
polymers

Review

Insoluble Polymers in Solid Dispersions for
Improving Bioavailability of Poorly
Water-Soluble Drugs

Thao T.D. Tran 1,2 and Phuong H.L. Tran 3,*
1 Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;

trantdinhthao@duytan.edu.vn
2 The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
3 Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and

Clinical Translation, Geelong, Australia
* Correspondence: phuong.tran1@deakin.edu.au

Received: 27 June 2020; Accepted: 27 July 2020; Published: 28 July 2020
����������
�������

Abstract: In recent decades, solid dispersions have been demonstrated as an effective approach for
improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques
that include the application of nanotechnology. Many studies have reported on the ability to change
drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions
using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also
promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies
involving insoluble carriers has been provided. In addition to the role of solubility and dissolution
enhancement, the perspectives of the use of these polymers in controlled release solid dispersions
have been classified and discussed. Moreover, the compatibility between methods and carriers and
between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble
carriers could provide a specific approach and/or a selection of these polymers for further formulation
development and clinical applications.

Keywords: solid dispersion; controlled release; nano-sized solid dispersion; dissolution enhancement;
insoluble carrier

1. Introduction

In the last few decades, solid dispersions (SDs) have been involved in the development of
the majority of new drugs to improve dissolution rates and controlled release because these newly
discovered drugs are poorly water-soluble [1–5]. The limited solubility of these drugs could lead to
low oral availability, potential toxicity, low half-lives, and difficult formulations [6–9]. To achieve high
absorption, drugs need to be dissolved in the gastrointestinal tract [10,11]. Therefore, poorly soluble
drugs often result in low absorption and oral bioavailability [10,12–17].

Recent studies have shown that hydrophilic polymers, such as hydroxypropyl methylcellulose,
polyvinylpyrrolidone, hydroxypropyl cellulose, and polyethylene glycol, are commonly used in the
formation of SDs [18–30]. Moreover, ternary SDs of these polymers have also been utilized to further
improve drug bioavailability [31–41].

In addition, insoluble carriers have also been exploited in many formulations of SDs. By taking
advantage of hydrophobic interactions between polymers and poorly water-soluble drugs, the polymer
may easily change the drug crystallinity into an amorphous state via molecular interactions, enhancing
dissolution [42–48]. Moreover, the insoluble property of carriers in various dissolution media might
be applied to overcome the low bioavailability of drugs with pH-independent solubility. The poor
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solubility of certain polymers can also be utilized in the development of controlled-release SDs or
even nano-sized SDs. This review, therefore, provides insight strategies for using insoluble carriers in
SDs to improve drug dissolution and bioavailability. Figure 1 describes general approaches and key
applications for using insoluble carriers in SDs.
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2. Fundamental Properties and Physicochemical Characterization of SDs

Generally, SDs can be defined as the dispersion of a poorly water-soluble drug(s) in a carrier or a
mixture carrier [49]. A crystalline drug can be transformed into the amorphous form once it is dispersed
in polymers [50,51]. In addition, various advantages of SDs, including wettability improvement,
reduced size, and porosity of particles, contribute to the dissolution enhancement and bioavailability
of poorly water-soluble drugs [52]. In certain circumstances, the molecular interaction has a crucial
role in the formation of the amorphous forms of drugs and maintains the stability of SDs.

However, physical stability may prevent further development of SD products. Under storage
conditions, an amorphous drug in an SD can recrystallize under thermodynamic and moisture
conditions [53]. Fortunately, more homogeneous amorphous SDs lead to the longer physical stability
of formulations [54]. Compared to hydrophilic polymers, better hydrophobic interactions between an
insoluble carrier and poorly water-soluble drugs probably result in more homogenous SDs. Moreover,
hydrophobic carriers might also help to prevent moisture adsorption. Therefore, the use of insoluble
carriers may be a good strategy to improve the long-term stability of SDs. With regard to chemical
stability, both hydrophilic and hydrophobic compounds can protect the dispersed molecules in SDs at a
certain level (e.g., against oxidative degradation) [55]. However, drug molecules, which are susceptible
to pH in the gastrointestinal tract, can be degraded if an SD is fabricated from hydrophilic polymers.
In contrast, insoluble carriers appear useful in chemical stability by preventing drug release in the
medium, which can degrade the model drug [56].

Physicochemical characterization of SDs is an important factor in determining successful
formulations and the mechanism of drug release. First, the level of drug crystallinity in SDs can be
evaluated via techniques such as powder X-ray diffraction and different scanning calorimetry [57].
Second, the molecular interactions can be characterized by infrared spectroscopy, Raman spectroscopy,
nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, molecular modeling,
quantum chemical calculation, and water vapor sorption [58,59]. Third, scanning electron microscopy,
atomic force microscopy, and transmission electron microscopy are usually utilized to observe the
morphologies of SDs and nano-sized particles [26,58]. The details of those methods can be found in
prominent reviews [57–59].
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3. Insoluble Carriers at Low pH Levels in SDs

3.1. Dissolution Improvement in Alkaline Environments and for Colonic Delivery

Although the use of enteric coating materials as a carrier in SDs can inhibit drug release at low
pH levels, an improvement in drug dissolution in neutral and alkaline media can be obtained with
amorphous SDs. Figure 2 describes the ability to incorporate poorly water-soluble drugs in SDs
using insoluble carriers at low pH levels. For instance, Eudragit® S, which dissolves above a pH
of 7, successfully changes dipyndamole to an amorphous state in an SD by the solvent method [60].
Dipyndamole is a weakly basic drug with a pH-dependent solubility that causes incomplete absorption
in the gastrointestinal tract [60]. Therefore, amorphous SDs of dipyndamole significantly increases
drug dissolution at pH levels above 7 to improve drug bioavailability [60]. This study also confirmed
that dipyndamole and Eudragit® S interact via hydrogen bonding of carboxylic groups and nitrogen
atoms [60]. Similarly, Eudragit® S100 has also been shown to be a promising material in SDs of
berberine hydrochloride for colonic delivery [61]. In vitro cytotoxicity tests in human colon cancer cells
(HCT116 and SW480) have suggested antitumor activity enhancement, which indicates the potential
application of SDs with Eudragit® S100 for colon cancer therapy [61].
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Figure 2. The ability to incorporate poorly water-soluble drugs in SDs using insoluble carriers at low
pH levels.

The utilization of enteric coating agents in SDs is a potential application for weakly basic drugs
with pH-dependent solubility [62,63]. For example, itraconazole is soluble in gastric fluid, but it is likely
precipitated after entering the small intestines due to the pH change, leading to low bioavailability [63].
To prevent soluble drugs from dissolving in the stomach, enteric coating agents are used in SDs [62,63].
Moreover, amorphous SDs can increase drug absorption in the small intestine, where higher absorption is
observed compared to the stomach [63–65]. Overhoff et al. successfully used hydroxypropylmethylcellulose
phthalate in SDs containing itraconazole with the mentioned purposes [63]. In this study, amorphous SDs
were fabricated by the solvent method using ultra-rapid freezing [63].

Anionic enteric coating polymers, such as Eudragit® L100 and Eudragit® L100-55, can be applied
for delivering cationic drugs in SDs [66]. Maniruzzaman et al. indicated that the amide groups of
propranolol HCl and diphenhydramine HCl molecularly interact with the carboxyl group of polymers
via hydrogen bonding, resulting in the formation of amorphous drugs in SDs by hot-melt extrusion [66].
In this study, hot-melted extrusion played an important role due to its facilitative ability to enhance
the interaction between drugs and polymers in SDs, increasing drug solubility [66–69]. However,
preparations of SDs with Eudragit® L100-55 should carefully take into account the temperature during
the process because the resulting SDs could be degraded at temperatures below 180 ◦C [70,71].

3.2. Effects of Enteric Coating Polymers and Preparation Methods on Amorphous SDs

The formation of amorphous SDs with enteric coating materials depends on the drug properties,
the type of carrier, and the preparation methods. Figure 3 illustrates factors from enteric coating
polymers affecting amorphous SDs. Indeed, in an investigation by Hasegawa et al., the effects of six
enteric coating agents on two poorly water-soluble drugs (griseofulvin and phenytoin) were analyzed,
but only hydroxypropylmethylcellulose phthalates (HP-50 and HP-55) formed amorphous SDs with
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these drugs [72]. Drugs were still in crystal form when Eudragit® L, Eudragit® S, cellulose acetate
phthalate, and carboxymethyl ethoxy ethyl cellulose were used [72]. In a study on MK-0364 SDs,
Sotthivirat et al. showed that hydroxypropyl methylcellulose acetate succinate was more effective than
hydroxypropylmethylcellulose phthalates and Eudragit® L100-55 in enhancing the dissolution of a
poorly water-soluble drug [73]. Moreover, hot-melt extrusion has been demonstrated as a suitable
approach for preparing SDs using hydroxypropyl methylcellulose acetate succinate [74,75]. Surfactants
have been recommended to be incorporated in SDs to reduce the high temperatures during the hot-melt
extrusion processes, which may cause the degradation of both drug and polymers [76].
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Figure 3. Illustration of factors from enteric coating polymers affecting amorphous SDs.

The effectiveness of SDs developed from enteric coating polymers depends on the miscibility
between drug and polymer [77]. It has been noted that excessive drug loading in SDs results in drug
domains that do not interact with polymer matrixes [77]. Amorphous drugs are easily transformed into
drug crystals once these domains are exposed to the dissolution medium [77]. Therefore, miscibility
and drug recrystallization must be considered in SD formulations with enteric coating agents [77].
The preparation method certainly affects the miscibility in SDs [78]. In an investigation of amorphous
SDs of lumefantrine, Song et al. showed that more favorable acid-base interactions were observed in
SDs by spray-drying compared to hot-melt extrusion because of their exposure to the solution [78].

To improve stable, amorphous SDs, Shah et al. suggested a method to precipitate SDs (so-called
solvent controlled precipitation) [79]. Eudragit® L100, Eudragit® L100-55, Eudragit® S100, hypromellose
acetate succinate, and hypromellose phthalate 50 were used as carriers in this study [79]. Briefly, a poorly
water-soluble drug and a polymer were dissolved in an organic solvent, which was then precipitated into the
aqueous medium [79]. Based on the insoluble properties of the enteric coating agents, the aqueous medium
was maintained between pH 1 and 3 to minimize the solubility of the polymers; therefore, the drug was
dispersed in the inner carrier and precipitated into microparticles [79]. The precipitates were isolated and
dried to form microprecipitated bulk powder with the characteristics of an amorphous SD [79]. By using
this technology, enteric coating polymers prevented nucleation, protected against moisture, and maintained
supersaturation, immobilizing the amorphous drug in SDs [79]. The authors proposed that the insolubility
in medium and possible ionic interactions were the results of the stabilization of the amorphous SDs [79].

Further development of an efficient screening method was also proposed by the same group
for the selection of polymer type, drug loading, and solvent in the development of SDs using
microprecipitated bulk powder [80]. Specifically, the authors suggested a 96-well platform composed
of miniaturized co-precipitation screening (including mixing drugs and enteric polymers in organic
solvents, controlled precipitation, isolation, drying, and high throughput characterization) [80].
Practically, solvent-controlled precipitation has been demonstrated as an efficient method for improving
the human bioavailability of poorly water-soluble drugs [81]. Vemurafenib has been chosen to prepare
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the microprecipitated bulk powder, increasing the human bioavailability five-fold compared to the
crystalline drug [81].

Ternary SDs are effective strategies for further enhancing the dissolution of poorly water-soluble
drugs [68,82–85]. Enteric coating polymers have been investigated by this approach [86,87]. Ohyagi et al.
combined hypromellose and Eudragit® L 100 (or a methacrylic acid copolymer) and showed that the
resulting ternary SDs had improved dissolution compared to those of single-polymer SDs [86]. Differential
scanning calorimetry and solid-state NMR confirmed that the hydroxyl groups (HPMC) and carboxyl
groups (enteric coating polymers) interacted to form the intermolecular interactions that led to dissolution
enhancement [86]. Therefore, the authors suggested that this strategy is likely a powerful approach to
create SDs for poorly water-soluble drugs [86].

3.3. Nano-Sized SDs from Enteric Coating Polymers

Duarte et al. developed a solvent-controlled precipitation method to produce nano-SDs of carbamazepine
by using microfluidization [88]. A similar precipitation process was proposed in which the precipitates were
spray-dried to form nano-SDs of approximately 100 nm [88]. The authors compared the results from these SDs
with those obtained with amorphous SDs prepared by spray-drying but without precipitation process [88].
The higher dissolution rate and bioavailability of the nano-SDs demonstrated that particle size played a key
role in improving the bioavailability of carbamazepine [88].

Electrospinning has also been used as an alternative approach to prepare nano-sized SDs with enteric
coating polymers [89]. Balogh et al. utilized Eudragit® FS 100 in SDs of poorly soluble spironolactone
by electrospinning and hot-melt extrusion to produce nanofibers and amorphous SDs, respectively [89].
Both methods showed impressive dissolution enhancement at a pH of 7.4 [89]. However, drug release in
the gastric fluid was higher in the case of the electrospun samples compared to the extruded SDs due to
the large surface area of the nanofibers [89]. In general, Eudragit® FS 100 was demonstrated to be an
excellent carrier in SDs, and hot-melt extrusion was recommended for colon-targeted delivery of poorly
water-soluble drugs with this polymer [89].

Although hydroxypropylmethylcellulose acetate succinate has been shown to be a promising
carrier in SDs, it is difficult to process using electrospinning [90–92]. However, this process has been
used successfully to produce nanofibers of spironolactone by adjusting the conductivity in a study
by Balogh et al. [90]. This study indicated the importance of solution conductivity in electrospinning
with hydroxypropylmethylcellulose acetate succinate because the drug dissolution from nanofibers
was dependent on the adjusted conductivity [90]. Compared with other hydrophilic polymers
(i.e., hydroxypropyl methylcellulose and polyvinylpyrrolidone K-30), hydroxypropylmethylcellulose
acetate succinate is less effective in improving the dissolution of darunavir [93].

Hassouna et al. proposed a combination of the emulsification-diffusion method and freeze-drying
to prepare ibuprofen-loaded Eudragit® L100-55 nanoparticles, resulting in amorphous SDs [94].
The encapsulation of the drug in Eudragit® L100-55 nanoparticles not only sustained drug release but
also stabilized the amorphous state during storage [94].

4. Water-Insoluble Carriers for SDs

4.1. Sustained Release and Stability Improvement

Figure 4 illustrates the applications of water-insoluble carriers for SDs. For example, Eudragit® RS
100 and RL 100 have been utilized in sustained-release SDs because they are insoluble at physiological
pH values but can swell and become permeable to water [95–97]. By formulating misoprostol in SD
matrices with these polymers, drug release could be slowed, and drug stability can be protected from
degradation by water [96]. Interactions via hydrogen bonding and channel formation are attributed to
the drug release pattern [98,99]. Compared to nanoparticles with the same Eudragit® RS 100 polymer
in their formulations, diclofenac sodium–Eudragit® RS100 SDs are shown to have a slower drug
release rate [97].
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In addition to aiding in sustained drug release, Eudragit® RS 100 and RL 100 are also used in
a photoprotective strategy [100]. Although the SDs do not transform the drug from its crystalline
form, drug release is prolonged, and the photosensitive compound diflunisal is protected due to the
dispersion of the drug in the polymers in a molecular or microcrystalline form [100].

Amorphous SDs with Eudragit® RS PO are developed for transdermal films because a high
concentration of the released drug may enhance skin permeability [101]. However, hydrophilic
excipients (e.g., gelucire, xanthan gum) are suggested to be incorporated into transdermal systems to
allow water sorption and create triggered drug delivery systems [101].

4.2. Dissolution Improvement

Due to the low wettability of water-insoluble carriers, the amorphous SDs from these polymers
have shown a lower dissolution rate compared to water-soluble polymers [102,103]. Therefore, Ngo et al.
developed hydrophilic-hydrophobic polymer blends in SDs to enhance dissolution [83,104]. Specifically,
zein was used as an insoluble carrier and combined with hydroxypropyl methylcellulose to modulate
molecular interactions and drug crystals [83,104]. Compared to the single polymer-based SDs (zein or
hydroxypropyl methylcellulose), this combination resulted in a high reduction of drug crystallinity, high
wettability, and good performance of molecular interactions [104]. The use of hydrophobic polymers in
SDs might facilitate molecular interactions with poorly water-soluble drugs for changing drug crystals
to amorphous forms [104]. In the case of the limited dissolution rate of very poorly soluble drugs,
the addition of surfactant in this polymer blend was part of a strategy to decrease drug recrystallization
and increase wettability [83].

4.3. Controlled Release of SDs with Water-Insoluble Carriers

Under certain circumstances, dissolution enhancement and sustained release are required to improve
the bioavailability of a poorly water-soluble drug. For example, Yang et al. proposed a system including
two main parts: (1) SDs to improve the dissolution rate of nitrendipine and (2) the presence of Eudragit®

RS PO in the SDs to sustain drug release [105]. Specifically, the drug and Eudragit® RS PO were dissolved
in an organic solvent, which was then incorporated with Aerosil to form microspheres [105]. The drug
release from the microsphere SD could be modulated by altering the amount of Eudragit RS PO [105].

In a concept similar to microsphere SDs, Huang et al. used Eudragit® RL and ethylcellulose
blends to control nifedipine release [106]. This study indicated that these SDs exhibited good stability
because of molecularly stable interactions via hydrogen bonding between the drug and the Eudragit®

RL and ethylcellulose blends [106]. However, it has been noted that the internal structure of the
microspheres and the physical state of nifedipine would change if high drug loading occurs in the
formulations [107]. The presence of excessive amounts of drugs would form drug reservoirs, resulting
in a change in the drug release kinetics [107].
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5. Hydrophobic Substitution of Polymers in SDs

To interact with poorly water-soluble drugs, hydrophobic polymers can be substituted on polymers.
This substitution would lead to the formation of a new material that can be used in SDs to enhance
drug solubility and bioavailability. Orienti et al. investigated the substitution of polyvinyl alcohol with
triethylene glycol monoethyl ether for preparing progesterone SDs [108]. Given the presence of the
amphiphilic tetraethylene moiety in the substituted polymer, the solubility of progesterone increases
with increasing polymer concentration, which improves the chance of interactions forming between
the hydrophobic parts of the polymers and the drug [108].

In addition to the amphiphilicity of the new polymer, the substituted polymer concentration
strongly affects the physicochemical properties of the drug. For instance, in an investigation of the
effect of hydroxypropyl methylcellulose acetate succinate on the crystallization suppression of four
model drugs (carbamazepine, nifedipine, mefenamic acid, and dexamethasone), a lower concentration
of substituted succinoyl has resulted in a strong suppression of drug crystallization [109]. However,
a high substituted succinoyl concentration has been recommended to increase the drug dissolution
rate due to its high hydrophilicity [109].

In an effort to create unique material for SDs, a zein-hydroxypropylmethylcellulose conjugate has
been proposed to enhance the dissolution of poorly water-soluble drugs [110,111]. In fact, the conjugates
from these materials have shown amphiphilic properties and formed self-assembled nanoparticles
during a dissolution test [110,111]. Therefore, the conjugate not only acts as a carrier to change drug
crystallinity to an amorphous state but also encapsulates a poorly water-soluble drug in nano-size
particles in dissolution media, resulting in enhanced dissolution [110,111]. Moreover, these studies
have also indicated that the conjugated material is suitable for different model drugs in different
gastrointestinal tract environments [110,111].

6. Conclusions

Substantial strategies for using insoluble carriers in SDs include pH-sensitive carriers, water-insoluble
carriers, and hydrophobic substitution of polymers. In addition to improving the drug dissolution rate,
these insoluble carriers in SDs could be utilized to control drug release or target delivery in the colon in
the same formulations with poorly water-soluble drugs. The application of advanced nanotechnology
in SDs containing insoluble carriers has shown promising approaches and materials in recent studies.
Moreover, the improved stability of SDs containing insoluble carriers compared to other polymers has
been reported in some cases [112]. With regard to the evaluation of SDs containing enteric coating
polymers, the selection of in vitro dissolution conditions should be considered carefully. For example,
one investigation demonstrated that the in vitro performance of an amorphous SD of celecoxib in fasted
state simulated intestinal fluid with a pH of 7.4 was more representative of the in vivo performance of
the SD than the in vitro performance in fasted state simulated intestinal fluid with a pH of 6.5 [113].
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