due to structure is

expected to increase. Yet, in denser networks, which include more reactions on the same set

of metabolites, it is more likely to identify reactions which share substrates of same stoichi-

ometry, which then leads to full coupling due to mass action kinetics, as considered in our

approach. To investigate the reasons for the scaling of the number of metabolites with SCC,

we determine the number of: (i) metabolites which are synthesized and used by one reaction,

respectively (in support of the linear pathway explanation), (ii) fully coupled reactions only

due to structure, (iii) coupled reactions due to mass action (in support of the network density

explanation), (iv) the combination of (ii) and (iii), to assess the couplings due to both struc-

ture and kinetics (Supplementary S7 Table). We calculate the Pearson correlation coefficient

between each of these properties and the number of reactions over the analyzed networks, as

a measure of network size (Supplementary S7 Table). Larger networks indeed contain a big-

ger number of metabolites synthetized and used by a single reaction, respectively, and more

reactions which are fully coupled due to both structure and kinetics. Therefore, both the lin-

ear pathway and the network density explanations contribute to the observed scaling in the

analyzed networks.

Due to the derivation of Eq (1), it may be expected that the approach is not applicable to

metabolites which participate in a large number of reactions, since they may be less likely to be

fully coupled. Nevertheless, our findings show that between 28.89% and 62.95% of the SCC

metabolites in the analyzed networks are involved in more than two reactions (see Supplemen-

tary S6 Table). One reason is that a SCC metabolite may also be determined by applying Eq (1)

to the ODE of another metabolite (see Eq (2) and Fig 1c).

Since changes in relevant fluxes directly affect the concentration of a SCC metabolite, they

can be used to tightly control the concentration range. For essential metabolic processes to be

carried out efficiently, metabolites that serve as coenzymes and energy currency of biological

systems, namely, the oxidized and reduced version of NAD and NADP as well as the adenosine

phosphates (i.e. AMP, ADP, ATP), are maintained within certain concentration ranges that

can be readily controlled, as is the case for SCC metabolites. Despite the many biochemical

reactions in which these ubiquitous metabolites participate (Supplementary S8 Table), all of

which must satisfy our conditions in order to invoke Eq (1), we find that the (sub)cellular con-

centrations of ATP and NAD are indeed structurally constrained in twelve and ten of the ana-

lyzed networks, respectively. This implies that the network structure, alongside the relevant

rate constants and relevant flux ratio, imposes boundaries on and facilitates simple control

over their concentrations. In addition, we find that NADP shows SCC in four of the investi-

gated networks, including A. thaliana and C. reinhardtii (Table 1 and Supplementary S8

Table). In these photosynthetic organisms, NADPH is produced by ferredoxin-NADP+ reduc-

tase in the last step of the electron transport chain which constitutes the light reactions of

photosynthesis [34]. The produced NADPH provides reducing power for the biosynthetic

reactions in the Calvin cycle to fix carbon dioxide as well as in the reduction of nitrate into

ammonia for plant assimilation in the nitrogen cycle. Therefore, precise and simple control of

NADPH will provide uninterrupted functionality of these key metabolic pathways and mainte-

nance of carbon and nitrogen balance [35]. In addition, for ten models, we find that H+ is

SCC, ensuring maintenance of the specific functions of individual organelles [36]. Altogether,

our findings indicate that the concentration ranges for coenzymes and other components

essential for fueling metabolism can be established by controlling few ratios of fluxes, despite

their involvement in hundreds of reactions. Moreover, they imply that the network architec-

ture may be organized such that the concentrations of these metabolites are intrinsically con-

strained and easy to control.
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Discussion

Genome-scale metabolic networks have propelled the understanding of the metabolic capabili-

ties for a wide variety of organisms across all kingdoms of life. The existing large-scale model-

ling approaches examine the space of feasible fluxes, but cannot be used to infer the metabolite

concentrations driving these fluxes without extensively relying on largely unknown kinetic

parameters. Hence, the direct usage of large-scale metabolic networks to make predictions

about concentrations that are directly testable from high-throughput metabolomics data is not

possible with the existing modelling approaches.

Here we derive a condition that pinpoints that the structure of a metabolic network, ratios

of relevant rate constants, and ratios of relevant reaction fluxes constitute the determinant of

concentration ranges for selected metabolites. This link is based on the well-known concept of

full coupling of reactions [21, 23] which we expand under the assumption of mass action kinet-

ics to include reactions that share substrates of same stoichiometry. These concepts allow us to

efficiently determine the admissible concentration ranges in large-scale metabolic networks

endowed with mass action kinetics across all kingdoms of life. The derivation of Eq (1) can be

generalized by considering reactions which differ in order larger than one with respect to a sin-

gle metabolite. For a given flux distribution this approach results in a polynomial equation in a

single variable which can be efficiently solved with the Newton’s method.

Our approach is also applicable to networks with kinetic laws derived from mass action

which involve enzyme forms (e.g., Michaelis-Menten). This can be achieved by augmenting

the network to include reactions which model substrate-enzyme complex formation as well as

the synthesis and degradation of enzymes. However, these extensions come at a cost of sub-

stantially larger data sets which are not yet readily available. In addition, our analyses demon-

strate that the casting of a kinetic rate law in terms of mass action mechanisms may affect the

findings regarding the SCC metabolites. For instance, we find that there are many more SCC

metabolites in comparison to other SCC components (i.e., enzymes and enzyme-substrate

complexes) in each of the analyzed models (Supplementary S9 Table). With exception of the

network of C. reinhardtii, the usage of enzymatic forms explicitly in mass action mechanisms

Table 1. Structurally constrained concentrations for metabolites serving as energy currency. (h = chloroplast, c = cytosol, m = mitochondria, n = nucleus,

p = periplasm, e = extracellular space). The table summarizes the networks in which Eq (1) holds for NADH, NAD, NADP, NADPH, ATP, and H+. The table includes the

respective compartments in which Eq (1) can be applied for the investigated metabolites.

Network NADH NAD NADP NADPH ATP H+

A. niger c c c c

A. thaliana h h,c,m

C. reinhardtii h h h,c

E. coli K12 c c c,p

H. sapiens c c c c,n c

M. acetivorans c c c

M. barkeri c c c

M. pneumoniae
N. pharaonic c c

P. putida c c,e

T. maritima c c c c,e

S. aureus c c,e

Synechocystis sp. c c c,p

Y. pestis c c c

Number of networks where Eq (1) can be applied 1 10 4 2 12 10

https://doi.org/10.1371/journal.pcbi.1006687.t001
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leads to a decrease in the number of metabolites with SCC (Supplementary S9 Table), due to

the decrease in the number of reaction pairs which differ in their order by one. Applications of

the approach to other forms of kinetics will be subject in future investigations and extensions.

Our approach provides a links between metabolite concentrations, relevant rate constants,

and relevant flux ratios; therefore, information on two of these can be used to predict the third.

Our analyses demonstrate that there is a good quantitative agreement between predicted and

simulated concentration ranges based on full knowledge of rate constants from a kinetic

model of E. coli. Rate constants of elementary reactions are expected to become increasingly

available for model organisms, largely due to the development of computational methods cou-

pled with high-throughput data [8, 9]. In addition, by examining the scenario where flux ratios

are estimated from the constraint-based modeling framework, we observe that the approach

can be used to select which objective function (or a combination thereof) is optimized by a bio-

logical system for which metabolite concentration measurements are available.

Most importantly, we show that even in the absence of data on relevant rate constants and

relevant flux ratios, we can apply the approach to successfully predict concentration ranges in

E. coli under different growth conditions, provided measurements of concentrations for SCC

metabolites in one reference condition. Therefore, the proposed approach represents an

important step in complementing genome-scale metabolic networks with metabolite concen-

trations, widening the applicability of large-scale models to a range of biotechnological and

medical applications.

Materials and methods

Components with structurally constrained concentrations

A metabolic network can be represented by the stoichiometric matrix, N = N+ − N−, where N+

includes the stoichiometry of the products and N− comprises the stoichiometry of the sub-

strates of each reaction. In the following, we derive the conditions for structurally constrained

robustness of component Xi based on the ordinary differential equation (ODE) for the compo-

nent Xj (not necessarily different from Xi) under the assumption that the reaction rates, v(t),

satisfy mass action kinetics, whereby viðtÞ ¼ yi
Q

j x
N�ji
j ðtÞ. Let the ODE be specified by

dxjðtÞ
dt ¼

P
k2Pj

Nþjk vkðtÞ �
P

l2Sj
N �jl vlðtÞ, where Pj is the set of reactions with Xj as one of their

products and Sj is the set of reactions which have metabolite Xj as one of their substrates.

We consider the following two cases: (i) the concentration of Xi appears in every vk(t)
for which Nþjk 6¼ 0 and for every vk(t) there exist a set P� ij of reactions R� ik 2 P� ij such that

vk tð Þ ¼ xi tð Þ
yk
y� ik
v� ik tð Þ and (ii) the concentration of Xi appears in every vl(t) for which N �jl 6¼ 0

and for every vl(t) there exist a set of reactions R� il 2 S� ij such that vl tð Þ ¼ xi tð Þ
yl
y� il
v� il tð Þ.

Case I

The rates of a reaction Rk and a reaction from the set R� ik are given by

vkðtÞ ¼ yk
Y

j
x
N�jk
j ðtÞ ¼ yk

Y

j6¼i
x
N�jk
j ðtÞ x

N�ik
i ðtÞ ¼ ykxiðtÞ

Y

j6¼i
x
N�jk
j ðtÞ x

N�ik � 1

i ðtÞ

and

v� ik ðtÞ ¼ y
� i
k

Y

j
x
N�
j� i
k

j ðtÞ ¼ y
� i
k

Y

j6¼i
x
N�
j� i
k

j ðtÞ x
N�
j� i
k

i ðtÞ:
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From rewriting the equation of v� ik ðtÞ above we have that
Q

j6¼i x
N�
j� i
k

j tð Þ ¼ v� ik ðtÞ

y� ik x

N�
j� i
k

i ðtÞ

. Since

N �jk � N �j� ik
¼ 0 for every j 6¼ i and N �ik � N �j� ik

¼ 1 we can rewrite the equation of vk(t) such that

vk tð Þ ¼
yk

y
� i
k

xi tð Þv
� i
k tð Þx

N�ik � N
�

j� i
k
� 1

i tð Þ ¼
yk

y
� i
k

xi tð Þv
� i
k tð Þ:

The ODE for component Xj revealing structurally constrained concentration of component

Xi is then given by:

dxjðtÞ
dt
¼
X

k2Pj
Nþjk vkðtÞ �

X

l2Sj
N �jl vlðtÞ ¼ xi tð Þ

X

k2Pj
Nþjk

yk

y
� i
k

v� ik tð Þ �
X

l2Sj
N �jl vl tð Þ:

Let p and s bet two reaction indices such that Nþjp 6¼ 0 and N �js 6¼ 0. In any positive state v(t),
we have that

dxjðtÞ
dt
¼ v� ip tð Þxi tð Þ

X

k2Pj
Nþjk

yk

y
� i
k

v� ik ðtÞ
v� ip ðtÞ

� vs tð Þ
X

l2Sj
N �jl

vlðtÞ
vsðtÞ

:

In a steady state then

v� ip xi
X

k2Pj
Nþjk

yk

y
� i
k

v� ik
v� ip
� vs

X

l2Sj
N �jl

vl
vs
¼ 0:

If for every Nþjp 6¼ 0;
v� ik
v� ip

is constant because either reactions R� ik and R� ip are fully coupled or

share the same substrates, then
P

k2Pj
Nþjk

yk
y� ik

v� ik
v� ip
¼ s� ip is a constant that only depends on a subset

of rate constants and the network structure. Moreover, if for every N �jl 6¼ 0;
vl
vs

is constant

because either reactions Rl and Rs are fully coupled or share the same substrates, then
P

l2Sj
N �jl

vl
vs
¼ ss is a constant, too, which in the simplest case when all reactions in Sj are fully

coupled irrespective of the kinetic rate law, only depends on the network structure. Therefore,

v� ip xis
� i
p � vsss ¼ 0;

and xi ¼
ss
s� ip

vs
v� ip

.

For each reaction Rk in Sj, there exists a non-empty subset Q� ik of reactions lacking one sub-

strate molecule of Xi in comparison to Rk; the union of all Q� ik yields the set of reactions S� ij . Let

Q be a subset of P� ij that contains one and only one reaction from each of Q� ik . Since the reac-

tion indices p and s are arbitrarily chosen, the concentration range of metabolite Xi for a given

subset Q over a given set of flux distributions, F, is given as

minfQ;Fg
vs
v� ip

ss
s� ip
� xi � maxfQ;Fg

vs
v� ip

ss
s� ip

:

Case II

The rates of a reaction Rl and a reaction from the set R� il are given by

vlðtÞ ¼ yl
Y

j
x
N�jl
j ðtÞ ¼ yl

Y

j6¼i
x
N�jl
j ðtÞ x

N�il
i ðtÞ ¼ ylxiðtÞ

Y

j6¼i
x
N�jl
j ðtÞ x

N�il � 1

i ðtÞ
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and

v� il ðtÞ ¼ y
� i
l

Y

j
x
N�
j� i
l

j ðtÞ ¼ y
� i
l

Y

j6¼i
x
N�
j� i
l

j ðtÞ x
N�
j� i
l

i ðtÞ:

From rewriting the equation of v� il ðtÞ above we have that
Q

j6¼i x
N�
j� i
l

j tð Þ ¼ v� il ðtÞ

y� il x

N�
j� i
l

i ðtÞ

. Since

N �jl � N �j� il
¼ 0 for every j 6¼ i and N �il � N �j� il

¼ 1 we can rewrite the equation of vl(t) such that

vl tð Þ ¼
yl

y
� i
l

xi tð Þv
� i
l tð Þx

N�il � N
�

j� i
l
� 1

i tð Þ ¼
yl

y
� i
l

xi tð Þv
� i
l tð Þ:

The ODE for component Xj revealing structurally constrained concentration of component

Xi is then given by:

dxjðtÞ
dt
¼
X

k2Pj
Nþjk vkðtÞ �

X

l2Sj
N �jl vlðtÞ ¼

X

k2Pj
Nþjk vk tð Þ � xi tð Þ

X

l2Sj
N �jl

yl

y
� i
l

v� il tð Þ:

Let p and s bet two reaction indices such that Nþjp 6¼ 0 and N �js 6¼ 0. In any positive state v(t),
we have that

dxjðtÞ
dt
¼ vp tð Þ

X

k2Pj
Nþjk

vkðtÞ
vpðtÞ

� v� is tð Þxi tð Þ
X

l2Sj
N �jl

yl

y
� i
l

v� il ðtÞ
v� is ðtÞ

:

In a steady state then

vp
X

k2Pj
Nþjk

vk
vp
� v� is xi

X

l2Sj
N �jl

yl

y
� i
l

v� il
v� is
¼ 0:

If for every Nþjp 6¼ 0;
vk
vp

is constant because either reactions Rk and Rp are fully coupled or

share the same substrates, then
P

k2Pj
Nþjk

vk
vp
¼ sp is a constant that, in the simplest case when all

reactions in Pj are fully coupled irrespective of the kinetic rate law, depends only on the net-

work structure. Moreover, if for every N �jl 6¼ 0;
v� il
v� is

is constant because either reactions R� il and

R� is are fully coupled or share the same substrates, then
P

l2Sj
N �jl

yl
y� il

v� il
v� is
¼ s� is . The constant s� is

then only depends on a subset of rate constants and the network structure. Therefore,

vpsp � v� is xis
� i
s ¼ 0;

and xi ¼
sp
s� is

vp
v� is

.

For each reaction Rl in Pj, there exists a non-empty subset Q� il of reactions lacking one sub-

strate molecule of Xi in comparison to Rl; the union of all Q� il yields the set of reactions P� ij . Let

Q be a subset of P� ij that contains one and only one reaction from each of Q� il . Since the reac-

tion indices p and s are arbitrarily chosen, the concentration range of metabolite Xi for a given

subset Q over a given set of flux distributions, F, is given as

minfQ;Fg
sp

s� is

vp
v� is
� xi � maxfQ;Fg

sp

s� is

vp
v� is

:

As a result, the ranges for steady-state concentration xi can be expressed as a function of a

set of given flux distributions, ratios of specific fluxes and constants that depend only on the

structure of the network and values for a subset of rate constants. Since fluxes are the
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integrated outcome of transcription, translation, and post-translational modifications and

their interplay with the environment and nutrient availability, our derivation provides a direct

relation between concentration ranges, flux ratios, and rate constants.

Flux coupling

Let CðNÞ ¼ fv 2 Rn
jNv ¼ 0; v � 0g be the steady-state flux cone for a given stoichiometric

matrix N with n reactions, under the assumption that every reaction is irreversible.

Here, we restrict our analysis to the subspace F� C(N) by bounding the fluxes:

F ¼ fv 2 Rn
jNv ¼ 0; 0 � lb � v � ubg, where lb and ub are lower and upper flux bounds.

We will refer to v 2 F as the feasible flux distributions. A reaction Ri is called blocked if for

every v 2 F, vi = 0. A pair of reactions Ri and Rj is called fully coupled, if there exists λ> 0,

such that for every v 2 F, vi = λvj.
The minimum and maximum value for the ratio

vi
vj

over the flux distributions in F can be

determined by the linear-fractional programming:

opt
vi
vj

Nv ¼ 0

lb � v � ub;

which can be rewritten following the Charnes-Cooper transformation [37] to the following lin-

ear program:

opt vi

Nv ¼ 0

vj ¼ 1

t � lb � v � t � ub

t � 0:

If the minimum and maximum values for the linear program are the same, then the reac-

tions Ri and Rj are fully coupled. Such reactions can be efficiently computed for large-scale net-

works [4, 21].

In addition, under the mass action kinetics, two reactions are fully coupled in any state of

the system if they share the same substrates with the same stoichiometry. This leads to addi-

tional full couplings due to the transitivity of the relations, as demonstrated in the main text.

Metabolites with structurally constrained concentrations in mass action

networks

In the following, we present an algorithm determining SCC metabolites under the assumption

of mass action kinetics:
Input: metabolic network, list of fully coupled reactions
Output: metabolites with structurally constrained concentration
for each metabolite xi in the network do:
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Si  set of reactions having xi as substrate
MP
i set of all products of the reactions in Si

for each metabolite xj 2 M
P
i do:

Sj  set of reactions having xj as substrate
Pj  set of reactions having xj as product
P� ij  set of reactions lacking one substrate molecule of xi in com-

parison to a reaction Rp 2 Pj
if for each reaction in Pj there is a reaction in P� ij and all reac-

tions in P� ij are fully coupled and all reactions in Sj are fully
coupled:

xi has SCC
end if

end for
MS
i  set of all substrates of the reactions in Si

for each metabolite xj 2 M
S
i do:

Sj  set of reactions having xj as substrate
S� ij  set of reactions lacking one substrate molecule of xi in com-

parison to a reaction Rs 2 Sj
Pj  set of reactions having xj as product
if for each reaction in Sj there is a reaction in S� ij and all reac-

tions in S� ij are fully coupled and all reactions in Pj are fully
coupled:

xi has SCC
end if

end for
end for

Correlation analysis

Using a large-scale kinetic model of E. coli we simulate 100 steady-state flux distribution and

steady-state concentrations from different initial concentrations. Initial concentrations were

obtained by perturbation of the original initial concentration of a metabolite by 1, 5, 10 or

20%. We run the model until a steady-state was reached. Using the simulated steady-state flux

distributions we can predict concentration ranges for 23 metabolites using Eq (2) (Supplemen-

tary S1 Table). The Pearson correlation was then calculated for (i) simulated and predicted

upper bounds, (ii) simulated and predicted lower bounds, and (iii) the absolute range over

simulated and predicted concentrations. In addition, we also determined the correlation

between shadow price for the respective metabolites and the simulated range, as well as, to the

coefficient of variation obtained over simulated concentrations (Supplementary S2 Table).

Moreover, we calculated the Euclidean distance between upper and lower bound from predic-

tion and simulation, respectively. Due to the high difference in the order of magnitude over

the analyzed metabolites we also calculated Euclidean distance after normalizing the data. We

considered the Euclidean distance of log-transformed concentration vectors, and the Euclid-

ean distance between the concentration vectors normalized by the respective maximum value.

Effect of missing information on rate constants

To assess the effect of missing information about rate constants on the accuracy of the pre-

dicted concentration range, we simulated missing knowledge about parameters by removing

10, 30, 50, 70 or 90% of the relevant rate constants uniformly at random. We consider only

removing information about relevant rate constants to avoid bias due to removal of informa-

tion in parts of the network that have no effect on the predictions of the concentration ranges.

We compare the Pearson and Spearman correlation coefficient between predicted and

Cellular determinants of concentration ranges

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006687 January 24, 2019 21 / 30

https://doi.org/10.1371/journal.pcbi.1006687


simulated concentration ranges as well as the two versions of Euclidean distance for each per-

centage obtained over 100 random removals of rate constants.

Effect of missing information on flux ratios

To assess the effect of missing information about flux ratios on the accuracy of the predicted

concentration range, we obtained relevant flux ratios from constraint-based modeling. There-

fore, we solve the following linear program optimizing a weighted average of ATP production

and total flux:

max z� ¼ vatp � 0:01
Xn� 1

i

vi

Nv ¼ 0

vsim min � vexchange � vsim max

vmin � v � vmax

vmin � � ¼ 10� 7

In addition, the flux through exchange reactions is constrained by the respective minimum,

vsim_min, and maximum value, vsim_max, obtained over 100 simulations (Supplementary S1

Table) to obtain a physiologically reasonable flux distribution. The weighting factor of 0.01

was chosen to reduce the effect of three orders of magnitude difference in the respective opti-

mum observed when ATP production and total flux are optimized individually.

Next, we determine the range for the relevant flux ratios
vp
v� is

at the optimum z� using a trans-

formed linear-fractional program:

opt vp

Nv ¼ 0

vatp � 0:01
Xn� 1

i

vi ¼ z�

v� is ¼ 1

t � vsim min � vexchange � t � vsim max

t � vmin � v � t � vmax

t � �

vmin � � ¼ 10� 7:

We then used the obtained ranges for
vp
v� is

together with Eq (2) to calculate concentration

ranges for SCC metabolite Xi.
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Extension of the approach based on available concentration measurements

Using the most recent genome-scale metabolic network of E. coli [27] together with measure-

ments of steady-state concentrations from E. coli under different growth scenarios [28] we pre-

dict concentration ranges for 15 SCC metabolites using the following procedure. We first use

the concentration measurements from three replicates at a growth rate of 0.2h−1 (reference

state) together with flux ratios obtained from constraint-based modelling to estimate the ratio
sp
s� is

given that xi ¼
sp
s� is

vp
v� is

.

For each replicate we solve the following linear programs in order to obtain ranges for the

relevant flux ratios
vp
v� is

.

max z� ¼ 0:1vatp �
Xn� 1

i
vi

Nv ¼ 0

vbio ¼ 0:2

vO2 uptake ¼ b1;j; 1 � j � 3

vGlc uptake ¼ b2;j

vCO2 release ¼ b3;j

vmin � v � vmax

vmin � � ¼ 10� 7:

The linear program above constrains rates of glucose and oxygen uptakes, carbon dioxide

release as well as growth by values βi,j (which differ between replicates j, 1� j� 3) available

from measurements [28]. We optimize the weighted average of ATP synthesis and total flux.

The weighting factor of 0.1 and 0.001 for ATP synthesis, for the data set of Ishii et al. [28] and

Gerosa et al. [32], respectively, is chosen to reduce the effect of the order difference in the

respective optimum observed when ATP production and total flux are optimized individually.

In addition, we use weighting factors of 1 and 1000 for optimization of total flux in the case of

Ishii et al. [28] and Gerosa et al. [32], respectively. To obtain ranges for the relevant flux ratios
vp
v� is

, which are employed to calculate ranges for ratios
sp
s� is

, we solve the following linear program

at the optimum z�:

opt vp

Nv ¼ 0

vbio ¼ 0:2

vO2 uptake ¼ b1

vGlc uptake ¼ b2
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vCO2 release ¼ b3

0:1vatp �
Xn� 1

i

vi ¼ z�

v� is ¼ 1

t � vmin � v � t � vmax

vmin � � ¼ 10� 7

t � 0:

From Eq (2) we predict concentration values for E. coli cells with growth rates of 0.4, 0.5,

and 0.7h−1 using the previously obtained estimates for ranges of
sp
s� is

together with ranges of
vp
v� is
:

The latter can be obtained following the same procedure as described above using rates of glu-

cose and oxygen uptakes, carbon dioxide release as well as growth for E. coli cells grown at

rates of 0.4, 0.5, and 0.7h−1.

Fold changes in SCC metabolite concentrations in knock-out mutants

We use a large-scale kinetic model of E. coli [8] to simulate a steady-state concentration and

flux distribution from initial physiologically reasonable values for metabolite concentrations

provided in the original publication. The simulated steady-state concentrations and fluxes

yield a wild type reference. Next, we simulate single reaction knock-outs and predict positive

steady state flux distribution closest to the wild type reference, following the Minimization of

Metabolic Adjustment (MOMA) approach [33] for each mutant. The resulting flux distribu-

tion is used to calculate the concentrations of the 23 SCC metabolites following Eq (1). In

addition, we simulate steady-state flux distributions and concentrations for knock-out

mutants from the kinetic model using the wild type reference as initial concentrations. For

929 out of 1474 reaction knock-outs we could simulate steady-state values. Based on these

knock-out mutants we then compare fold changes in concentration of the SCC metabolites

with respect to the reference obtained from kinetic model simulations and predictions using

MOMA.

Concentration ranges from thermodynamics-based metabolic flux analysis

(TMFA)

We use the genome-scale kinetic model of E. coli [27] and the implementations of TMFA avail-

able from https://github.com/EPFL-LCSB/matTFA [38]. Concentration range for the 199 cyto-

solic SCC metabolites in the analysed E. coli model are obtain by thermodynamics-based

variability analysis for solutions ensuring biomass to be at least 95% of the optimum obtained

without thermodynamic constrains. In addition, minimum and maximum bounds on meta-

bolic activities of 10−10 and 1, as well as minimum and maximum bounds of 0 and 1000 on

reaction net flux are used. Thermodynamic information are taken from the database provided

within the TMFA implementation.
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Supporting information

S1 Fig. Agreement between simulated and predicted bounds from a kinetic metabolic

model of E. coli. The simulated and predicted (a) lower and (b) upper concentration bounds

for 23 SCC metabolites in the large-scale kinetic model of E. coli. The very small discrepancies

are due to numerical instabilities.

(EPS)

S2 Fig. Distribution of rate constants used in calculation of concentration ranges for SCC

metabolites in a genome-scale metabolic model of E. coli. Distribution of (a) the relevant

rate constants and (b) their ratios for reactions coupled due to mass action kinetics; log-log

distribution of (c) the relevant rate constants and (d) their ratios for reactions coupled due to

mass action kinetics.

(EPS)

S3 Fig. Effect of missing information about relevant rate constants on the accuracy of

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10–

90% of the relevant rate constants to be unknown by random removal. We consider three sce-

narios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate con-

stants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant

rate constants that are still present in the model. Shown are the boxplots (red lines inside each

box denote the corresponding medians) of the resulting Spearman correlation coefficients

between the predicted and simulated (a) lower bound vectors and (b) upper bound vectors of

concentrations over the SCC metabolites in the kinetic model of E. coli.
(EPS)

S4 Fig. Effect of missing information about relevant rate constants on the accuracy of con-

centration range predictions for a large-scale kinetic model of E. coli. We consider 10–90%

of the relevant rate constants to be unknown by random removal. We consider three scenarios

for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate constants

are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant rate con-

stants that are still present in the model. Shown are the boxplots (red lines inside each

box denote the corresponding medians) of the average Euclidean distance between the pre-

dicted and simulated (a) lower bound vectors and (b) upper bound vectors of concentrations

over the SCC metabolites in the kinetic model of E. coli.
(EPS)

S5 Fig. Effect of missing information about relevant rate constants on the accuracy of con-

centration range predictions for a large-scale kinetic model of E. coli. We consider 10–90%

of the relevant rate constants to be unknown by random removal. We consider three scenarios

for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate constants

are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant rate

constants that are still present in the model. Shown are the boxplots (red lines inside each

box denote the corresponding medians) of the Euclidean distance between the log-trans-

formed predicted and log-transformed simulated (a) lower bound vectors and (b) upper

bound vectors of concentrations over the SCC metabolites in the kinetic model of E. coli.
(EPS)

S6 Fig. Effect of missing information about relevant rate constants on the accuracy of con-

centration range predictions for a large-scale kinetic model of E. coli. We consider 10–90%

of the relevant rate constants to be unknown by random removal. We consider three scenarios

for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate constants
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are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant rate

constants that are still present in the model. Shown are the boxplots (red lines inside each

box denote the corresponding medians) of the Euclidean distance between the predicted and

simulated (a) lower bound vectors of concentrations normalized by the respective maximum

value and (b) upper bound vectors of concentrations normalized by the respective maximum

value over the SCC metabolites in the kinetic model of E. coli.
(EPS)

S7 Fig. Predicted concentration ranges for 15 intracellular metabolites in E. coli at growth

rates (GR) of 0.4, 0.5 and 0.7h−1 under the objective of optimizing ATP synthesis and sum

of total flux. The bars denote the predicted ranges from each of the three different scenarios

(a) over all three replicates and (b) over replicates with not more than one magnitude differ-

ence in estimated range for the ratio of
sp
s� is

. The marked points denote the measured concentra-

tions in the employed data set.

(EPS)

S8 Fig. Distribution of average Euclidean distance between simulated and predicted con-

centration. From each of the 100 simulated steady-state flux distributions we predict concen-

trations for the SCC metabolites and calculate the average Euclidean distance between the

simulated and predicted concentrations.

(EPS)

S9 Fig. Comparison of predicted ranges with measured metabolite concentrations under

the objective of optimizing ATP synthesis for the data set of Ishii et al. Comparison of the

predicted concentration ranges for 15 intracellular metabolites in E. coli with absolute concen-

trations measured at growth rates (GR) of (a) 0.4, (b) 0.5 and (c) 0.7h−1. The colored bars

denote the predicted ranges from each of the three different replicates, while the black bar rep-

resents the prediction over all replicates. For some metabolites no value could be predicted

due to numerical instabilities. The red cross denotes the measured value at the respective GR.

For metabolites with missing red cross, there is no access to measurements. The nomenclature

of the metabolites is provided in Supplementary S5 Table.

(EPS)

S10 Fig. Comparison of predicted ranges with measured metabolite concentrations under

the objective of optimizing ATP synthesis and total flux for the data set of Gerosa et al.

Comparison of the predicted concentration ranges for 10 intracellular metabolites in E. coli
with absolute concentrations measured at seven different carbon sources. The red bars denote

the measured ranges over three different replicates, while the black bar represents the pre-

dicted concentration. For some metabolites no value could be predicted due to numerical

instabilities. For the model simulating growth on succinate no steady-state solution could be

obtained without further model adaptation, therefore, no SCC concentration could be pre-

dicted.

(EPS)

S11 Fig. Comparison of predicted ranges with measured metabolite concentrations under

the objective of optimizing ATP synthesis for the data set of Gerosa et al. Comparison of

the predicted concentration ranges for 10 intracellular metabolites in E. coli with absolute con-

centrations measured at seven different carbon sources. The red bars denote the measured

ranges over three different replicates, while the black bar represents the predicted concentra-

tion. For some metabolites no value could be predicted due to numerical instabilities. For the

model simulating growth on succinate no steady-state solution could be obtained without
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further model adaptation, therefore, no SCC concentration could be predicted.

(EPS)

S12 Fig. Fold change in concentration of SCC metabolites upon reaction knock-out. Distri-

butions of predicted and simulated fold change in concentration for the 23 SCC metabolites

over 929 single knock-out mutants, for which a steady-state flux distribution could be simulated.

(EPS)

S1 Table. (A) Initial conditions sampled for simulations of the large-scale kinetic model of E.

coli. The initial concentration is given in units mmol/gDW. (B) Steady-state concentrations

obtained from simulations of the large-scale kinetic model of E. coli starting from the respec-

tive initial conditions presented in Table S1A. The first two columns show the respective mini-

mum and maximum steady-state concentration over all 100 simulations. The concentration is

given in units mmol/gDW. (C) Steady-state flux distributions obtained from simulations of

the large-scale kinetic model of E. coli starting from the respective initial conditions presented

in Table S1A. The flux is given in units mmol/gDW/hr. (D) Simulated and predicted concen-

tration ranges for 23 SCC metabolites in a kinetic metabolic model of E. coli.
(XLSX)

S2 Table. (A) Correlation between predicted concentration range and shadow price for 23

structurally constrained metabolites to the corresponding metabolic concentrations obtained

from 100 simulations of a kinetic model of E. coli core metabolism. (B) Euclidean distance

between simulated and predicted concentration bounds for 23 SCC metabolites in large-scale

kinetic model of E. coli. In addition the table provides simulated and predicted concentration

bounds in mmol/gDW.

(XLSX)

S3 Table. List of rate constants for reactions in the genome-scale model iJO1366 of E. coli.
In addition to the used rate constants and the related organism in BRENDA, the table reports

the reaction abbreviation used in the model and the enzyme EC number related to each reac-

tion. In case more than one rate constant is known per reaction we consider the average value.

(XLSX)

S4 Table. (A) Measured concentrations of SCC metabolites in E. coli under different growth sce-

narios. The three replicates at growth rate 0.2h-1 are used as reference state. Measured volumetric

concentrations1 were converted to mmol/gDW by using a ratio of aqueous E. coli cell volume to

dry weight of 0.0023L/g2. (B) Specific flux rates for E. coli grown under different scenarios.

(XLSX)

S5 Table. (A) Predicted concentration ranges for the 15 SCC metabolites in a genome-scale

metabolic model of E. coli with available data on concentration. (B) In addition correlation val-

ues between predicted and simulated bounds are provided.

(XLSX)

S6 Table. Number of metabolites with structurally constrained concentrations for each of the

metabolic networks analyzed. The numbers of reactions and metabolites correspond to the

number after reaction splitting into irreversible reactions and removal of blocked reactions.

The latter is needed to satisfy the prerequisite for a positive steady state.

(XLSX)

S7 Table. Fraction of fully coupled reactions and reactions coupled due to mass action kinet-

ics in 14 analyzed genome-scale metabolic networks.

(XLSX)
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S8 Table. Structurally constrained metabolites across the 14 analyzed metabolic networks. In

addition, the in- and out-degree for these metabolites are provided. Metabolites marked in red

correspond to energy metabolism (see Table 1 in the main text) and metabolites marked in

green exhibit absolute concentration robustness. Metabolite names and their abbreviations are

used as provided in the original models.

(XLSX)

S9 Table. Number of metabolites with structurally constrained concentrations metabolic net-

works analyzed including enzyme information. The numbers of reactions and metabolites cor-

respond to the number after rewriting in Michaelis-Menten format, reaction splitting into

irreversible reactions and removal of blocked reactions. Model components correspond to

metabolites, enzymes and enzyme-substrate-complexes.

(XLSX)

S10 Table. (A) Measured concentrations of SCC metabolites in E. coli under growth on dif-

ferent carbon sources. Replicates for growth on acetate are used as reference state. (B) Specific

flux rates for E. coli under growth on different carbon sources.

(XLSX)
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