
Review Article
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to
Stress and Survive or Commit to Regulated Liponecrosis and Die

Karamat Mohammad, Paméla Dakik, Younes Medkour, Mélissa McAuley,
Darya Mitrofanova, and Vladimir I. Titorenko

Concordia University, Department of Biology, Montreal, QC, Canada H4B 1R6

Correspondence should be addressed to Vladimir I. Titorenko; vladimir.titorenko@concordia.ca

Received 2 September 2017; Revised 27 November 2017; Accepted 20 December 2017; Published 31 January 2018

Academic Editor: Paula Ludovico

Copyright © 2018 Karamat Mohammad et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many
human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast
Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid
metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the
“liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a
brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added
palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in
the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play
essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four
processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and
maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets,
peroxisomes, autophagosomes, vacuoles, and the cytosol.

1. Introduction

Some forms of cell death are classified as “programmed” cell
death subroutines; they involve molecular machineries dedi-
cated to commit cellular “suicide” that is aimed at providing
certain benefits for development and/or survival of the entire
organism [1–6]. Other forms of cell death are actively driven
by molecular machineries that attempt to protect cells against
certain stresses (without providing benefits for organismal
development and/or survival); these forms are known as
“regulated” cell death (RCD) subroutines [1, 3]. Cells commit
RCD executed by a discrete molecular machinery because (1)
the capacity of a molecular machinery dedicated to cell pro-
tection against a certain kind of stress is not sufficient to
maintain cell viability if the intensity of such extracellular
and/or intracellular stress exceeds a threshold and/or (2)
molecular machineries driving some cellular processes that
(directly or indirectly) contribute to cell protection against

a certain kind of exogenous and/or endogenous stress are
excessively activated, thereby generating products of these
processes in concentrations that are lethal to the cell [1, 3, 7].

S. cerevisiae is a model organism most commonly and
productively used for studying different forms of RCD
elicited by perturbations in lipid metabolism [8–37]. The
detailed knowledge of mechanisms underlying the molecular
pathways of various modes of lipotoxic RCD in this yeast is
therefore instrumental to our understanding of many human
pathologies that are causally linked to dysregulated lipid
metabolism, unbalanced lipid homeostasis, lipotoxicity, and
lipid-induced cell death [31, 34, 37–41]. Among these human
pathologies are obesity, metabolic syndrome, type 2 diabetes,
insulin resistance, cardiovascular diseases, hepatic steatosis,
liver cirrhosis, and cancer [34, 38–56].

The scope of this review is to analyze mechanisms
underlying one of the modes of lipotoxic RCD. It has been
discovered in the yeast S. cerevisiae and called “liponecrosis.”
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Liponecrotic RCD can be elicited by a short-term (for 2 h)
treatment of yeast cells with exogenous palmitoleic acid
(POA), a 16-carbon monounsaturated fatty acid (16 : 1 n-7)
[57–59]. We describe different cellular processes that yeast
cells exposed to POA use for stress adaptation and viability
maintenance. We critically evaluate mechanisms (including
POA-induced oxidative stress) through which yeast cells that
are exposed to POA die of liponecrosis if the capacities of
cellular processes for protection against POA-imposed stress
become insufficient to maintain cell viability. We outline the
most important unanswered questions and suggest directions
for future research.

2. How Do Yeast Cells Die If Treated with POA
and How Do They Mount a Protective Stress
Response to Survive Such Treatment?

Amodel for the mechanism of liponecrotic RCD elicited by a
short-term treatment of yeast with POA and for the mecha-
nism protecting yeast from such RCD is schematically
depicted in Figure 1.

Yeast cells that are briefly exposed to exogenous POA use
the lipid-synthesizing and lipid-transporting enzymatic
machineries of the endoplasmic reticulum (ER), mitochon-
dria, lipid droplets (LDs), and the plasma membrane (PM)
to incorporate this fatty acid into copious amounts of two
classes of lipids [34, 59]. One of these POA-containing classes
are the so-called “neutral” (uncharged) lipids triacylglycerols
(TAGs) and ergosteryl esters (EEs), both of which are first
produced in the ER and then deposited in LDs (Figure 1)
[37, 40, 60, 61]. The other class are POA-containing phos-
pholipids (Figure 1); they include (1) phosphatidic acid
(PA), phosphatidylserine (PS), phosphatidylcholine (PC),
and phosphatidylinositol (PI), all of which are synthesized
only in the ER and then transferred to mitochondria through
mitochondria-ER junctions and to the PM through PM-
ER junctions [62–70]; (2) phosphatidylethanolamine (PE),
which is produced from ER-derived PS in the inner and outer
mitochondrial membranes (IMM and OMM, resp.) and then
transferred to the ER through mitochondria-ER junctions
and from the ER to the PM through PM-ER junctions
[62, 63, 65, 69, 71–75]; and (3) cardiolipin (CL), a signature
mitochondrial phospholipid which is generated from ER-
derived PA in a series of reactions confined to the IMM
and OMM [71, 74, 76–78]. It needs to be emphasized that
genetic interventions weakening the incorporation of exoge-
nously added POA into POA-containing phospholipids
within the ER have been shown to increase cell resistance to
POA-induced liponecrotic RCD [34, 59]. Thus, such incor-
poration is a pro-death process essential for the commitment
of yeast to liponecrotic RCD in response to treatment with
exogenous POA.

After being synthesized in the ER, the bulk quantities
of POA-containing phospholipids in yeast cells committed
to liponecrotic RCD amass in the PM (Figure 1) [34, 59].
Such accumulation of POA-containing phospholipids in
the PM activates the alkaline pH- and lipid asymmetry-
responsive Rim101 signaling pathway, which orchestrates
a series of endocytic internalization and traffic events

ultimately promoting transcription of the nuclear RSB1 gene
[79–87]. A protein product of this gene, Rsb1, is known to
regulate the bidirectional active transport of PE across the
PM bilayer; specifically, Rsb1 stimulates the Lem3-driven
transport of PE from the outer monolayer of the PM to its
inner monolayer and also slows down the Yor1-driven trans-
port of PE in the opposite direction [86, 88–91]. These effects
of Rsb1 elicit a depletion of PE in the outer monolayer of the
PM, thereby markedly rising the permeability of the PM to
small molecules (Figure 1) [34, 59]. Such increase in the per-
meability of the PM to small molecules has been shown to
play an essential role in committing yeast to POA-induced
liponecrotic RCD (Figure 1) [34, 59].

The bulk quantities of POA-containing phospholipids
initially synthesized in the ER of yeast cells that are commit-
ted to liponecrotic RCD accumulate not only in the PM but
also in both membranes enclosing mitochondria (Figure 1)
[34, 59]. This buildup of POA-containing phospholipids in
the IMM and OMMmarkedly weakens mitochondrial respi-
ratory capacity, uncouples mitochondria respiratory chain
fromATP synthesis, and lowers the electrochemical potential
across the IMM (Figure 1) [34, 59]. The resulting decline in
mitochondrial functionality plays an essential role in com-
mitting yeast to POA-induced liponecrotic RCD, likely
because these dysfunctional mitochondria cannot produce
enough ATP to support the energy-demanding, prosurvival
process of incorporating exogenous POA into neutral lipids
(see text below for discussion of this prosurvival process)
(Figure 1) [34, 59].

The buildup of POA-containing phospholipids in the
IMM and OMM of yeast committed to liponecrotic RCD
not only impairs mitochondrial functionality but also consid-
erably increases the intracellular concentration of reactive
oxygen species (ROS) that are produced in mitochondria as
by-products of respiration (Figure 1) [34, 59]. This rise of
ROS concentrations elicits an oxidative damage to different
types of molecules in two cellular locations, namely, to (1)
protein and lipid components of mitochondria and other
cellular organelles and (2) proteins in the cytosol, thereby
causing their unfolding and aggregation (Figure 1) [34, 59].
Both these types of cellular oxidative damage are essential
contributing factors either to the commitment of yeast
to POA-induced liponecrotic RCD or to an execution of
this RCD subroutine. Specifically, a massive breakdown of
numerous oxidatively damaged and dysfunctional organelles
through a nonselective macroautophagic degradation (which
is choreographed by the phagophore assembly-specific ser-
ine/threonine protein kinase Atg1, adapter protein Atg11,
and scaffold protein Atg17 [58, 59, 92–94]) plays a crucial
role in executing POA-induced liponecrotic RCD (Figure 1)
[34, 58, 59]. Moreover, the buildup of oxidatively damaged,
dysfunctional, unfolded, and aggregated proteins in the cyto-
sol of yeast cells treated with POA impairs cellular proteosta-
sis, thus committing these cells to POA-induced liponecrotic
RCD (Figure 1) [34, 59].

If the stress imposed by an exposure to POA does not
exceed a toxic threshold, yeast cells can use at least four
different processes to cope with this stress and maintain
viability (Figure 1).
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Figure 1: A model for how yeast cells exposed to exogenous palmitoleic acid (POA) either mount a protective stress response and survive or
commit to POA-induced regulated liponecrosis and die. Yeast cells briefly exposed to POA can employ four different prosurvival processes to
cope with the POA-induced cellular stress and maintain viability. These prosurvival cellular processes include the following: (1) an
assimilation of POA into neutral lipids (triacylglycerols (TAGs) and ergosteryl esters (EEs)), in the endoplasmic reticulum (ER) and the
subsequent deposition of these neutral lipids in lipid droplets (LD); (2) POA oxidation in peroxisomes (PER); (3) a macroautophagic
degradation of dysfunctional or damaged mitochondria (MIT); and (4) a proteolytic degradation of oxidatively damaged, dysfunctional,
unfolded, and aggregated proteins that accumulate in the cytosol of yeast cells. Arrows and names displayed in blue color denote
prosurvival processes, metabolites, and proteins that protect yeast from POA-induced liponecrotic regulated cell death (RCD). Yeast cells
briefly treated with POA can use four different pro-death processes to commit to POA-induced liponecrotic RCD and to execute this RCD
subroutine. These pro-death cellular processes include the following: (1) a buildup of POA-containing phospholipids (PLs) in the PM and
the ensuing increase in the permeability of the PM to small molecules; (2) the accumulation of POA-containing PLs in both
mitochondrial membranes and the resulting decline in mitochondrial functionality, which is needed to support the prosurvival process of
incorporating exogenous POA into neutral lipids; (3) a ROS-inflicted oxidative damage to mitochondria and other cellular organelles,
which stimulates a nonselective macroautophagic degradation of many kinds of organelles; and (4) a ROS-imposed oxidative damage to
cytosolic proteins, which impairs cellular proteostasis because it promotes an accumulation of oxidatively damaged, dysfunctional,
unfolded, and aggregated proteins in the cytosol. Arrows and names displayed in red color denote pro-death processes, metabolites, and
proteins that commit yeast to POA-induced RCD or execute this RCD subroutine. The up or down arrows in red color denote processes
or metabolites whose intensities or concentrations are increased or decreased (resp.) in yeast cells briefly exposed to exogenous POA. See
text for more details. ETC, mitochondrial electron transport chain; PE, phosphatidylethanolamine; PLs, phospholipids; PM, plasma
membrane; ROS, reactive oxygen species; ΔΨ, electrochemical potential across the inner mitochondrial membrane.
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One of these prosurvival cellular processes is an assimi-
lation of POA into neutral lipids (TAGs and EEs), which
occurs in the ER and is followed by a buildup of POA-
containing neutral lipids in LDs (Figure 1) [34, 58, 59]. This
process lowers the extreme cellular stress caused by the accu-
mulation of POA-containing phospholipids in the PM,
IMM, and OMM because it attenuates the flow of POA into
the pathways for the synthesis of POA-containing phospho-
lipids [34, 58, 59]. The assimilation of POA into neutral
lipids is essential for protecting yeast from POA-induced
liponecrotic RCD, as demonstrated by the finding that
genetic interventions weakening the incorporation of exoge-
nously added POA into POA-containing neutral lipids
increase the susceptibility of yeast to this subroutine of
RCD [58].

Another prosurvival cellular process is the β-oxidation of
POA in peroxisomes of yeast exposed to this monounsatu-
rated free fatty acid (Figure 1) [34, 57–59]. Peroxisomal oxi-
dation of POA mitigates POA-induced liponecrotic RCD
because it weakens the incorporation of POA into phospho-
lipids, thereby relieving the excessive cellular stress instigated
by the buildup of POA-containing phospholipids in the PM,
IMM, and OMM [34, 58, 59]. In support of an essential role
of peroxisomal oxidation of POA in the protection of yeast
from POA-induced liponecrotic RCD, yeast strains that carry
the single-gene-deletion mutations pex5Δ and fox1Δ attenu-
ating oxidative degradation of POA in peroxisomes are more
susceptible to this mode of RCD than an otherwise isogenic
wild-type strain [34, 57–59].

Macromitophagy, a macroautophagic degradation of
dysfunctional or damaged mitochondria, is also a prosurvival
process that allows yeast to cope with the POA-induced cel-
lular stress [34, 58, 59]. Macromitophagy protects yeast from
POA-induced liponecrotic RCD because, by selectively
degrading dysfunctional mitochondria, it helps to maintain
a population of functionally active mitochondria that are
needed to generate enough ATP to support the prosurvival
process of assimilating POA into neutral lipids (Figure 1)
[34, 58, 59]. The Atg32Δ-dependent mutational block of
macromitophagy impairs the accumulation of LD-deposited
neutral lipids and sensitizes yeast to POA-induced lipone-
crotic RCD [58]; thus, macromitophagy plays an essential
role in protecting yeast from this subroutine of RCD.

The degradation of oxidatively damaged, dysfunctional,
unfolded, and aggregated proteins that accumulate in the
cytosol of yeast cells treated with POA is another prosurvival
process in these cells; this proteolytic degradation is catalyzed
by the metacaspase Yca1 and serine protease Nma111,
two protein components of the caspase-dependent apoptotic
RCD pathway (Figure 1) [34, 59, 95–97]. This Yca1- and
Nma111-driven proteolysis of oxidatively damaged, dys-
functional, unfolded, and aggregated proteins slows down
a progression of POA-induced liponecrotic RCD because
it allows to sustain efficient cellular proteostasis, thereby
weakening proteostatic cellular stress (Figure 1) [34, 59].
In support of an essential role of such proteolysis in the
protection of yeast from POA-induced liponecrotic RCD,
lack of Yca1 or Nma111 increases the susceptibility of yeast
to this mode of RCD [34, 59].

3. What Are the Relations among Different
Processes Involved in Cell Death or Cell
Adaptation in Yeast Treated with POA and
How Is a Balance between Pro-death and
Prosurvival Processes Regulated?

As outlined in the previous section, pro-death cellular pro-
cesses in yeast treated with POA are direct or indirect due
to the initial incorporation of this fatty acid into bulk quanti-
ties of POA-containing phospholipids. Two direct pro-death
processes include the following: (1) the buildup of POA-
containing phospholipids in the PM and the ensuing increase
in the permeability of the PM to small molecules and (2) the
accumulation of POA-containing phospholipids in both
mitochondrial membranes and the resulting decline in mito-
chondrial functionality, which is needed to support the pro-
survival process of incorporating exogenous POA into
neutral lipids (Figure 1). Two other pro-death processes only
indirectly caused the buildup of POA-containing phospho-
lipids in both mitochondrial membranes because such
buildup elicits a rise in the intracellular concentration of
ROS initially produced in mitochondria. These indirect
pro-death processes are as follows: (1) the ROS-inflicted oxi-
dative damage to mitochondria and other cellular organelles,
which stimulates a nonselective macroautophagic degrada-
tion of many kinds of organelles and (2) the ROS-imposed
oxidative damage to cytosolic proteins, which impairs cellu-
lar proteostasis because it promotes the accumulation of oxi-
datively damaged, dysfunctional, unfolded, and aggregated
proteins in the cytosol (Figure 1). Thus, the four pro-death
processes relate because they all are initiated in response to
the buildup of POA-containing phospholipids. We hypothe-
size that (1) the direct pro-death processes may precede in
time the indirect ones and (2) the relative contribution of
each direct or indirect pro-death process into POA-induced
liponecrotic RCD may be defined by the relative rates with
which POA-containing phospholipids are transferred from
the ER to the PM and mitochondria, mitochondria generate
ROS, mitochondria and other cellular organelles undergo
ROS-inflicted oxidative damage, oxidatively damaged cellu-
lar organelles are subjected to nonselective macroautophagic
degradation, cytosolic proteins are oxidatively damaged by
mitochondrially produced ROS, and oxidatively damaged
cytosolic proteins unfold and aggregate. In our hypothesis,
none of the pro-death processes may be considered as an
individual pro-death pathway. In contrast, our hypothesis
posits that all four pro-death processes are likely to be
nodes of a branched subnetwork that integrates the flow
of POA-containing phospholipids from the ER to the
PM and mitochondria, mitochondrial ROS formation, the
ROS-imposed oxidative damage to organelles and cytosolic
proteins, the nonselective macroautophagic breakdown of
different kinds of oxidatively damaged organelles, and the
unfolding and aggregation of oxidatively damaged proteins
in the cytosol.

Our hypothesis further suggests that prosurvival pro-
cesses are likely to be nodes of the same branched subnet-
work integrating the four pro-death processes. Two direct
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prosurvival processes relieve the extreme cellular stress by
preventing the buildup of POA-containing phospholipids
in the PM and mitochondria; they include the following:
(1) the assimilation of POA into neutral lipids in the ER
and the subsequent buildup of POA-containing neutral lipids
in LDs and (2) peroxisomal oxidation of POA (Figure 1).
Two indirect prosurvival processes are activated to lower
the extreme cellular stress created by the buildup of POA-
containing phospholipids in both mitochondrial membranes
and by the resulting decline in mitochondrial functionality
and rise in mitochondrially produced ROS; they are as fol-
lows: (1) the selective macroautophagic degradation of oxida-
tively damaged and dysfunctional mitochondria, which helps
to maintain a population of functionally active mitochondria
generating sufficient quantities of ATP and producing ROS
in nontoxic concentrations and (2) the Yca1- and Nma111-
driven proteolysis of oxidatively damaged and aggregated
cytosolic proteins, which allows to sustain efficient cellular
proteostasis (Figure 1). Akin to pro-death processes, the four
prosurvival processes relate because they all are stimulated in
attempt to relieve the extreme cellular stress that is generated
(directly or indirectly) by the initial incorporation of POA
into POA-containing phospholipids. Our hypothesis posits
that (1) the direct prosurvival processes may occur earlier
than the indirect ones and (2) the relative contribution of
each direct or indirect prosurvival process into cell protection
from POA-induced liponecrosis may depend on the relative
rates with which POA is assimilated into neutral lipids in
the ER, POA-containing neutral lipids are transferred from
the ER to LDs, POA is oxidized in peroxisomes, oxidatively
damaged and dysfunctional mitochondria are subjected
to selective macroautophagic degradation, and oxidatively
damaged and aggregated cytosolic proteins undergo proteo-
lytic degradation.

In sum, the above hypothesis posits the following: (1)
the balance between different pro-death and prosurvival
processes may be regulated by their relative rates and (2)
these relative rates may be defined by the extracellular and/
or intracellular concentrations of POA, nutrient availability,
the metabolic state of a yeast cell, and the chronological age
of a yeast cell.

4. Is the Subnetwork of Liponecrotic RCD
Integrated into a Signaling Network
Orchestrating Different RCD Scenarios in
Yeast Cells?

Yeast cells undergoing POA-induced liponecrotic RCD
exhibit characteristic morphological and biochemical traits
[34, 58, 59]. Some of these traits are unique to liponecrotic
RCD, whereas other traits are shared by this and certain
other modes of RCD (Table 1).

While yeast cells committed to POA-induced lipone-
crotic RCD do not display such characteristic traits of apo-
ptotic RCD as nuclear fragmentation and PS externalization
within the PM bilayer, the metacaspase Yca1 and serine pro-
tease Nma111 play essential roles in both liponecrotic and
caspase-dependent apoptotic modes of RCD [34, 59]. How-
ever, the roles Yca1 and Nma111 play in each of these two
RCD modes are quite different (Table 1). As mentioned
above, the Yca1- and Nma111-dependent proteolysis of oxi-
datively damaged, dysfunctional, unfolded, and aggregated
proteins in the cytosol of yeast cells is a prosurvival process
in POA-induced liponecrotic RCD [34, 59]. Such prosurvival
role of Yca1 in sustaining efficient cellular proteostasis is well
known [98–105]. In contrast, the Yca1- and Nma111-driven
degradation of various cellular proteins is an executing, pro-
death process in several caspase-dependent modalities of
apoptotic RCD in yeast exposed to certain exogenous
stimuli [95–97, 106–110].

While yeast cells undergoing POA-induced liponecrotic
RCD do not display such hallmark trait of autophagic RCD
as extreme cytoplasmic vacuolization instigated by a buildup
of double-membrane vesicles called autophagosomes [34, 58,
59], both liponecrotic and autophagic modes of RCD (1)
exhibit a nonselective massive degradation of various cellular
organelles and (2) depend on the phagophore assembly-
specific serine/threonine protein kinase Atg1 for executing
these RCD modes (Table 1) [1, 58, 59, 111–113].

While yeast cells undergoing POA-induced liponecrotic
RCD do not exhibit such hallmark feature of necrotic
RCD as a severe fracture of the PM [34, 58, 59], both

Table 1: Some of the morphological and biochemical traits characteristic of palmitoleic acid- (POA-) induced liponecrotic regulated cell
death (RCD) are unique to this mode of RCD, whereas other traits are shared by this mode and other (i.e., caspase-dependent apoptotic,
autophagic, and necrotic) RCD modes. LDs, lipid droplets; PM, plasma membrane; PS, phosphatidylserine.

Trait
Caspase-dependent

apoptotic
RCD [references]

Autophagic RCD
[references]

Necrotic RCD
[references]

POA-induced
liponecrotic

RCD [references]

Nuclear fragmentation + [126] − − − [58]

PS externalization within the PM + [126] − − − [58]

Role of Yca1 and Nma111
+ (pro-death role)

[106, 107]
− − + (prosurvival role) [59]

Excessive cytoplasmic vacuolization − + [127] − − [58]

Massive degradation of various cellular organelles − + [127] − + [58]

Rupture of the PM − − + [114] − [58]

Permeability of the PM to small molecules − − + [114] + [59]

Excessive accumulation of LDs − − − + [58]
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liponecrotic and necrotic modes of RCD display substan-
tially increased permeability of the PM to small molecules
(Table 1) [31, 58, 59, 114–116].

A trait which is unique to POA-induced liponecrotic
RCD is a buildup of POA-containing neutral lipids in
numerous LDs, a feature that has not been reported for apo-
ptotic, autophagic, or necrotic subroutine of RCD (Table 1)
[1, 58, 59, 96, 111–113, 115].

Because POA-induced liponecrotic RCD has several
different traits in common with apoptotic, autophagic, and
necrotic modes of RCD, we hypothesize that the molecular
subnetwork of POA-induced liponecrotic RCD is integrated
into a signaling network that orchestrates different RCD
scenarios in yeast cells. Other pathways and subnetworks
integrated into this signaling network may include apoptotic,
autophagic, and necrotic pathways and subnetworks of
RCD. In our hypothesis, the molecular subnetwork of
POA-induced liponecrotic RCD only partially overlaps with
apoptotic, autophagic, and necrotic RCD pathways and sub-
networks of the network. Our hypothesis satisfactorily
explains the observed existence of several proteins that are
common to liponecrotic, apoptotic, autophagic, and necrotic
modes of RCD [34, 58, 59]. Furthermore, as our hypothesis
suggests, some of the morphological and biochemical traits
characteristic of POA-induced liponecrotic RCD are shared
by this mode of RCD and other (i.e., apoptotic, autophagic,
and necrotic) RCD modes integrated into the network
[34, 58, 59]. Moreover, in agreement with our hypothesis
on only a partial overlap between liponecrotic and other
pathways and subnetworks of RCD, at least one trait charac-
teristic of liponecrotic RCD is unique to this mode of RCD;
this trait is the accumulation of POA-containing neutral
lipids in many LDs [34, 58, 59].

Our hypothesis on the existence of an RCD signaling net-
work orchestrating different RCD scenarios in yeast cells is
reminiscent of the hypothesis on the global programmed cell
death (PCD) network that has been proposed and then con-
firmed for mammalian cells [117–120]. A systems biology
platform has been developed for defining the topology of
such network operating in mammalian cells; this platform
employs cell biological and computational approaches for
measuring and computing the effects of single and double
genetic interventions on the molecular events characteristic
of different PCD modes that are integrated into the network
[119]. The use of such platform, possibly in combination
with powerful tools of proteomic and metabolomic analyses
recently applied for molecular analyses of RCD in yeast
[104, 105], will allow to test our hypothesis on the global
RCD signaling network in yeast and, perhaps, to dissect the
architecture of such network in the near future.

5. Does Liponecrotic RCD Contribute to Yeast
Chronological Aging?

POA-induced liponecrotic RCD is an age-related mode of
RCD, as the susceptibility of a population of yeast cells to
POA-induced liponecrosis increases with the chronological
age of this population [34, 58, 59, 121]. Furthermore, the sus-
ceptibility of yeast cells to POA-induced liponecrotic RCD

can be significantly decreased by some aging-delaying dietary
and pharmacological interventions. These interventions
include caloric restriction (CR) and lithocholic bile acid
(LCA), each implemented at the time of cell inoculation into
growth medium [57, 60, 121].

Our recent unpublished findings indicate that in yeast
cultured under non-CR conditions on 1% or 2% glucose,
the risk of age-related death depends not only on the POA-
induced liponecrotic mode of RCD but also on ROS-
induced apoptotic RCD mode. Moreover, we found that the
liponecrotic and apoptotic modes of RCD have different rel-
ative contributions to age-related death of non-CR yeast at
different periods of chronological lifespan (CLS). The apo-
ptotic mode of RCD predominates during diauxic (D) phase,
apoptotic and liponecrotic RCD modes equally increase the
risk of death during post-diauxic (PD) phase, whereas the
liponecrotic mode of RCD prevails during stationary (ST)
phase of culturing under non-CR conditions (our unpub-
lished data). The longevity-defining mode of liponecrotic
RCD is elicited by the accumulation of POA and other free
fatty acids in chronologically aging non-CR yeast cells that
progress through PD and ST phases of culturing (our unpub-
lished data). In contrast, the longevity-defining mode of
apoptotic RCD is caused by the rapid decline of mitochon-
drial functionality and rise of mitochondrially generated
ROS in chronologically aging non-CR yeast cells progressing
through D and PD phases of culturing (our unpublished
data). CR diet, which is implemented by culturing yeast on
0.2% or 0.5% glucose, decreases the risk of age-related death
by attenuating liponecrotic and apoptotic RCD modes
during D, PD, and ST phases; these effects of CR are due to
its abilities to (1) decrease free fatty acid (including POA)
concentrations during PD and ST phases of culturing and
to (2) improve mitochondrial functionality and to lessen
concentrations of mitochondrially generated ROS during
D and PD phases of culturing (our unpublished data).

LCA is a geroprotective chemical compound that delays
yeast chronological aging mainly under CR conditions [57].
LCA exhibits the following effects on yeast susceptibility to
POA-induced liponecrotic RCD: (1) it decreases such sus-
ceptibility only if added to growth medium at the time of cell
inoculation, during logarithmic (L) or D phase of culturing;
(2) it increases such susceptibility if added during PD phase;
and (3) it has no effect on such susceptibility if added during
ST phase [121]. Taken together, these findings suggest that
liponecrotic RCD may be an essential longevity-limiting
(i.e., proaging) factor in chronologically “young” yeast, may
somehow contribute to longevity extension (i.e., aging delay)
in chronologically “middle-aged” yeast, and may have no
influence on longevity (i.e., on the pace of aging) of chrono-
logically “old” yeast. Noteworthy, all these age-related varia-
tions in yeast susceptibility to POA-induced liponecrotic
RCD coincide with age-related changes in yeast resistance
to chronic oxidative, thermal, and osmotic stresses [121]. In
the future, it would be important to explore mechanisms that
underlie the observed age-related coincidence between yeast
susceptibility to POA-induced liponecrotic RCD and yeast
resistance to long-term stresses. Moreover, it remains to be
determined if and how the concentrations of endogenously
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produced free fatty acids (including POA) influence the
extent of liponecrotic RCD at different stages of yeast chro-
nological aging.

Of note, LCA decreases yeast susceptibility to the mito-
chondria-controlled, ROS-induced mode of apoptotic RCD
if added to growth medium at the time of cell inoculation
and during L, D, PD, or ST phase of culturing [121]. In yeast
cultured under CR conditions, exogenous LCA enters cells,
is sorted to mitochondria, amasses primarily in the IMM
and also resides in the OMM, alters the concentrations of
certain mitochondrial membrane phospholipids, elicits a
major enlargement of mitochondria, significantly decreases
mitochondrial number, prompts an intramitochondrial
accumulation of cristae disconnected from the IMM, triggers
substantial alterations in mitochondrial proteome, decreases
the frequencies of deletion and point mutations in mitochon-
drial DNA, and leads to changes in vital aspects of mitochon-
drial functionality [66, 68, 122, 123]. In the future, it would be
important to explore how all these aging-delaying effects of
LCA are linked to yeast susceptibility to the mitochondria-
controlled, ROS-induced mode of apoptotic RCD at different
stages of chronological aging.

In sum, it is conceivable that liponecrotic and apoptotic
modes of RCD may have different effects on yeast CLS at
different periods of life. This is similar to the “P” (“big P”)
and “p” (“small p”) modes of death in the nematode Caenor-
habditis elegans, which define lifespan earlier or later in life
(resp.) [124]. The P mode of death is manifested as a substan-
tial enlargement of the posterior pharyngeal bulb caused by
intensified pharyngeal pumping, whereas the p mode of
death is due to the complete atrophy of pharynx [124].

6. How Does Liponecrotic RCD Differ from
Other Modes of Lipotoxic RCD in Yeast?

Several exogenously added lipids [8–16], as well as different
genetic [11–13, 15–25] and pharmacological [24, 26–30]
interventions that impair certain aspects of lipid metabolism,
have been shown to elicit apoptotic and/or necrotic modes of
lipotoxic RCD in yeast. These modes have been extensively
reviewed elsewhere [31, 32, 37, 41, 125]. In brief, yeast cells
committed to POA-induced liponecrotic RCD exhibit a
unique combination of morphological and biochemical traits
that is not characteristic of any of these other modes of
lipotoxic RCD. Moreover, some of these other modes of
lipotoxic RCD differ from each other with respect to (1)
structural and/or functional features of yeast committed to
a particular mode of RCD; (2) classes of lipids whose concen-
trations are altered (or are expected to be altered) in yeast
committed to a particular mode of RCD; and (3) proteins
that are involved in committing to and/or executing a partic-
ular mode of RCD [8–32, 37, 41, 125].

Altogether, these findings further support our hypothesis
(which is outlined in Section 4) on the possible existence of a
global signaling network that integrates partially overlapping
molecular pathways and subnetworks of lipotoxic RCD, each
pathway and subnetwork being differently responsive to cer-
tain perturbations in diverse aspects of lipid metabolism
within a yeast cell. The key challenge for the future is to

explore mechanisms through which such perturbations in
lipid metabolism (1) modulate individual molecular path-
ways and subnetworks of lipotoxic RCD and (2) orchestrate
the integration of these individual pathways and subnet-
works into the global signaling network of lipotoxic RCD.
To address this challenge, the systems biology platform
(which is discussed in Section 4) exploited for mammalian
cells [119] can be used in combination with proteomic and
metabolomic analyses of molecular signatures [104, 105]
characteristic of different lipotoxic RCD modes.

7. Conclusions

To cope with the lipotoxic stress imposed by an exposure to
POA, S. cerevisiae cells use several different mechanisms to
mount a protective stress response and maintain viability.
This complex stress response consists in remodeling of at
least four cellular processes. If the POA-induced lipotoxic
stress exceeds a threshold, yeast cells commit suicide that is
assisted by a complex molecular machinery. This molecular
machinery alters the spatiotemporal dynamics of several cel-
lular processes to execute a liponecrotic subroutine of RCD.
The liponecrotic mode of POA-induced RCD plays an essen-
tial role in defining longevity of chronologically aging yeast,
likely in coordination with an apoptotic mode of RCD. The
molecular subnetwork of POA-induced liponecrotic RCD
may be integrated into a global signaling network of partially
overlapping molecular pathways and subnetworks, each exe-
cuting a different mode of lipotoxic or nonlipotoxic RCD.
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