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A B S T R A C T

The authenticity of tea has become more important to the industry while the supply chains become complex. The
quality and price of tea produced in different regions varies greatly. Currently, a rapid analytical method for
testing the geographical origin of tea is missing. XRF is emerging as a screening technique for mineral and
elemental analysis with applications in the traceability of foodstuffs, including tea. This study aims to develop a
reliable multivariate classification model using XRF spectroscopy to obtain the mineral content. A total of 75 tea
samples from tea producing countries throughout the world were analysed. After variable shortlisting, 18 ele-
ments were used to construct the multivariate models. Tea origin was determined by classifying the tea into 5
major geographical regions producing most of the global tea. PCA showed initial clustering in some regions,
although the types of teas included in the study (black, green, white, herbal) showed no discrete cluster mem-
bership. The prediction power of each classification model developed was determined by using two multivariate
classifiers, SIMCA and PLS-DA, against an independent validation set. The average overall correct classification
rates of PLS-DA models were between 54-85% while the results of SIMCA models were between 70-84% resolving
the poor clustering initially shown by PCA. This study demonstrated the potential of geographical origin of tea
prediction using elemental contents of tea. Naturally, the classification can be linked not only to origin but to the
type of tea as well.
Practical application: Wholesalers and retailers need a rapid and robust screening tool to confirm the origin and
type of tea they sell to consumers. X-Ray fluorescence spectroscopy proved a good technique for achieving this in
commercial teas sourced worldwide. Building on multivariate models, broad classification was accomplished both
in terms of origin (Asian vs non-Asian) and in tea type with zero sample preparation and low cost of analysis.
1. Introduction

Consumer interest in the origin of food products has drastically
increased over the last decade and an increasing number of products have
been marketed on the basis of their origin. Food authenticity has become
more important, because of numerous global/severe food adulteration or
contamination incidents (Luykx and van Ruth, 2008). All these incidents
lead to critical economic losses and concerns about human health (Peng
et al., 2017). As a result, determination of food authenticity is an
important issue in quality control and food safety (Drivelos and Geor-
giou, 2012).

Tea, produced from the Camelia sinensis leaves, is one of the most
widely consumed flavoured and functional beverages worldwide due to
its refreshing taste and desirable aroma. The chemical composition of tea,
which includes carbohydrates, amino acids, proteins, minerals,
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polyphenols and alkaloids, provides potential health benefits (Karori
et al., 2007; Bogdanski et al., 2012) and important physiological prop-
erties (Chang et al., 2017). The characteristics, quality and reputation of
tea is affected by its geographical origin (He et al., 2012). The aroma and
taste of tea is greatly affected by the geographical location of the tea plant
and the natural conditions in which it has been grown (Yan et al., 2014).
This is because different cultivating areas provide variations in growing
conditions for tea. These variations include climate, rainfall, altitudes,
soil, fertilizer, microelements and processing procedures (Yan et al.,
2014). These are all contributing factors to the chemical composition in
tea leaves, which is related to the quality of teas (Heaney et al., 2018).

Plantations of some specific countries have a better reputation for
producing high quality tea, and these producers tend to price their
products significantly higher than the average (Ye, 2012). However, tea
from other provinces produced using a similar process can hardly be
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distinguished by appearance from the higher quality teas (Zhao et al.,
2017a). This encourages dishonest producers to fraudulently label their
product as coming from one of the higher quality areas in order to gain a
higher price (Ye, 2012). The change in consumer behaviour and the
progressively increasing consumption of tea has increased public
awareness regarding tea quality and health benefits. To fulfil the con-
sumer demand for high quality tea products, it is necessary to use the
appropriate analytical tools when analysing tea authenticity, so that a
high standard of quality assurance and process control is maintained
(Chen et al., 2015). These techniques can aid in the food traceability
system to verify and prevent fake products and misinformation in the
event of fraud or commercial disputes (He et al., 2015).

Traditionally, experts were able to discern the origin of a particular
tea partly by taste and aroma (Wu et al., 2016). However, this is not
always trustworthy (Yu et al., 2009). Quality and flavour parameters
(e.g., catechins and polyphenols) analysed by conventional chemical
methods such as liquid or gas chromatography are not ideal authenticity
markers. This is because they are intrinsically affected by storage time
and technological processing of tea (Ye, 2012). Vibrational spectroscopy,
which is otherwise useful in authenticity studies, and in this case FT-NIR,
has been applied in the context of green tea origin (Chen et al., 2009) and
black tea geographical traceability (Ren et al., 2013) with promising
results. FT-NIR spectroscopy identification, however, is also linked with
variable contents of organic components (caffeine, catechins, poly-
phenols and free amino acids) and, thus, affected by the same funda-
mental issues. On the other hand, mineral composition has the potential
to determine the geographical origin of the tea because it is less subject to
change during production and storage and is thus more stable and more
informative when compared to other quality/health related compounds
such as antioxidant content. However, it is important to note that the
mineral composition of tea leaves not only depends on geographical
origin, but also on other factors such as type of soil, tea variety, weather
conditions and other seasonal changes (Zhao et al., 2017b). Commercial
samples integrate all these aspects/factors and hence why a market
basket sampling approach was adopted in this study.

One of the analytical techniques to determine mineral/elemental
content is X-ray Fluorescence (XRF) spectroscopy. XRF spectroscopy is
rapid, accurate and non-destructive, and only requires minimal sample
preparation, in contrast with the more accurate and more expensive
Inductive Couple Plasma Mass Spectroscopy (ICP-MS) technique. This
solid-state analysis can detect elements ranging from sodium to uranium
and has been proven as an effective analytical tool in the determination
of elemental (mineral) content in food (Brito et al., 2017; Perring and
Andrey, 2018). The technique enables the undertaking of a direct
multi-element screening of samples over a wide dynamic range. The
fluorescence produced is detectable via XRF spectroscopy after
bombardment with high energy X-rays (Van Grieken and Markowicz,
2002; Borgese et al., 2015). XRF spectroscopy is effective with liquid and
solid samples, and the wavelength of characteristic X-ray lines is not
dependent on the chemical or physical state of the element. This is due to
there being no electrons involved in chemical bonding during electronic
transitions (Iba~nez and Cifuentes, 2001).

The are two XRF variants, Wavelength Dispersive X-ray Fluorescence
(WDXRF) and Energy Dispersive X-ray Fluorescence (EDXRF). Here we
focus on approaches for the EDXRF systems because they are more
common and easier to use (Willis et al. 2014), therefore are preferred for
high throughput tea testing. As XRF spectroscopy has a multi-parameter
output, it can be used in combination with multivariate untargeted
classification techniques such as Partial Least Square-Discriminate
Analysis (PLS-DA) and Soft Independent modelling of class analogy
(SIMCA). These two supervised linear classification techniques are
widely used in qualitative fingerprint analysis of foods (Berrueta et al.,
2007). Due to different classification principle, these two techniques are
a complementary and often used together.

In this regard, a review of the scientific literature in the authentica-
tion of tea origin reveals that most of the studies limited their tea sample
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collection to a small number of regions within a specific country (Yan
et al., 2014). There have, to date, been no studies examining tea samples
from different sources around the world. In the one study that used XRF
spectroscopy to determine the geographical origin of tea (Rajapaksha
et al., 2017), the scope of the experimental design and especially the
extent of multivariate analysis employed, in terms of different techniques
and appropriate validation, were limited and thus, the research question
remains.

Therefore, the objective of the current study is to investigate the
suitability of XRF spectroscopy to be used as the basis for rapid deter-
mination of tea's geographic origin. Coupling XRF data with a robust
modelling approach the aim was to develop and validate a wider clas-
sification model using modern chemometric techniques and robust
validation.

2. Materials & methods

2.1. Sample collection

Several commercial tea samples (n¼ 75) were collected for this study
of which 54 derived from trusted UK wholesalers between 2017 and
2019. Another 21 samples were collected from trusted sources in
Singapore, Malaysia and China during the same period. The types of tea
collected were: black (n ¼ 14), green (n ¼ 22), oolong (n ¼ 5), blended
(n¼ 14), rooibos (n¼ 3), and herbs and fruits tea (n¼ 17). The suppliers
were able to confirm the country of origin, or in terms of blends, the
originated countries of the particular batch of tea with a high level of
confidence using supply chain tracing documents. Other information
about the samples such as packaging format, level of caffeine where
available, point of purchase was also collected. The samples were
assigned to different “classes” which represent different geographical
regions according to the model design (see 3.1).

2.2. Elemental analysis using X-ray fluorescence (XRF) spectroscopy

Dried tea leaves were finely ground using a pestle and mortar before
being placed inside the XRF sample cups. The procedures of preparing
the tea samples for XRF analysis were adapted from Signes-Pastor et al.
(2017) and Afroz et al. (2019). Briefly, the tea powders (2.50–3.00 g)
were placed inside two 32 mm double open-ended XRF sample cups
(Elementec, Maynooth, Ireland) and covered on one side with Prolene
thin-film (Chemplex Industries, Florida, USA). The samples were com-
pressed at 200 psi for 25 sec to a depth ca. 4 mm. The depth and weight of
the tea samples were recorded. The elements contained in the tea sam-
ples were analysed using an EDXRF spectrometer (Rigaku Nex CG
bentchtop XRF, Texas, USA). Full experimental setup and acquisition
parameters are provided in Supplementary Material I and the EDXRF
Application note: agricultural soils& plant materials (Rigaku, 2015). The
instrument was calibrated using the Fundamental Parameter method.
The measurement of elements was done by helium purging to enhance
Mg and P sensitivity. The samples were analysed in 10 batches, with each
batch containing at most 8 tea samples and 1 certified reference material
(CRM) in order to determine the accuracy and reproducibility of the
measurements (Oriental Tobacco Leaves, CTA-OTL-1). Repeatability
study (n ¼ 8) was conducted successfully and allowed running of only
one XRF analysis per tea sample (Supplementary Information II).

2.3. Descriptive analysis and multivariate analysis

The concentration of each element was automatically calculated from
the XRF spectra in addition to the statistical error, the limit of detection
and quantification by the Rigaku RPF-SQX (“profile fitting–spectra quant
X”) software supplied with the XRF spectrometer. These results (24 ele-
ments initially) coupled with TPC were transferred to spreadsheet editor
and further descriptive analysis was carried out. Descriptive analysis
(mean, standard deviation, maximum and minimum of each element)



Table 1
Concentration of 18 elements measured by XRF spectrometer according to class
Design I (5 global regions).

Element East Asia South Asia South East
Asia

Africa Others

Mg 2590 �
797

2370 �
403

2217 � 351 2115 �
460

3020 �
1385

Al 1553 �
718

1477 �
557

1397 � 346 868 �
212

1433 �
678

P 2109 �
910

1323 �
138

1451 � 195 990 �
513

1424 �
502

S 2200 �
573

1822 �
281

1783 �
94.1

1206 �
348

2019 �
942

Cl 638.7 �
262

615 � 228 624.4 �
258

1405 �
1110

1660 �
1821

K 15726 �
3876

15750 �
1679

15657 �
605

9830 �
6812

15558 �
4119

Ca 3609 �
1165

4485 �
1293

4013 � 793 2947 �
980

7169 �
4556

Mn 845 � 278 629 � 403 742 � 228 576 �
563

628 � 586

Fe 150.7 �
122

119.0 �
34.7

114.0 �
39.2

176 �
51.8

306 � 193

Cu 13.76 �
4.7

20.7 � 2.4 18.6 � 3.3 10.2 �
4.64

13.9 � 4.7

Zn 27.4 � 9.1 27.7 � 4.7 23.8 � 4.3 17.8 �
5.34

25.7 �
6.89

Br 3.4 � 1.3 3.1 � 1.1 3.1 � 1.0 16.3 �
12.7

8.1 � 6.4

Rb 46.90 �
28.7

26.58 �
14.3

62.9 � 30.4 44.7 �
42.2

31.1 �
23.7

Sr 11.2 � 7.3 18.7 � 5.9 23.2 � 20.8 22.9 �
12.3

41.2 �
24.7

Ni 5.4 � 3.5 6.9 � 2.0 4.8 � 2.5 3.2 � 2.8 4.6 � 2.8
Si 1113 �

1461
905 � 628 429 � 141 923 �

403
2403 �
2193

Ti 2.0 � 5.6 0 0 5.5� 6.39 6.9 � 10.7
Sn 33.6 � 5.6 31.8 � 7.2 34.1 � 2.5 30.7� 4.7 31.2 � 8.2
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was carried out using Excel. After excluding some elements (see 3.1), the
dataset (18 elements x 75 samples) was imported to the chemometrics
software package, SIMCA 15 (Umetrics, Sweden) for the following
multivariate analysis.

The exploration of the dataset was performed using Principal
Component Analysis (PCA) both for the raw data and after the applica-
tion of each data pre-treatment methods. The classification analysis to
determine the geographic origin of tea was carried out using two su-
pervised multivariate classification techniques: PLS-DA and SIMCA. Ac-
cording to the model design (see results) the tea samples from each class
were separated into a calibration set (70% of total samples) and a vali-
dation set (30% of total samples) randomly using the INDEX function in
Microsoft Excel. This was done four times to ensure each of the samples
were present in at least in one validation set. This iteration enables the
calculation of the average classification success and the standard devia-
tion and importantly removes the bias from picking a single validation set
(Westad and Marini, 2015). Cross validation (venetian blinds) was also
performed using the software independently of the technique chosen, as
follows: the data was divided into 7 portions. A model was constructed
based on the 6/7ths of data left; the excluded 1/7th was then predicted
from the model. This was done repeatedly using each 1/7th of the data
until all data portions had been predicted. Predicted Residual Sum of
Square (PRESS), i.e., the comparison of the predicted data with the
original data and the sum of square errors, Q2 (i.e., how well the model
predicts new data) and R2 (how well the model fits the data) were
computed in SIMCA 15.

Results are expressed as a percentage of sensitivity specificity and
correct classification rate. Sensitivity represents how well the model
classifies the target samples, while specificity represents the performance
of the model in terms of classifying non-target samples.

3. Results and discussion

3.1. Repeatability of the analysis and variable shortlisting

There are 24 elements detected in the CRM and the selected com-
mercial tea sample following XRF analysis. The repeatability was deter-
mined in both cases, but more emphasis was given in the results obtained
from the tea sample. Overall, the relative standard deviation (RSD) was
lower than 25% except for Co, Pb, U, Pd, Ta and Re which exhibited very
high RSD due to their very low content and high standard deviation (data
not shown). XRF is known to produce quantification errors in low con-
centration levels (broadly, <3 mg/kg) due to its sensitivity (Markowicz,
2011). The average RSD of all elements was 49.75%. However, the RSD
without Co, Pb, U, Ta and Re decreased to 12.44%. The shortlisting on
the elements was performed with the following criteria: a) the element
obtained mean concentration of all tea samples over 3 mg/kg (to ensure
reliability), b) the element exhibits a RSD<25% and c) the recovery of or
the particular element in the CRM was in the range of 65%–125%. The
recoveries of most of the elements analysed were acceptable (65–110%),
with the exception of As, Na, U and Ba. The elements Co and Pd were not
detected in the CRM samples. There is neither recommended value nor
information value for the concentration of elements Si, Ti, Sn, Ta and Re
in the CRM samples, thus, the recovery data for these elements cannot be
retrieved. The recovery percentage data of the CRM is available in the
Supplemental material II (Table S2). The elements Co, Pd, Ta and Re
were excluded due to their high RSD derived from their low concentra-
tion. A total of 18 elements (Mg, Al, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, Rb,
Sr, Ni, Si, Ti and Sn), all showing good repeatability and accuracy results,
were selected for further descriptive statistical and chemometrics anal-
ysis. Of these 18, 10 were used in the study of Han et al. (2014) and 13
were used in the study of Rajapaksha et al. (2017). Ni and Mn, which
were the main elements in the discrimination of the tea samples in Han
et al. (2014), are included in this study. However, Na and Pb, which had
previously proven to be good indicators of the geographical origin of
teas, together with Mg, Ca, Ni, Rb and Sr in the work of Zhao et al.
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(2017b), did not achieve good sensitivity in the XRF analysis, and were
therefore excluded in this study.

3.2. Descriptive statistical analysis of elements in tea samples

The tea samples were initially grouped by country of origin, but
several model iterations showed this approach was not suitable due to
the low number of samples for every country and the unbalanced group
model design. Two model designs were adopted for origin classification
and they were region-specific rather than country specific: In Design I,
tea samples were divided into five classes according to their geographical
origin: “East Asia or E Asia” (n ¼ 22), “South Asia or S Asia” (n ¼ 6),
“South East Asia or SE Asia” (n¼ 7), “Africa” (n¼ 6), “Other” (n¼ 34). In
Design II, the model is further simplified with two only classes (“Asia”
and “non-Asia”). We recognise however that this division does not
represent the tea plantation regions globally and does not cover the
variability of different teas produced within every region.

In Design I (5 geographic regions or 5 class-model), the concentration
of the 18 elements is shown for all samples in Table 1. The full elemental
table and repeatability is available in the Supplementary Material II
(Table S1). In general, the levels of the minerals following the XRF
analysis are similar to those from Rajapaksha et al. (2017) and Yemane
et al. (2008), whereby Mg, P, S, K and Ca are the primary elements found
in tea samples, with K the most abundant. This study confirms a high
concentration of K from the tea collected from all regions. The African
class has the lowest concentration of element at 9800 mg/kg on average.
Other common elements in tea include calcium, magnesium, aluminium,
phosphorous and silicon but they are found at a much lower concentra-
tion than potassium. Other trends in the data include very low concen-
trations of Ti in tea from E Asia, Africa and ‘Other’ regions, indirectly
suggesting good quality soil in those regions. This is because Ti is not
absorbed by the tea plants, so it's a good indicator of direct soil
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contamination. Tea from Africa and “Other” had outstanding higher
mean values of Cl and Br than Asia. Besides that, SE Asia contains the
highest mean value of the element Rb. In addition, tea from E Asia has the
highest mean concentration value of elements Al, P, S, and Mn while
South Asia has highest mean concentration of K, Cu, Zn and Ni. The
lowest mean concentration value of Mg is found in African tea, although
the minimum value of Mg is found in tea from the ‘Other’ region. Some
trends with low concentration minerals were also observed indicating
their maybe unreliability due to the higher quantification errors.

The descriptive statistics of the elemental contents of different classes
showed high standard deviations were observed for a number of ele-
ments. This indicates that the concentration of these elements varied
greatly within the same region. This variation can be explained either by
the different types of tea included in the class, the processing method
used, or the ingredients blended with the tea samples. The latter may
have affected the elemental intensities of the tea leaves.
3.3. Multivariate analysis: principal component analysis (PCA)

The flowchart shows the summary of the experimental design
development for multivariate analysis of this study (Fig. 1). Starting from
Design I (five-class model), all tea samples were used to determine the
best data pre-treatment procedure. Data pre-treatment is an important
step that needs to be undertaken prior to multivariate analysis because it
removes undesirable systematic variation from the dataset, thereby
enhancing the predictive power of the PLS-DA and SIMCA calibration
models (Berrueta et al., 2007; Eriksson et al., 2013). In the relevant
literature with elemental analysis and geographical origin approach,
Rajapaksha et al. (2017) used half-range and central value trans-
formation for data rescaling, a process that is also recommended in the
work of Moreda-Pineiro et al. (2001). However, the multi-element
determination method used in Moreda-Pineiro et al. (2001) is
ICP-MS/AES), not the XRF employed in this study and the study of
Rajapaksha et al. (2017). Here, after testing more than 10 different
pre-treatment methods, including UV and Pareto scaling, the Automatic
Transform produced the best results (Table S2) and was therefore applied
to the data set. On this basis, three outliers (T24, T27 and T46) were
excluded from the dataset.

PCA was performed to undertake exploratory data analysis and un-
supervised pattern recognition. This approach provides a more compre-
hensive picture of the XRF-analysed datasets by simplifying and
Fig. 1. The experimental design of the study outlining the classes and the split
between calibration and validation set for multivariate analysis.
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providing a graphical visualisation of the data. Class information is not
required to construct the PCA model.

The consequent PCA model produced showed that separation of the 5
geographical regions is not as clear as the tea samples from E Asia, S Asia
and SE Asia clustered with some tea samples from African and Others
(Fig. 2A). PCA, tea samples from the group “Others” and African classes
have a clear separation from other tea samples. The PCA of Design I
informed the development of Design II, which merged tea samples in E
Asia, S Asia and SE Asia into new class ‘Asia’ and leaving the rest of the
samples in the ‘non-Asian’ class. This simplification of the model could be
beneficial if, for example, a supplier would like to know if a sample is a
Kenyan or a Chinese tea. As expected, the PCA model of Design II, with
outliers (T24, T27 and T46) excluded, gives a better separation between
classes when the initial classes are merged. However, there is some tea
samples from the ‘non-Asian’ class clustered with the Asian tea class
(Fig. 2B).

The PCA scores plots (Fig. 2A and B) remain the same, as alterations
to the class design do not affect the PCA model. Similarly, the loadings
plot for both Design I and Design II PCA models are identical. Interest-
ingly, only two principal components were used to construct the PCA and
the first PC accounts for a very high explained variance (>95%). There is
not however, one element that is responsible for this. The loadings plots
(Supplementary Material II, Fig. S1) reveal that the most discriminative
elements within the tea samples are K, Ca and Mg for the first extracted
principal component, while Mn, Cl and Si are the most discriminative
elements in terms of the second principal component - which is also
indicated in the raw data (Table 1).

Insight can be obtained looking at the types of tea used as not all of
them were black teas. The African teas (T26, T43 and T64) clustered as a
small group are, in fact, all herbal teas, and more specially Rooibos, with
very different mineral profile to the rest. These herbal teas are not
actually produced from Camellia sinensis, but from the plant Aspalathus
linearis of the Fabaceae family. There seems to be three different cluster of
the ‘Others’ category. Samples that are plotted inside the tolerance ellipse
(T7, T22, T23, T28, T30, T31, T37, T48, T51, T62 and T63) on the
bottom half are actually herbal teas, which only contain tea leaves in
varied concentrations blended with other ingredients such as lemon-
grass, ginger, orange peel, blackberry leaves, fruits pulp, anise, fennel
and camomile. The cluster (T24, T27, T36, T46, T49 and T53) that ap-
pears as outlier are teas blended with either spearmint or peppermint.
Margui and Voutchkov (2018) found that the concentration of Mn and Rb
is significantly higher in black tea than mint tea, while the concentration
of Ca and Sr is higher in mint tea. The findings from this study concur
with those evidenced by Margui and Voutchkov (2018). The mean con-
centration of Mn, Rb, Ca and Sr of T24, T27, T36, T46, T49 and T53 are
60.28 mg/kg, 11.865 mg/kg, 12.080 mg/kg and 67.75 mg/kg respec-
tively. The mean concentration of Mn, Rb, Ca and Sr of all tea samples are
698.65 mg/kg, 39.45 mg/kg, 5277.47 mg/kg and 27.49 mg/kg respec-
tively. The concentration of Mn and Rb are approximately 10 and 3 times
lower respectively in mint tea samples, while the concentration of Ca and
Sr are twice as high when compared to all tea samples. The concentration
of Mn, Rb, Ca and Sr of T27 was the lowest among all of the mint tea
samples. This may explain why T27 sits to the left of the graph while the
other mint tea samples are clustered towards the bottom right. According
to the loadings plot, precisely these four elements are discriminative in
PCA models. The last cluster is in the centre of the plot at it is mostly
black tea. On this basis, it appears that classification can be linked not
only to the area of origin but to the type of tea as well. In fact, the herbal
teas can be clearly defined from the rest because they have so distinctive
mineral profile.

3.4. Multivariate analysis: classification using PLS-DA and SIMCA

Prior to the supervised multivariate classification, all the samples
were divided into calibration set (70%) and validation set (30%). The
purpose of the calibration set is to create the model while the validation



Fig. 2. PCA model of A) Design I (East Asia, South Asia, South East Asia, African and Others) using all tea samples (n ¼ 75); Design II (Asia and Others) using tea
samples without outliers (n ¼ 72).

Table 2
Performance parameters of PLS-DA and SIMCA classification models of each
design using 18 elemental content of all samples (n ¼ 72).

Classifier Class R2X (cum) Q2 (cum)

Design I SIMCA E Asia 0.999 0.996
S Asia 1.000 0.995
SE Asia 1.000 0.999
African 0.997 0.995
Other 0.997 0.994

PLS-DA All Classes 0.998 0.134
Design II SIMCA Asia 0.996 0.994

Non-Asian 0.997 0.993
PLS-DA All Classes 0.997 0.397
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set was used to test the predicted power of the model and this approach
has been followed extensively in the literature (Ren et al., 2013). For the
classification analysis, two different supervising learning algorithms
(Soft Independent modelling of class analogy, SIMCA, and Partial Least
Square-Discriminate Analysis, PLS-DA) were used to calibrate the model
for 70% of the total tea samples as per the experimental design (Fig. 1).
These two pattern recognition methods have different ways of
approaching classification: the former method focuses on individual class
modelling while the latter method is oriented towards discriminating
between the classes in one model that contains several classes (Berrueta
et al., 2007).

Cross validation of the calibration set with 1/7th of the data and 7
iterations shows very good model characteristics (R2X, Q2) for the
SIMCA models in both Designs I and II (Table 2). More specifically, R2 is
the percent of variation of the training set Y and is limited to 1. Q2 in-
dicates the performance of the models in the prediction of new data. The
higher Q2, the better the prediction power of the model. The R2X and Q2
of the SIMCA models appeared is very high (value close to 1). On the
49
other hand, the predictability (Q2) of PLS-DAmodels in all cases (Designs
I and II) was very low, which are significantly lower than 0.5 (threshold
for acceptable models). The Design I/PLS-DA model achieved the lowest
Q2 results (0.134) among all models. This is due to both the data and the



Table 3
PLS-DA and SIMCA model average performance on 4 different validation sets for
each design.

Model design & Classifiers Class Sensitivity Specificity

Design I SIMCA E Asia 71.4 � 11.7 96.8 � 3.6
S Asia 25.0 � 18.9 100.0
SE Asia 75.0 � 28.9 86.9 � 9.8
African 62.5 � 25.0 96.4 � 2.4
Other 80.0 � 18.3 78.8 � 14.6
Overall 70.6 ± 9.6 89.1 ± 7.7

PLS-DA E Asia 82.1 � 13.7 59.4 � 13.0
S Asia 0 100.0
SE Asia 0 100.0
African 0 100.0
Other 67.5 � 23.6 69.2 � 10.8
Overall 54.4 ± 13.0 83.1 ± 5.8

Design II SIMCA Asia 77.3 � 18.9 89.6 � 12.5
Non-Asian 89.6 � 12.5 77.3 � 18.9
Overall 83.7 ± 10.9 83.7 ± 10.9

PLS-DA Asia 88.6 � 8.7 81.2 � 7.9
Non-Asian 81.2 � 8.0 88.6 � 8.7
Overall 84.7 ± 8.1 84.7 ± 8.1
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number of classes present; models with higher number of classes will
normally exhibit lower prediction power.

The proper test for the model's performance, however, is with a
separate prediction set. The classification results of the prediction set
(30% of the total samples) for every class is shown in Table 3. Note that
this process was repeated four times and four different iterations were
performed (see Materials and Methods). Among the two different class
designs tested, Design II (two-class model) achieved the highest overall
correct classification rate in both PLS-DA and SIMCAmodels compared to
Design I (five-class model), as expected. When comparing PLSDA and
SIMCA results it must be noted that the classification algorithm is
different, and the results are complimentary rather than mutually
exclusive. SIMCA produces independent models for each class (here
different types of teas) with PCA and uses Euclidean distance to measure
the proximity of the unknown samples to the centre of the class. In
contrast, PLS-DA algorithm performs a PLS regression with the Y-variable
generated for the class type) mapped into a linear space. The resulting
reduced orthogonal space is generated while preserving the maximum
linear correlation between the variables and the class type (Reinholds
et al., 2015). The Discriminant (DA) part of the analysis is rather straight
forward as the regression numbers are tracked back into class member-
ships as part of the class allocation.

In Design I, comparing the correct classification rate of each class
design, it is clear that the SIMCA model is significantly more effective
than PLS-DA in predicting the geographical origin of tea samples using
elemental data. The small or unbalanced class size affects the models.
This was observed with the S Asia class in SIMCA and with three origin
classes (S Asia, SE Asia, and Africa) in PLS-DA, explains the 0% correct
classification rate. In addition, using the PCA model in Design I it was
identified that the African class contains three outliers (rooibos teas).
This is known to affect the calibration of models and can lead to inac-
curate predictions in validation (Dazykowski et al., 2007). The class
‘Others’, referring to other teas originated from other than the regions
indicated, showed varied classification success. This class in the larger
class of the design and such errors can be expected due to unbalances in
the overall class membership.

On the other hand, Design II achieved the highest average correct
classification rate for both SIMCA (84%) and PLS-DA (85%). In other
words, the mineral content of the teas can predict if a sample is Asian or
non-Asian tea. One of the explanations for this result is that the total
number of classes (i.e., 2) is low, which reduces the likelihood of
misclassification.

It is important to be mindful of overfitting. Overfitting takes place
when the model loses it generalisation as a result of learning the char-
acteristics of the data. In overfitting, the noise is modelled as well as the
unique information (Berrueta et al., 2007). Identifying the relevant
variables can prevent this from occurring. The number of variables (18
minerals) selected is considered appropriate for Design I as the total
variables used for further analysis exceeds (n-g)/3, where n is the number
of samples and g is the number of classes (Defernez and Kemsley, 1997).
In Design II however, with only two classes, the variables are higher than
(n-g)/3 and as a result, Design II is more prone to overfitting and to
prevent than perhaps fewer variable must be used.

Despite that, the results obtained are rather good, taking into
consideration that the dataset contains large variability, with the
different types of teas (both green and black, and oolong teas), different
processing (e.g., microbial fermentation of some traditional teas vs
standard oxidation), presence of blends with herbs and fruits and, of
course, different origins. Other studies with the same or other methods
manage to achieve better classification rate (reaching as high as 94.3% in
the case of NIR spectroscopy) controlling carefully the regions selected
and limiting the type of tea analysed (Ren et al., 2013).

As discussed earlier, the identification of minerals could be a better
method for discriminating geographical origin, as there is less variability
between samples compared to that of organic constituents in tea samples.
This study deals with realistic dataset representative of the global
50
consumption of teas. There is no doubt that the presence of some herbal
and fruit tea samples (n ¼ 20) in the dataset, in addition to tea leaves
blended with other ingredients, especially in the ‘Others’ class, is skew-
ing the data. This reiterates that the classification results are related to
both the geographical origin and the type and variety of tea.

The XRF method has several advantages. The measurement is non-
destructive and requires minimal sample preparation. The contamina-
tion risks are low, and results can be obtained within 20 minutes.
However, a key limitation of XRF is the method's partial sensitivity in
terms of large mass elements. This is due to the high scattering of X-rays,
which can lead to increased background intensities. Sodium and lead,
which can be important elements in the prediction of geographical origin
with other techniques, could not be measured accurately due to the na-
ture of XRF analysis. Na is a light element and XRF quantification is
inherently problematic considering the levels found in tea. Similarly, Pb
levels detected could be due to anthropogenic contamination. In both
cases, the uncertainty of the measurement would not make these two
elements goodmarkers for traceability. Nevertheless, XRF is an analytical
method that requires frequent validation in terms of precision, accuracy,
sensitivity, specificity, uncertainty, and robustness (Berrueta et al.,
2007).

Other limitations are related to the sample set used in this experi-
ment. The sample size employed in this study was relatively low, despite
efforts to procure representative of tea products from around the world.
This was particularly the case in S Asian, SE Asian and African samples.
Although much larger samples size (>300) would produce more robust
multivariate models, a common issue with studies that use untargeted
multivariate analysis, it is important to perform initial investigations like
this current one to identify the broad trends. In addition, the tea samples
used here, were of different varieties, including green tea, black tea,
oolong tea, herbal/fruit tea. Apart from adding both variability and noise
to the dataset, some of the herbal tea samples did not contain or con-
tained a trace amount of Camellia sinensis. The additional ingredients
included in herbal and fruit teas may conceal the effect of characteristic
elements of the samples shifting the discrimination from an origin based
to a type-of-tea based approach. It is therefore essential to remove them
from the dataset when possible (Daszykowski et al., 2007).

4. Conclusion

The rapid classification of tea products according to geographical
origin is crucial in the process of quality control in various points along
the tea supply chain. In this study, XRF determination was based on a
suite of 18 elements in tea with an average limit of detection of above 3
mg/kg to give reliable results. The method is simple, rapid and non-
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destructive and can be classified as a screening method. Two different
modelling approaches have been followed to broadly discriminate be-
tween tea producing regions. The multivariate models produced with
either classifier have shown interesting results (>80% correct classifi-
cation rate in most of the cases). The different type of teas within the
different groups has affected the classification, skewing the results, but it
is known that a large, varied, real-world dataset adds the necessary
model variability that is important in the development of multivariate
classification models. Although limited by some factors which have been
identified (limited sample size, unbalanced group of origins and types in
the dataset), this study shows that the classification of tea samples ac-
cording to their geographical origin is feasible through the use of the
elemental contents measured by XRF and the application of multivariate
analysis. The recommendations mentioned previously could assist in
improving the overall performance of this method.
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