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This study aimed to characterize the effects of bunch rot and powdery mildew on the

primary quality parameter of wine, the aroma. The influence of these fungal diseases

was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests.

The effect of bunch rot was investigated on three grape varieties, namely White Riesling,

Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm

8622-3; thereby, samples were selected that showed pronounced cases of infection

to elaborate potential currently unknown effects. Both infections revealed aromatic

differences induced by these fungi. The sensory changes were not associated with one

specific compound only, but were due to quantitative variations of diverse substances.

Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral

and liquor-like/toasty aroma notes. These effects were found to be related to variations

in aroma substance composition as monitored via AEDA, mainly an increase in the

FD factors of lactones and a general moderate increase of esters and alcohols. On

the other hand, powdery mildew decreased the vanilla-like character of the wine while

the remaining sensory attributes were rather unaffected. Correspondingly, FD factors

of the main aroma constituents were either the same or only slightly modified by this

disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied

to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as

being more pleasant in comparison to their healthy controls in all three varieties while

the powdery mildew-affected sample was rated as being less pleasant than its healthy

control.

Keywords: gas chromatography-olfactometry GC-O, aroma extract dilution analysis AEDA, sensory analysis,

lactone, 2-phenylethanol, isoamyl alcohol

INTRODUCTION

Fungal diseases are an economic threat for viticulture. An increase in fungal infections has been
related to climate change as this phenomenon may provide more favorable conditions for fungi to
grow (Chakraborty et al., 2000). Thereby, warm-moderate temperatures and high relative humidity
favor the development of Botrytis cinerea and Erysiphe necator (Schnathorst, 1965; Thomas et al.,
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1988; Caffarra et al., 2012). Moreover, the usage of fungicides
is increasingly restricted favoring the spread of fungal diseases
(EUR-lex1; Gullino and Kuijpers, 1994).

This study focused on Botrytis cinerea and Erysiphe necator,
since they are amongst the most relevant fungi in viticulture
and have a world-wide impact on the wine industrial production
(Dean et al., 2012; Steel et al., 2013). They are responsible for
bunch rot and powdery mildew diseases, respectively. Both fungi
can affect grape berries, resulting in yield losses and reduced fruit
quality depending on the degree of infection (Stummer et al.,
2003, 2005; Calonnec et al., 2004; Steel et al., 2013).

Effects of bunch rot on wine quality are: (I) an altered
carbohydrate metabolism leading to an increase in the amount of
high molecular weight polysaccharides causing problems during
processing; (II) an enhanced production of the oxidative enzyme
laccase that has been shown to be related to a browning effect in
wine color; (III) the generation of off-odors, and (IV) a reduction
of the concentration of phenolic compounds, organic acids and
varietal aromas (Ribéreau Gayon et al., 1980; Slomczynski et al.,
1995; Ky et al., 2012; Steel et al., 2013).

While the effects of Botrytis bunch rot are well defined and
thoroughly investigated (Steel et al., 2013), those of powdery
mildew are still less understood. Nonetheless, it has been
described that this disease causes a decrease in grape soluble
solids, negatively impacts wine color, and causes higher acidity
(Pool et al., 1984; Gadoury et al., 2001; Stummer et al., 2003,
2005; Calonnec et al., 2004). In addition, it has been reported to
be responsible for mushroom-like off-odors (Darriet et al., 2002;
Stummer et al., 2005).

This study centered on the analysis of the changes caused
by these fungi on wine aroma. For this aim, Aroma Extract
Dilution Analysis (AEDA) (Grosch, 2001) was performed to
screen for those substances with the highest potential to impact
wine aroma amongst a multitude of volatile compounds present
in wine. Besides, this approach allows establishing a preliminary
ranking of the aroma active compounds according to their
relative olfactory intensity. First and foremost, however, it enables
a direct comparison of the relative intensities of specific odorants
between samples when being conducted as comparative AEDA.
This technique has been successfully applied in previous studies
to monitor the main differences in odorant composition in,
for example, fresh and processed orange juice (Buettner and
Schieberle, 2001a), and in stored human milk in comparison
to freshly sampled milk (Spitzer and Buettner, 2010). In the
present study, we used this technique to compare the odorant
composition and potential chemical changes between samples
produced from healthy and fungi-infected grapes using four
extreme cases of fungal infection as models to elaborate major
changes that can be used later for enologically relevant samples.

This article is based on our previous study where effects
of these two fungi on grape must aroma were investigated
(Lopez Pinar et al., 2016). The present study builds on the

1EUR-lex (Acces to European law) Communication from the Commission to the

Council, the European Parliament and the Economic and Social Committee -

Towards a Thematic Strategy on the Sustainable Use of Pesticides (2002), http://

eur-lex.europa.eu/legal-content/EN/TXT/?qid=1469694189660&uri=CELEX:

52006SC0894 Accessed 28.07.2016.

wine obtained from these aforementioned must samples and,
accordingly, intends to complement the knowledge of fungal
aroma effects, starting from the harvested raw material to the
final product. Specifically, the aim was to characterize in a model
situation, the effects of bunch rot infection on wine produced
from White Riesling, Red Riesling and Gewürztraminer grape
varieties, and the effects of powdery mildew on wine produced
from the unsprayed hybrid Gm 8622-3.

MATERIALS AND METHODS

Chemicals
Dichloromethane and anhydrous sodium sulfate were purchased
from VWR (Darmstadt Germany). The reference substances
were obtained from the following suppliers: ethyl isobutanoate,
ethyl 2-methylbutanoate, 3-methyl-1-butanol (isoamyl alcohol),
ethyl hexanoate, (Z)-3-hexen-1-ol, (E)-2-octenal, acetic acid,
3-(methylthio)-propanal (methional), 3,7-dimethyl-1,6-
octadien-3-ol (linalool), 3-methylbutanoic acid, 1,4-diethyl
butanedionate (diethyl succinate), 3-(methylthio)-1-propanol
(methionol), (E)-3,7-dimethyl-2,6-octadien-1-ol-acetate
(geranyl acetate), phenylacetate, hexanoic acid, benzyl alcohol,
2-phenylethanol, γ-nonalactone, 4-ethyl-2-methoxyphenol
(4-ethylguaiacol), octanoic acid, 5(or 2)-ethyl-4-hydroxy-2(or
5)-methyl-3(2H)-furanone (homofuraneol), 3-methylphenol
(m-cresol), γ-decalactone, 3-hydroxy-4,5-dimethyl-2(5H)-
furanone (sotolone), 4-ethylphenol, 4-ethenyl-2-methoxyphenol
(4-vinylguaiacol), decanoic acid, (4S,4aS,8aR)-4,8a-dimethyl-
1,2,3,4,5,6,7,8-octahydronaphtalen-4a-ol [(±)-geosmin],
γ-undecalactone and phenylacetic acid were purchased
from Sigma-Aldrich (Steinheim, Germany). Ethyl butanoate,
2,3-butanedione (diacetyl), ethyl 3-methylbutanoate (ethyl
isovalerate), 2-methyl-1-propanol (isobutanol), 3-methylbutyl
acetate, 1-hexanol, butanoic acid, 2-phenethyl acetate and
4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) were
obtained from Fluka (Steinheim, Germany). The reference
compounds 4-mercapto-4-methyl-2-pentanone and 4-hydroxy-
3-methoxybenzaldehyde (vanillin) were supplied by ABCR
(Karlsruhe, Germany). Ethyl octanoate was obtained from
Alfa Aesar (Karlsruhe, Germany). Propanoic acid was from
Riedel-de Haen (Seelze, Germany). Undecanoic acid and 2-
methylpropanoic acid (isobutanoic acid) were purchased from
SAFC (Steinheim, Germany). Finally, (Z)-6-dodeceno-γ-lactone
was purchased from Aromalab (Freising, Germany).

Wine Preparation
Grapes were harvested in Geisenheim (Germany) in October
2014. To study the influence of Botrytis bunch rot infection,
White Riesling, Red Riesling and Gewürztraminer grapes were
used. The effects of powdery mildew were investigated on the
hybrid Gm 8622-3. In each case, healthy berry samples and
samples affected by the fungus at a very high degree were
compared. Moreover, in the case of White Riesling, an additional
intermediate state of bunch rot infection was included. In
each case, the healthy and the infected sample were collected
separately, but both samples were harvested the same day in the
same vineyard and were later processed identically. The degree
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of fungal infection on the grape berries was visually assessed
as described in our previous study (Lopez Pinar et al. (2016),
providing photographs with representative examples of grapes
affected by bunch rot and powdery mildew).

For must preparation, grapes were crushed and then pressed
in a pneumatic press and left to settle with 50 mg/L SO2 for
approximately 24 h at 10◦C, followed by filtering through filter
paper. The grape juices were subsequently fermented at 17◦C
for 2–3 weeks long in 20 L glass balloons by inoculation of
the reactivated pure yeast culture Saccharomyces cerevisiae (var.
bayanus) Lalvin EC 1118 (Lallemand, Montreal, Canada). After
fermentation, wines were racked and the concentration of SO2

was adjusted to approximately 50 mg/L free SO2 by addition
of an aqueous solution of SO2 (5%) purchased from Baldinger
(Fällander, Switzerland). Finally, samples were sterile filtered and
bottled in brown 0.75 L glass bottles which were closed with screw
caps.

Extraction of the Volatile Compounds
In order to extract the volatile compounds, 100 mL of wine were
mixed with 50 mL dichloromethane and stirred for 1 h at room
temperature. Then, the mixture was submitted to solvent assisted
flavor evaporation (SAFE) (Engel et al., 1999) for the isolation of
the volatiles; the obtained dichloromethane phase was separated
and dried over anhydrous sodium sulfate. Finally, the extract
was concentrated at 51◦C by means of Vigreux distillation and
micro-distillation to a final volume of 200µL.

Gas Chromatography-Olfactometry
Analysis (GC-O)
Analyses were performed on a GC type Trace Ultra (Thermo
Finnigan, Dreieich, Germany) using the capillaries DB-FFAP and
DB-5 (30 m, 0.32 mm, film thickness 0.25µm; J&W Scientific,
Fisons Instruments, Mainz-Kastel, Germany). The samples were
applied by the cold-on-column technique, 2µL of the sample
were manually injected at 40◦C directly into a pre-column,
which consisted of an uncoated, deactivated fused silica capillary
(2–3 m, 0.32 mm). In case that a DB-FFAP capillary was used,
the initial temperature was held for 2 min, then the temperature
of the GC oven was raised with 8◦C/min to 240◦C and held
for 5 min. In case of usage of a DB-5 capillary, the temperature
program was as follows: the initial 40◦C were held for 2 min,
then the temperature was raised with 4◦C/min to 90◦C, then with
8◦C/min to 220◦C, and finally with 20◦C/min to 300◦C, and held
for 2 min. The flow rate of the helium carrier gas was 2 mL/min.
At the end of the capillary, the effluent was split between a sniffing
port and a flame ionization detector (FID) using two deactivated
but uncoated fused silica capillaries (70 cm, 0.32 mm). The FID
and the sniffing port were held at 250◦C.

Aroma Extract Dilution Analysis (AEDA)
The aroma active compounds were ranked according to their
intensities by means of comparative AEDA (Buettner and
Schieberle, 2001a; Grosch, 2001). The initial extract was stepwise
diluted in the ratio 1+1 (v/v) with dichloromethane, and each
dilution step was analyzed by GC-O until no odor was detected.
The flavor dilution (FD) factor is defined as the last dilution step

at which the compound could be detected. The complete AEDA
was performed per duplicate.

High Resolution Gas
Chromatography–Mass Spectrometry
(GC–MS)
Mass spectra were obtained on two different instruments: The
measurements on the DB-5 column were performed on a
5973 MSD quadrupole system (Hewlett-Packard, Palo Alto,
CA, United States) fitted to a 6890 GC (Agilent Technologies,
Waldbronn, Germany), while for the measurements on the
DB-FFAP capillary column, a 5975C MSD quadrupole system
combined with a 7890A GC system (Agilent Technologies) was
used. Both were equipped with Gerstel CIS injection system
models 3 and 4, for the first and the second system, respectively.
In addition, a Gerstel MPS 2 auto sampler (Gerstel, Duisburg,
Germany) was used. The dimensions of the analytical capillaries
DB-FFAP and DB-5 were 30 m, 0.25 mm, film thickness 0.25µm
(J&W Scientific). An uncoated, deactivated fused silica capillary
was used as pre-column (2–3 m, 0.53 mm). The carrier gas
was helium and the flow rate was 1.0 and 1.2 mL/min for
measurements on DB-FFAP and DB-5, respectively. EI-mass
spectra were generated in full scan mode (m/z range 40–400) at
70 eV ionization energy. The scan rate was 3.94 scans/s. Injection
volume was 1µL in each case. The temperature program used
for DB-FFAP measurements was as follows: the initial 40◦C were
held for 2 min, then the temperature was raised with 8◦C/min to
240◦C and held for 5 min. In case of DB-5, the initial 40◦C were
held for 2 min, then the temperature was raised with 8◦C/min to
240◦C, and finally the temperature was increased with 20◦C/min
until 300◦C was reached, and the final temperature was held for
5 min.

Two-Dimensional High Resolution Gas
Chromatography–Mass
Spectrometry/Olfactometry
(HRGC–GC–MS/O)
For mass spectrometric identification of trace constituents, a
two-dimensional gas chromatographic system was applied. It
consisted of two Varian 450-GCs (Varian, Darmstadt, Germany)
combined with a Saturn 2,200 MS (Varian). The first GC was
equipped with a Gerstel multi-column switching system MCS 2
and connected to the second GC by a Gerstel cryo-trap system
CTS 1 (Gerstel). The system was equipped with a Gerstel CIS
3 injection system and Gerstel MPS 2 auto sampler (Gerstel).
The capillaries used were a DB-FFAP capillary column (J&W
Scientific, with the dimensions described in GC-O section in
the first oven and in the second oven a Rxi R©-5HT (30 m, 0.25
mm, film thickness 0.25µm; Restek, Homburg, Germany). The
temperature programs were as follows: initial 40◦C were held
for 2 min, then the temperature was increased with 8◦C/min to
a final temperature of 240◦C (for DB-FFAP measurements) or
250◦C (for Rxi R©-5HT measurements), that was held for 5 min.
At the end of the capillary, the effluent was split between a sniffing
port and a FID, or aMS, in the first and second oven, respectively,
using two deactivated but uncoated fused silica capillaries (100
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cm, 0.20 mm). Application of the samples to the GC system
was performed at 40◦C using the cold-on-column technique. The
flow rate of the helium carrier gas was 2.0 mL/min. The FID and
the sniffing port were held at 240 and 260◦C, respectively. Mass
spectra were generated at 70 eV ionization energy in electron
ionization (EI) mode (m/z range 30–300), or in the positive
chemical ionization (CI) mode with methanol as the reactant gas
(m/z range 35–300).

Sensory Evaluation
The sensory panel consisted of 10 participants (1 male and
9 females, 25–35 years old) (Buettner and Schieberle, 2001b;
Spitzer et al., 2013). Panelists were previously trained for at
least 6 months in weekly sessions in recognizing about 90
selected odorants and in naming these according to an in-
house developed flavor language. Preliminary sensory sessions
were held in order to establish the aroma attributes that most
accurately described the samples. Based on these pre-evaluations,
seven aroma attributes were selected as most commonly named
descriptors and were rated on a scale from 0 (not perceived)
to 3 (very intensively perceived); thereby, intermediate steps
of 0.5 were allowed. During the sensory tests, participants had
aqueous reference solutions at their disposal that related to the
provided attributes that should be rated: 2-phenylethanol for
floral, (Z)-6-dodeceno-γ-lactone for peach-like/fruity, butanoic
acid for cheesy, isoamyl alcohol for liquor-like/toasty, acetic acid
for vinegar-like, geosmin for musty, and vanillin for vanilla-like
smells. Pleasantness of the samples was also evaluated on a scale
from 0 (extremely disagreeable) to 3 (very pleasant); intermediate
steps of 0.5 were allowed.

The standard deviation of the hedonic results was calculated
via Excel. The statistical significance of the effects of the two
fungal diseases on the sensory evaluation was analyzed based
on a comparison of the mean rating values from affected and
unaffected samples using Student’s t-test (significance level of
p < 0.05).

RESULTS

AEDA
A total of 51 odor active compounds were detected by
GC-O in the nine wine samples analyzed within this study
(Table 1). Substances predominantly exhibited fruity smells
whereas the rose-like smelling substance 2-phenylethanol and the
liquor/chocolate-like smelling isoamyl alcohol were, in case of all
samples, found with the highest FD factors in the range from
1,024 to 8,192.

Of all detected odorants, 31 odorants reflecting the substances
with the highest FD factors were identified based on the
following criteria: linear retention indices on two capillary
columns with different polarity (Kovats, 1958), mass spectra and
odor qualities in relation with the relative reference substances.
For 25 of these odorants, mass spectrometric identification was
achieved using one-dimensional GC-MS; these compounds were
eight esters (ethyl butanoate, ethyl isovalerate, 3-methylbutyl
acetate, ethyl hexanoate, ethyl octanoate, diethyl succinate,
phenyl acetate and 2-phenethyl acetate), nine acidic compounds

(acetic, propanoic, isobutanoic, butanoic, 3-methylbutanoic,
hexanoic, octanoic, decanoic, and phenylacetic acid) and
eight alcohols (isobutanol, isoamyl alcohol, 1-hexanol, (Z)-
3-hexen-1-ol, linalool, methionol, benzyl alcohol, and 2-
phenylethanol). For another six compounds, however, it was
not possible to obtain mass spectrometric data with sufficient
resolution in one-dimensional GC-MS, due to their low
concentrations or coelution problems, respectively. Nevertheless,
clear mass spectrometric data was achieved when using
HRGC–GC–MS/O allowing successful identification of γ-
decalactone, γ-nonalactone, 2,3-butanedione, ethyl isobutanoate,
ethyl 2-methylbutanoate and 4-vinylguaiacol.

In case of γ-undecalactone, vanillin and methional, the match
factor (reverse mode) of the mass spectra obtained in the two-
dimensional GC-MS analyses with those of the corresponding
reference substance was 720 only for γ-undecalactone, 766 for
vanillin and 673 for methional, respectively, due to their low
concentration levels. The highest value of this parameter is 1,000,
corresponding to perfect match. Accordingly, these compounds
are reported here as tentatively identified based on the remaining
criteria in comparison to the corresponding reference substances.

In case of another 11 odorants, it was not possible to obtain
a mass spectrum with sufficient resolution, neither in one-,
nor in two-dimensional GC-MS analysis, due to their very low
concentrations in the samples. As a result, these compounds
are also reported here as tentatively identified based on their
characteristic odor impressions and their retention indices: 4-
mercapto-4-methyl-2-pentanone, (E)-2-octenal, geranyl acetate,
4-ethylguaiacol, furaneol, homofuraneol, m-cresol, sotolone, 4-
ethylphenol, undecanoic acid, (Z)-6-dodeceno-γ-lactone.

Thereby, the most relevant tentatively identified substances in
terms of FD factors exhibited very characteristic smells: furaneol
and homofureaneol both smell like caramel, sotolone like curry,
savory-like, methional like cooked potato, γ-undecalactone and
(Z)-6-dodeceno-γ-lactone like peach and vanillin like vanilla,
respectively. Accordingly, their characteristic odor is a strong
identification criterion, so that this parameter together with the
respective retention index data provides a solid foundation for
their identification.

Lastly, the identification of the remaining six compounds
was not possible based on these criteria as they did not
match any known substance of our comprehensive in-house
odorant database, and as insufficient mass spectrometric data was
obtained in the course of our determinations. Nevertheless, these
unidentified substances were mostly of no major relevance in
terms of differences between healthy and fungi-infected samples.
Exceptions will be specified later on.

In the next step of the analyses, the FD factors of the potent
odorants in the healthy wine samples (HW) were compared to
those obtained for the same substances in the samples made from
grapes affected by Botrytis bunch rot (BW) or powdery mildew
(PW) to a very high degree, in order to more closely elaborate
the effects of the respective fungal infection on the final wine
aroma. For the varietyWhite Riesling, an additional intermediate
state of bunch rot infection (IW) was investigated. These wine
samples relate to the corresponding must samples as previously
investigated in Lopez Pinar et al. (2016).
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TABLE 1 | Results of the Aroma Extract Dilution Analysis (AEDA).

Substance Odor

attributesa
Identification

parameterc
FDd

Bunch rot Powdery

mildew

RIb on White Riesling Red Riesling Gewürz

traminer

Gm 8622-3

DB-FFAP DB5 HW IW BW HW BW HW BW HW PW

Ethyl isobutanoate Berry ≤1,000 717 O, RI, MS2, S 512 256 512 64 2,048 128 128 512 64

2,3-Butanedione

(Diacetyl)

Buttery 1,021 622 O, RI, MS2*, S 32 64 256 16 256 64 64 64 128

Ethyl butanoate Berry 1,050 767 O, RI, MS1, S 64 128 512 256 1,024 512 128 64 256

Ethyl

2-methylbutanoate

Berry, banana 1,064 852 O, RI, MS2, S 256 512 512 512 1,024 128 128 512 64

Ethyl

3-methylbutanoate

(Ethyl isovalerate)

Berry, apple 1,088 822 O, RI, MS1, S 32 16 4 4 64 8 n.d.f n.d.f 16

2-Methyl-1-propanol

(Isobutanol)

Liquor,

chocolate

1,100 667 O, RI, MS1, S 128 256 128 128 1,024 64 128 64 128

3-Methylbutyl acetate Banana 1,125 885 O, RI, MS1, S 64 64 128 64 128 256 128 1,024 128

3-Methyl-1-butanol

(Isoamyl alcohol)

Liquor,

chocolate

1,212 744 O, RI, MS1, S 2,048 2,048 8,192 2,048 8,192 1,024 2,048 4,096 2,048

Ethyl hexanoate Berry, mint 1,241 1,000 O, RI, MS1, S 512 256 512 128 128 128 256 1,024 512

1-Hexanol Soapy, floral,

cherry

1,353 804 O, RI, MS1, S 2 16 8 8 4 32 64 32 16

(Z)-3-Hexen-1-ol Green, fatty, mint 1,394 n.d.e O, RI, MS1, S 8 n.d.f n.d.f n.d.f n.d.f n.d.f n.d.f n.d.f 4

4-Mercapto-4-methyl-

2-pentanone

Cat urine 1,400 947 O, RI, S 32 32 64 2 64 8 4 2 n.d.f

(E)-2-Octenal Soapy 1,413 n.d.e O, RI, S 16 2 8 2 4 16 64 32 8

unknown Cheesy, beer 1,427 903 64 128 16 64 128 16 64 32 32

unknown Cheesy 1,433 1,097 256 128 256 128 8 n.d.f 128 16 16

Ethyl octanoate Dust, soapy 1,447 1,205 O, RI, MS1, S 8 8 2 16 2 32 32 16 8

Acetic acid Vinegar 1,460 644 O, RI, MS1, S 512 128 1,024 128 1,024 128 512 256 256

3-(Methylthio)-propanal

(Methional)

Cooked potato 1,480 909 O, RI, S 128 128 256 256 256 64 512 128 128

Propanoic acid Cheesy 1,507 n.d.e O, RI, MS1, S 256 128 256 n.d.f 16 n.d.f 32 512 512

3,7-Dimethyl-1,6-

octadien-3-ol

(Linalool)

Acid, soapy 1,533 n.d.e O, RI, MS1, S n.d.f 8 n.d.f 32 8 8 8 32 8

2-Methylpropanoic acid

(Isobutanoic acid)

Rancid, cheesy 1,560 870 O, RI, MS1, S 16 2 1 64 4 64 n.d.f 32 32

unknown Caramel, coffee 1,607 1,209 4 4 2 n.d.f 8 1 8 2 8

Butanoic acid Cheesy 1,629 n.d.e O, RI, MS1, S 128 32 64 32 64 32 32 128 128

3-Methylbutanoic acid Cheesy, rancid 1,664 859 O, RI, MS1, S 1,024 256 128 256 512 256 64 512 128

unknown Onion 1,693 953 128 16 16 256 8 16 16 64 256

1,4-Diethyl

butanedioate (Diethyl

succinate)

Plastic, dusty,

soapy

1,707 n.d.e O, RI, MS1, S 16 8 2 n.d.f 8 n.d.f 2 8 n.d.f

3-(Methylthio)-1-

propanol

(Methionol)

Cooked potato,

onion

1,715 982 O, RI, MS1, S 128 128 512 64 1,024 64 64 128 128

(E)-3,7-Dimethyl-2,6-

octadienyl acetate

(Geranyl acetate)

Fatty, green,

soapy

1,777 n.d.e O, RI, S 4 4 1 2 8 8 16 n.d.f 4

Phenylacetate Floral 1,792 n.d.e O, RI, MS1, S 4 1 8 2 4 4 32 n.d.f 4

2-Phenethyl acetate Honey, grape 1,823 n.d.e O, RI, MS1, S 16 32 16 8 512 32 32 32 64

(Continued)
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TABLE 1 | Continued

Substance Odor

attributesa
Identification

parameterc
FDd

Bunch rot Powdery

mildew

RIb on White Riesling Red Riesling Gewürz

traminer

Gm 8622-3

DB-FFAP DB5 HW IW BW HW BW HW BW HW PW

Hexanoic acid Cheesy, rancid 1,838 1,091 O, RI, MS1, S 128 1,024 1,024 512 2,048 512 1,024 512 512

Benzyl alcohol Grape 1,900 n.d.e O, RI, MS1, S 512 512 2,048 64 1,024 32 256 1,024 512

2-Phenylethanol Rose 1,907 1,114 O, RI, MS1, S 2,048 2,048 8,192 2,048 8,192 1,024 4,096 4,096 2,048

γ-Nonalactone Woody, grape,

coconut

2,000 1,350 O, RI, MS2, S 16 2 16 16 64 16 64 1 4

4-Ethyl-2-

methoxyphenol

(4-Ethylguaiacol)

Spicy, smokey 2,008 n.d.e O, RI, S 128 128 64 32 128 16 32 64 64

4-Hydroxy-2,5-

dimethyl-3(2H)-

furanone

(Furaneol)

Caramel 2,033 1,074 O, RI, S 256 256 128 256 1,024 128 512 512 128

Octanoic acid Plastic, dusty 2,067 1,300 O, RI, MS1, S 16 32 8 64 8 32 32 32 16

5 (or

2)-Ethyl-4-hydroxy-2

(or 5)-methyl-3(2H)-

furanone

(Homofuraneol)

Caramel 2,083 1,154 O, RI, S 512 1,024 2,048 256 1,024 512 2,048 2,048 1,024

3-Methylphenol

(m-Cresol)

Leather 2,109 n.d.e O, RI, S 2 2 2 n.d.f 4 8 4 4 32

γ-Decalactone Grape, peach 2,145 1,476 O, RI, MS2*, S 256 1,024 8,192 512 512 256 512 1,024 1,024

3-Hydroxy-4,5-

dimethyl-2(5H)-

furanone

(Sotolone)

Smokey, curry 2,173 1,125 O, RI, S 16 8 512 16 2,048 16 64 64 256

4-Ethylphenol Gummy, ink 2,200 1,179 O, RI, S n.d.f 8 8 64 32 8 32 8 n.d.f

4-Ethenyl-2-

methoxyphenol

(4-Vinylguaiacol)

Smokey 2,218 1,311 O, RI, MS2, S 512 1,024 128 256 128 256 512 512 64

unknown Woody, coconut,

minty

2,245 1,471 256 256 2 64 1,024 128 128 8 16

Decanoic acid Plastic, dusty 2,264 1,389 O, RI, MS1, S 64 16 32 32 128 16 64 128 16

γ-Undecalactone Grape, peach 2,282 1,593 O, RI, S 128 256 256 64 2,048 8 32 16 32

Undecanoic acid Green, fatty,

leafy

2,350 n.d.e O, RI, S 8 8 8 8 4 4 1 1 1

(Z)-6-Dodeceno-γ-

lactone

Peach 2,430 1,664 O, RI, S 64 128 128 64 1,024 32 64 32 8

Phenylacetic acid Honey 2,580 1,277 O, RI, MS1, S 512 1,024 1,024 512 2,048 512 512 256 512

4-Hydroxy 3-methoxy

benzaldehyde (Vanillin)

Vanilla 2,590 1,412 O, RI, S 128 256 2,048 128 128 64 1,024 256 32

Unknown Smokey 2,610 1,533 4 32 4 1 4 4 n.d.f n.d.f n.d.f

Comparison of healthy samples (HW) and samples affected by bunch rot (BW) and powdery mildew (PW), respectively. For White Riesling, an additional intermediate state of bunch rot

affection (IW) was investigated.
aOdor quality as perceived at the sniffing port.
bRetention indices according to Kovats (1958).
cCompounds were identified via the following criteria; O, Odor quality; RI, retention indices on the named capillary columns; MS1, EI-mass spectrum measured on one-dimensional

GC-MS; MS2, EI-mass spectrum measured on two-dimensional GC-MS; MS2*, CI-mass spectrum measured on two-dimensional GC-MS; S, comparison with reference.
dFlavor dilution (FD) factor on the capillary column FFAP.
en.d., not determined due to: unsatisfactory chromatographic separation on this analytical column or inconclusive assignment of the smell to a specific retention factor due to co-elution

with other odor-active substances.
fn.d., not detectable.
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In the following, the diverse effects of these types of infection
on the odorant composition of the wines will be discussed
in relation to specific substances classes. Overall, only major
changes in FD factors will be discussed in detail, as slight
variations in one or two FD steps are within the natural variation
of the olfactometric detection.

Effects of Bunch Rot Infection
With regards to the group of acids, a great decrease in FD factors
of isobutanoic acid due to bunch rot was observed with 4-,4-,
and 7-fold lower dilution steps in White Riesling, Red Riesling
and Gewürztraminer, respectively (Table 1). A different effect
was observed for propanoic acid: its FD factor was remarkably
increased in BW by five dilution steps in Red Riesling and by
six steps in Gewürztraminer, while the intensity level of this
substance was not affected in White Riesling. For the remaining
acidic substances, variable effects were observed with slight
variations by one or two FD steps in each case only.

The FD factors of the esters were in most cases moderately
increased due to bunch rot infection. However, a major increase
of ethyl isobutanoate was observed in Red Riesling with its FD
factor being increased by five dilution steps in BW. On the other
hand, this ester remained unaffected in the other two varieties.

Regarding the alcoholic substances, a general increase in their
FD-factors was observed comprising, however, mostly slight
variations of up to two dilution steps. Nevertheless, there were
two relevant changes that need to be pointed out: it was observed
that bunch rot induced a major increase in the FD factors of
four dilution steps in the Red Riesling variety for methionol and
benzyl alcohol. However, no major changes were found for these
compounds in the other varieties.

In addition, major intensity changes were observed for
the lactones. Overall, bunch rot led to an increase in their
FD factors, but the extent of this effect was different among
the varieties studied. A major increase of γ-decalactone
comprising five dilution steps was detected in White Riesling,
and γ-undecalactone and (Z)-6-dodeceno-γ-lactone were both
increased by four dilution steps in Red Riesling. The intensities
of the same substances were also moderately elevated in the other
varieties, as was the FD factor of γ-nonalactone in BW.Moreover,
bunch rot caused a relevant increase in the FD factors of sotolone
in case of all investigated wine varieties: on average, they were
four dilution steps higher in BW than in their corresponding
healthy samples.

As representative of the group of potent thio-odorants,
the cat urine-like smelling 4-mercapto-4-methyl-2-pentanone
was greatly increased in Red Riesling: its FD factor was five
dilution steps higher in BW. In the other two varieties, however,
this compound was only slightly affected: increased in White
Riesling and decreased in Gewürztraminer. On the other hand,
bunch rot induced a major increase in the FD factors of 2,3-
butanedione with three and four dilution steps in White Riesling
and Red Riesling, respectively, while it remained unaffected in
Gewürztraminer.

Regarding bunch rot effects on the substance class of
aldehydes, methional was increased by three dilution factors in
Gewürztraminer. Meanwhile, in White Riesling only a slight

increase was observed and Red Riesling was unaffected. In
addition, the FD factors of vanillin were increased by four
dilution steps in White Riesling and Gewürztraminer, but this
substance was not affected in Red Riesling.

Finally, three unknown compounds suffered relevant changes
due to bunch rot. First and foremost, the FD factor of the cheesy
odorant (RI 1433 on DB-FFAP and 1097 on DB-5) was decreased
from FD 128 to 8 in Red Riesling while it was highly increased in
Gewürztraminer where it was not detected in HW but perceived
with an FD factor of 128 in BW. Second, FD factors of the onion-
like smelling substance (RI 1693 on DB-FFAP and 953 on DB-5)
were decreased by three and five dilution steps in White Riesling
and Red Riesling, respectively. Third, the FD factor of the woody,
coconut-like and minty smelling compound (RI 2245 on DB-
FFAP and 1311 on DB-5) was decreased by seven dilution steps
in White Riesling and increased by four in Red Riesling.

Effects of Powdery Mildew Infection
The changes on the intensities of the acidic compounds induced
by powdery mildew were, in general, subtle. More specifically,
the FD factors of acetic, propanoic, isobutanoic, butanoic,
hexanoic, and undecanoic acid in PW were equal to those in
the corresponding healthy sample. Furthermore, FD factors of
3-methylbutanoic and octanoic acid were subtly decreased while
that of phenylacetic acid was slightly increased. Only decanoic
acid was exceptional insofar, as the FD factor of this substance
showed a relevant decrease in PW by three dilution steps.

Powdery mildew further affected the FD factors of the esters:
ethyl isobutanoate, ethyl 2-methylbutanoate, and 3-methylbutyl
acetate were decreased to a relevant extent with their FD factors
being three dilution steps lower in PW. On the other hand, ethyl
isovalerate was not perceived in the healthy sample while it was
detected with an FD factor of 16 in PW. Ethyl hexanoate, ethyl
octanoate, diethyl succinate, ethyl butanoate, geranyl acetate,
phenylacetate and 2-phenylethyl acetate suffered no important
modifications with regard to their FD factors.

In the group of the lactones, only moderate changes were
observed. The FD factors of γ-nonalactone, γ-undecalactone and
sotolone were slightly increased while the intensity of (Z)-6-
dodeceno-γ-lactone was slightly decreased, and γ-decalactone
remained unaffected.

Infection with powdery mildew caused no relevant
modifications in the FD factors of the following alcoholic
compounds: isobutanol, isoamyl alcohol, (Z)-3-hexen-1-ol,
1-hexanol, methionol, linalool, benzyl alcohol, 2-phenylethanol,
4-ethylguaiacol, furaneol and homofuraneol. On the other hand,
relevant effects were observed on some phenolic compounds.
Thereby, the FD factor of m-cresol was increased by three
dilution steps, while 4-ethylphenol and 4-vinylguaiacol were
decreased by four and three dilutions steps, respectively.

Regarding the effects on the ketones 2,3-butanedione and 4-
mercapto-4-methyl-2-pentanone, no relevant changes in their
FD factors were observed.

Lastly, in relation to the influence of the fungus on aldehydes,
methional remained unaffected while the FD factor of vanillin
was decreased by three dilution steps.
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Sensory Evaluation
All wines were evaluated by an expert sensory panel by means
of comparative aroma profile analyses (Figures 1A,B). In the
course of this evaluation, White Riesling and Gewürztraminer
bunch rot-infected samples were perceived as being more peach-
like/fruity: the intensity rating of this attribute changed from
1.2 for HW to 1.8 and 1.9 for the fungi affected samples of
White Riesling and Gewürztraminer, respectively. In the case
of Red Riesling, however, this attribute was rated in both
samples with similar intensities of 1.5, on average. In addition,
the fungus-affected White Riesling sample was perceived as
slightly more floral with a rating of 0.6 in HW and 1.0 in
BW. Meanwhile, no clear differences were observed in Red
Riesling andGewürztraminer varieties, where the intensity of this
attribute was rated with 1.0, on average. In addition, the liquor-
like/toasty note was also intensified in BW: in White Riesling its
intensity was increased from 0.3 to 1.0 as a result of the infection
whereas just a slight increase from 0.4 to 0.6 of this aroma
note was recorded for Red Riesling and Gewürztraminer. The
remaining attributes were rated similarly in HW and BW (rating
on average: vinegar-like 1.2, cheesy 0.3,musty and vanilla-like 0.4,
respectively).

Sensory rating of the effects of powdery mildew on the aroma
character of the wine showed that the vanilla-like note was
slightly lower in the fungus-affected sample (0.6 in HW and 0.3
in PW). The remaining attributes were rated similarly in both
samples with the following mean values: the floral note with 0.6,

peach-like/fruity with 1.6, cheesy with 0.2, liquor-like/toasty with
0.4, vinegar-like with 1.0 andmusty with 0.2, respectively.

With regards to the hedonic evaluation, the Botrytis bunch
rot-affected samples were rated as being more positive than
its corresponding healthy control in all three varieties studied.
Thereby, the overall aroma of the HW samples was rated with
1.5, on average, as being moderately pleasant, and of the BW
samples as being pleasant with 2.0. The opposite trend was
observed in case of powdery mildew, where the affected sample
was rated as being more unpleasant than its healthy control: the
hedonic impression of HW was rated with 1.9 and PW with
1.7. In the hedonic rating, the variance amongst individuals was
pronounced (Figures 2A,B). Overall, however, it was found that
due to the high inter-individual variation, the observed sensory
differences between samples were statistically not significant.

DISCUSSION

During fermentation, yeasts are responsible for the
transformation of sugar to ethanol and carbon dioxide, and
additionally generate a multitude of by-products in the course
of these processes. Consequently, fermentation is the main
source of wine aroma compounds involving a huge variety of
enzymatic steps and pathways (Schreier and Jennings, 1979;
Etievant and Maarse, 1991; Rodrıguez-Bencomo et al., 2002).
This general consideration is reflected when comparing AEDA

FIGURE 1 | Results of aroma profile analysis. Displayed are the means of 10 participants (1 male and 9 females, 25–35 years old). (A) Comparison between

healthy and bunch rot-affected samples of White Riesling, Red Riesling and Gewürztraminer varieties. (B) Comparison between healthy and powdery mildew-affected

sample of the hybrid Gm 8622-3.
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FIGURE 2 | Results of the hedonic evaluation. Displayed are the means of 10 participants (1 male and 9 females, 25–35 years old). (A) Comparison between

healthy and bunch rot-affected samples of White Riesling, Red Riesling and Gewürztraminer varieties. (B) Comparison between healthy and powdery mildew-affected

sample of the hybrid Gm 8622-3.

results obtained for wine in this investigation with those data
obtained for the corresponding must samples in our previous
study (Lopez Pinar et al., 2016): overall, the FD factors of a series
of compounds were much higher in wine. Thereby, the most
potent compounds in the must samples with FD factor 512 were
methional and vanillin. Meanwhile, the most intense substances
in the wines, isoamyl alcohol and 2-phenylethanol, reached
much higher FD factors of 8192.

AEDA results revealed important effects of both fungi
infections on FD factors of diverse substances. First and
foremost, bunch rot infection caused a general increase in
the fruity-smelling lactones γ-decalactone, γ-nonalactone, γ-
undecalactone, (Z)-6-dodeceno-γ-lactone, and the curry-like
smelling lactone sotolone. This augmentative effect had already
been observed in our previous study on the corresponding musts
(Lopez Pinar et al., 2016). This observation is supported by
findings of other groups showing that fruity lactones are amongst
the most characteristic aroma components of Tokaji Aszú noble
rot wines (Schreier et al., 1976; Miklosy and Kerenyi, 2004;
Miklosy et al., 2004). This increase in lactone content might
further explain the higher intensity rating of the peach-like/fruity
attribute in BW in the course of the comparative aroma profile
analyses between healthy and infected samples.

In addition, bunch rot development led to highly elevated FD
factors in case of vanillin in wine, likewise corresponding to the
effect observed in the must samples. However; this increase did
not reveal a direct correlation with the rating of the vanilla-like
note in the sensory tests, since this attribute was rated similarly in
healthy and affected samples with an intensity of 0.4. On the other
hand, rating of this attribute was fairly variable between panelists.

One reason for this variation might be that the vanilla-like note
might be additionally impacted by other compounds such as
sweet-fruity impressions from lactones or esters in the course
of multi-sensory integration of this complex aroma percept (Lee
and Noble, 2003; Prescott, 2012).

Bunch rot further induced a moderate increase in the
FD factors of isobutanol, isoamyl alcohol, furaneol, and
homofuraneol. These results are also in line with the effects
observed in the study on the corresponding must samples.
The higher content in these compounds might explain the
characteristic liquor-like/toasty note perceived in BW. These
findings are further supported by a study of Sarrazin et al. (2007)
where furaneol and homofuraneol contributed to the aroma of
Sauternes botrytized wines.

Likewise, the panelists recorded a more intense floral note in
White Riesling BW, whereas this intensification was only subtle
in the case of Red Riesling andGewürztraminer. This effect might
relate to the sum of diverse minor increases in the FD factors of
a series of substances: phenylacetic acid, 2-phenylethanol, phenyl
acetate and 2-phenylethyl acetate. Moreover, the FD factors of 2-
phenylethanol and phenylacetic acid were also higher in the must
samples affected by bunch rot.

The observed differences between bunch rot-affected and
healthy samples could be partially related to the higher sugar
content reported in the infected grapes (Lopez Pinar et al., 2016).
It can be assumed that an increase in sugar content in grape
must might imply a more intense fermentation and therefore, a
higher content of esters and lactones in wine (Cãmara et al., 2006;
García-Martín et al., 2010). In addition, an increase in sugar may
be linked to a rise in sugar-derived compounds, such as furaneol
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and homofuraneol (Sanz et al., 1995; Cãmara et al., 2006). On the
other hand, Botrytis cinerea enhances the production of laccase,
an enzyme exerting an oxidative activity (Slomczynski et al.,
1995; Pezet, 1998). Thereby, an increase of isoamyl alcohol and
isobutanol content has been attributed to an enhancement of the
oxidative deamination of their correspondent free amino acid
precursors, leucine and valine, respectively (Cãmara et al., 2006).

Powdery mildew, on the other hand, led to a decrease of
the vanilla-like note in the affected sample corresponding to a
decrease in the FD factor of vanillin in PWby three dilution steps.

The remaining sensory attributes (floral, peach-like/fruity,
cheesy, liquor-like/toasty, vinegar-like, and musty) were rated
very similarly in PW and in its corresponding healthy sample.
In agreement with this result, the FD factors of the acidic
compounds, lactones and esters remained, in general, either
unaffected or were only slightly modified.

Regarding the hedonic evaluation of healthy and bunch rot-
affected samples, it turned out that the aroma profiles of BW
samples were rated as being more pleasant than those of the
HW samples in case of all three grape varieties. This effect
might be linked to the enhancement of positive aroma attributes
(floral, peach-like/fruity and liquor-like/toasty) caused by bunch
rot. On the contrary, the sample affected by powdery mildew
was consistently evaluated as being more negative with regard to
hedonics. This negative rating was, however, not related to any
specific off-note but was rather due to a lack of positive aromatic
notes; in fact, the wine was described as being rather flat.

As already mentioned, none of the differences observed in the
sensory evaluation of the wines was statistically significant and
this was mainly linked to the high variance among participants.
Indeed, it is well known that odor perception can be prone
to pronounced inter-individual differences (Lorber et al., 2016).
These variations may be, amongst others, related to inter-
individual differences in the olfactory receptor repertoire or
differences in the metabolism of odorants within the nasal cavity
(Zhang et al., 2005; Keller et al., 2007; Lorber et al., 2016)

The previously reported earthy off-odors caused by Botrytis
bunch rot and powdery mildew infections (Darriet et al., 2002;
Stummer et al., 2005; La Guerche et al., 2006; Steel et al., 2013)
were not observed in the course of this study. This deviation
might be due to differences in the climatic conditions, an
important aspect that would require more detailed elucidation in
future studies. In the course of the must analyses, however, six
compounds reminiscent of wet earth and fungi had been detected
by GC-O (Lopez Pinar et al., 2016). These had been identified
as geosmin, 2-methylisoborneol, 1-octen-3-one, 1-octen-3-ol,
2,3,5-trimethylpyrazine and 3-sec-butyl-2-methoxypyrazine. In
the frame of AEDA, these compounds had been perceived only
with low FD factors in the musts. Only the FD factor of 2-
methylisoborneol reached a relatively high maximum value of
128. As this substance was not detected with relevant FD in
the present investigation in wine, it is likely that it has been
degraded during fermentation. This assumption is supported by
a study of La Guerche et al. (2006) describing the instability
of 2-methylisoborneol during fermentation of must, and by

a previous study performed by our group showing that this
substance is degraded into two odorless dehydration products
in wine, namely 2-methylenebornane and 2-methyl-2-bornene
(Lopez Pinar et al., 2017).

As the aroma attribute musty was an important term in our
previous investigation on the aroma profiles of the must samples,
it was also included in the present study. Nevertheless, this note
was only perceived with a very weak intensity (on average with an
intensity of 0.4) which is in line with the lack of detection of any
musty smelling substances in the course of AEDA.

CONCLUSIONS

Combinatorial application of comparative AEDA and sensory
analysis revealed distinct aromatic differences caused by both
fungal infections. These were not associated with any specific
key compound, but rather quantitative changes of a series of
aroma active substances in the respective wines. In addition,
most differences observed for the wine aroma were in line with
the changes in odorant composition that had been previously
recorded for the corresponding grape musts.

Thereby, bunch rot predominantly induced an increase in the
aroma intensities of peach-like/fruity, floral and liquor-like/toasty
notes while powdery mildew caused a decrease in the vanilla-like
attribute. These effects could be generally linked with changes in
substance composition as observed via AEDA. However, bunch
rot led to inconsistent effects on the aroma composition in the
three investigated varieties demonstrating that both the type of
fungal infection as well as the type of grape variety influence the
final product to a major extent. Undoubtedly, further research is
needed to investigate the cause for the detected differences.

This study contributes to our knowledge on the aroma effects
of these two economically relevant fungal infections, and builds
the foundation for future more targeted studies, potentially
involving quantitative determinations of representative marker
substances in relation to these fungal infections and their
development under diverse climatic conditions.
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