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Neoplastic cells overexpress glucose transporters (GLUT), particularly GLUT1 and
GLUT3, to support altered metabolism. Hence, novel strategies are being explored to
effectively inhibit GLUTs for a daunting interference of glucose uptake. Glutor, a
piperazine-2-one derivative, is a newly reported pan-GLUT inhibitor with a promising
antineoplastic potential. However, several aspects of the underlying mechanisms remain
obscure. To understand this better, tumor cells of thymic origin designated as Dalton’s
lymphoma (DL) were treated with glutor and analyzed for survival and metabolism
regulatory molecular events. Treatment of tumor cells with glutor caused a decrease in
cell survival with augmented induction of apoptosis. It also caused a decrease in glucose
uptake associated with altered expression of GLUT1 and GLUT3. HIF-1a, HK-2, LDH-A,
and MCT1 also decreased with diminished lactate production and deregulated pH
homeostasis. Moreover, glutor treatment modulated the expression of cell survival
regulatory molecules p53, Hsp70, IL-2 receptor CD25, and C-myc along with
mitochondrial membrane depolarization, increased intracellular ROS expression, and
altered Bcl-2/BAX ratio. Glutor also enhanced the chemosensitivity of tumor cells to
cisplatin, accompanied by decreased MDR1 expression. Adding fructose to the culture
medium containing glutor reversed the latter’s inhibitory action on tumor cell survival.
These results demonstrate that in addition to inhibited glucose uptake, modulated tumor
growth regulatory molecular pathways are also implicated in the manifestation of the
antineoplastic action of glutor. Thus, the novel findings of this study will have a long-lasting
clinical significance in evaluating and optimizing the use of glutor in anticancer
therapeutic strategies.
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INTRODUCTION

Neoplastic cells display dependence on glycolysis for their
massive bioenergetic and biosynthetic requirements (1–3).
Consequently, cancer cells display upregulated expression of
various high-affinity glucose transporters (GLUT) to facilitate
glucose uptake for accelerated glycolysis. Neoplastic cells
overexpress GLUT1, GLUT3, GLUT4, and GLUT12, which
vary depending on their etiology (4, 5). As glucose transporters
are one of the crucial rate-limiting checkpoints of the
reprogrammed carbohydrate metabolism of neoplastic cells,
targeting GLUTs, particularly GLUT1 and GLUT3, has
emerged as a promising antineoplastic approach (6). Thus,
several inhibiting endeavors are being envisaged to imperil
glucose uptake in neoplastic cells (7, 8). One of such strategies
comprises GLUT inhibitors, being extensively explored for their
antineoplastic potential (9). Natural products like genistein (10),
quercetin (11), caffeine (12), phloretin (13), resveratrol (14),
curcumin (15), and small synthetic inhibitors like cytochalasin
B (16), fasentin (17), WZB117 (18), thiazolidinedione (19),
STF31 (20), BAY876 (21), DRB18 (22), silybin (23, 24), and
naringenin (25, 26) have been explored for their GLUT-
inhibiting potential. They are also in various stages of
preclinical and clinical trials (27). However, most of these
inhibitors are isoform-specific and manifest antineoplastic
action at higher concentrations, which can be potentially
harmful to GLUT-expressing normal cells. Therefore, there is a
necessity for developing GLUT inhibitors, which are expected to
possess the ability for Pan-GLUT inhibition and manifest
antineoplastic action at lower concentrations.

Recent reports have introduced a pan-GLUT inhibitory
molecule named glutor, a piperazine-2-one derivative
(Supplementary Figure 1), with a broad spectrum of anticancer
potential, which is capable of exerting the antineoplastic action at
nanomolar concentrations and is stable in an aqueous
environment (22, 28–31). Moreover, glutor can synergistically
interfere with tumor metabolism with glutaminase inhibitor CB-
839 (29). Several aspects of the molecular mechanisms underlying
its antimetabolic action remain unclear, which need to be
deciphered for optimal utilization. To the best of our knowledge,
no study has been conducted in this direction. It is well established
that glucose metabolism can influence the chemosensitivity of
neoplastic cells. However, it remains unclear if glutor can alter the
tumoricidal action of chemotherapeutic agents. Furthermore,
there is no report concerning the antineoplastic activity of glutor
on neoplastic cells of thymic origin, which, though fatal, are rare in
occurrence (32), and display elevated GLUT expression (33).

Considering the observations mentioned above, we used cells
of a thymoma-derived tumor, designated as Dalton’s lymphoma
(DL), which is a spontaneously originated tumor of thymic
origin (34) that has been widely used as an in vivo tumor
model for testing the therapeutic efficacy of anticancer agents
(35, 36) and host–tumor relationship (35, 37). The present study
reports that glutor displays a potent antineoplastic action against
DL cells in vitro by modulating glucose metabolism, pH
homeostasis, cell survival, and metabolic machinery.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Tumor, Mice, and Reagents
DL was used as a tumor model for understanding the effect of
glutor. DL was discovered by Dr. A.J. Dalton (NCI, Bethesda,
USA) as a thymoma of DBA mice with spontaneous origin (34).
The DL cells were procured from the Department of Zoology,
Banaras Hindu University. The DL’s ascitic growth was
established by Goldie and Felix (38). Mice handling and
experimental procedures were carried out according to the
Institutional Animal Ethical Committee (Approval No. BHU/
DoZ/IAEC/2021-2022/016). All reagents, unless mentioned
otherwise, were purchased from Sigma-Aldrich, USA. Fetal calf
serum was purchased from the Hyclone USA and Annexin V/PI
apoptosis detection kit from Invitrogen, USA. RPMI-1640
medium (Cat. No. 31800-022) was purchased from
Thermofisher Scientific, with a final glucose concentration of
11.11 mM. Primary antibodies against GLUT1 (E-AB-31556),
GLUT3 (E-AB-31557), HK-2 (E-AB-14706), and LDH-A (E-AB-
19937) were purchased from Elabscience USA; HIF1-a (SC-
31515), C-myc (SC-40), p53 (SC-126), b-actin (SC-47778), BAX
(CST 2772S), Hsp70 (CST 4872S), and MDR1/ABCB1 (CST
13978) were purchased from Cell Signaling Technology (CST)
USA; VEGF (IMG-80214), TGF-b (IMG-6667-E-100), Bcl-2
(IMG-3181), and MCT1 (IMG-4021) were purchased from
Imagenex, USA; PE-CD25 (55386) was purchased from BD
Biosciences, USA. Secondary antibodies anti-rabbit IgG
(A9919) and anti-mouse IgG (A3562) were purchased from
Sigma-Aldrich, USA. RT-PCR primers were purchased from
Ambion International AG, Germany, Integrated DNA
Technologies, USA, and Eurofins, USA.

Trypan Blue Dye Exclusion Test to
Determine Cell Viability
The number of viable DL cells was enumerated by Trypan blue
dye exclusion test following a method described earlier (35). The
cell suspension was mixed with 0.4% (w/v) Trypan blue in PBS in
equal volumes, and the viable cells (unstained cells) were
enumerated using a hemocytometer under a light microscope
(Leitz Wetzlar, Germany).

Examination of Apoptotic Cell Population
Wright–Giemsa and Annexin V/PI staining was used to identify
the apoptotic cell population. Annexin V/PI staining was carried
out following the manufacturer’s instructions (Imagenex USA).
Control and glutor-treated DL cells (1 × 106) were washed and
incubated in a working solution of 1× annexin binding buffer,
followed by the addition of 10 µl of annexin conjugate and 1 µl of
PI working solution (100 µg/ml) and incubation for 15 min at
room temperature in the dark. The cells were then washed by
centrifugation with 1× annexin binding buffer. The stained cells
were mounted on a slide and observed under a fluorescence
microscope. Live cells were determined to be those with weak
green fluorescence, whereas the deep green high fluorescence
cells were marked as apoptotic cells. Apoptotic cells were also
confirmed by simultaneous examination of apoptotic
morphology under phase contrast optics. To examine
June 2022 | Volume 12 | Article 925666
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apoptotic cells by Wright–Giemsa staining, the cell suspension
was smeared on a slide and air-dried. The cells were then fixed in
methanol and stained with Wright–Giemsa staining solution.
After mounting in glycerine, apoptotic cells were examined
under a light microscope (Leitz Wetzlar, Germany). The
apoptotic cells were identified based on the typical
morphological features, including contracted cell bodies;
densely stained, condensed, and uniformly circumscribed
chromatin; and the presence of one or more membrane-bound
apoptotic bodies containing nuclear fragments. The percentage
of apoptotic cells was determined by counting more than 100
cells in at least three separate visions.

MTT Assay for Estimation of Cell Survival
The MTT assay was performed to assess cell survival as an
indicator of cellular metabolic activity, proliferation, and
cytotoxicity following the method described by Mosmann (39).
MTT was dissolved in PBS, and 50 µl of this solution (final
concentration, 0.5 mg/ml) was added to the tissue culture plate
wells containing the final concentration of 0.5 mg/ml. Cultures
were incubated for 4 h at 37°C in a CO2 incubator to allow the
formation of formazan crystals. The formazan crystals were
solubilized using DMSO, and absorbance was measured at 540
nm using an ELISA plate reader (Labsystems, Finland).

Reverse Transcriptase-Polymerase Chain
Reaction
The expression of GLUT1 and GLUT3 genes were examined using
a previously described method (35). cDNA was prepared using a
cell to cDNA kit (Ambion, USA). The primers’ description is
mentioned in Table 1. Thirty-five cycles of amplification were
performed. Each cycle consisted of denaturation (2 min at 94°C),
annealing (55–60°C) as per the genes’ primers, and elongation (30
s at 72°C). The DNA was electrophoresed on an agarose gel (2%)
containing ethidium bromide (0.25% w/v) and was visualized on a
UV-transilluminator. The band intensity of each gene was
analyzed by ImageJ software.

Western Blotting
Western blotting was carried out to detect the indicated proteins
following the method described by Fido et al. (40) and Goel et al.
(41) with slight modifications. Cells were lysed in lysis buffer
[Tris-Cl 20 mM (pH 8.0), NaCl (137 mM), glycerol 10% (v/v),
Triton X-100 1% (v/v), EDTA 2.0 mM, PMSF 1.0 mM, Leupeptin
20 mM, and aprotinin 0.15 U/ml] for 30 min on ice. Protein
content was measured using the Bradford method (42). Samples
for electrophoresis were mixed in loading buffer [Tris-Cl 0.5 M
Frontiers in Oncology | www.frontiersin.org 3
(pH 6.8), b-mercaptoethanol 100 mM, SDS 20% (w/v),
bromophenol blue 0.1% (v/v), and glycerol 10% (v/v)] and
were heated for 3 min in a water bath. A sample containing 30
µg of protein was subjected to electrophoresis by SDS-PAGE.
Proteins were transferred to the nitrocellulose membrane
(Sartorius, Germany) at 60 mA for 1 h. The membrane was
then incubated with primary antibodies against the respective
proteins and secondary antibodies conjugated to alkaline
phosphatase. Bands were visualized using BCIP/NBT. The
band density was examined by ImageJ software.

Estimation of Intracellular Reactive
Oxygen Species
A method described by Furuta et al. (43) was used to estimate ROS
expression with slight modifications. Cells (1 × 105 cells/ml) were
incubatedwithHBSScontaining0.1mMdichlorodihydrofluorescein
diacetate (DCFDA) at 37°C for 45 min. After washing with PBS, the
stained cells were visualized under fluorescence optics (Nikon,
Japan). The fluorescence intensity was analyzed by ImageJ software.

Quantification of Glucose
A commercial kit from Agappe Diagnostics Ltd. (Kerala, India)
based on converting glucose to H2O2 by the action of glucose
oxidase was used to measure glucose content in the culture
supernatant. The generated H2O2 was estimated by converting it
into a red quinine product by peroxidase action. Ten milliliters of
the culture supernatant was added to 1 ml of working reagent
[sodium phosphate buffer (pH 7.4), phenol, glucose-oxidase,
peroxidase, and 4-amino antipyrine], followed by mixing and
incubation at 37°C for 10 min. Absorbance was measured at 505
nm, and the glucose content was expressed in mM.

Estimation of Lactate
Lactate concentration in the culture supernatant was measured
using an enzymatic colorimetric kit (Spinreact, Granada, Spain)
based on a method described by Somoza et al. (44). Briefly, 1 ml
of sample was diluted in 200 ml of PIPES (50 mM; pH 7.5)
containing 4-chlorophenol (4 mM), lactate oxidase (800 U/L),
peroxidase (2,000 U/L), and 4-aminophenazone (0.4 mM),
followed by incubation for 10 min at room temperature, and
measurement of absorbance at 505 nm. Lactate concentration
was expressed in mg/dl.

Immunofluorescent Staining of Cell
Surface Molecules
Cell surface expression of GLUT1, GLUT3, and CD25 was
carried out using immunofluorescence staining following a
previously described method (45). After washing with PBS, the
stained cells were fixed in a mixture of acetic acid and ethanol
(5:95) for 10 min at −10°C. Fluorescence was visualized on a
fluorescence microscope (Nikon Instruments Inc.).

Estimation of Mitochondrial Membrane
Potential by TMRE Staining
Mitochondrial membrane potential was determined following a
method described by Crowley et al. by tetramethylrhodamine
TABLE 1 | Primer sequences for RT-PCR analysis.

Genes Primer sequences

GLUT1 F: 5’-CTTTGTGGCCTTCTTTGAAG-3
R: 5’-CCACACAGTTGCTCCACAT-3’

GLUT3 F: 5’-AACAGAAAGGAGGAAGACCA-3’
R: 5’-CGCAGCCGAGGGGAAGAACA-3’

b-Actin F: 5’-GGCACAGTGTGGGTGAC-3’
R: 5’-CTGGCACCACACCTTCTAC-3’
June 2022 | Volume 12 | Article 925666
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ethyl ester (TMRE) perchlorate staining (46). Control and
glutor-treated DL cells were incubated for 20 min in a medium
containing TMRE (100 nM) at 37°C. Fluorescence was detected
using a fluorescence microscope (Nikon Instruments Inc.). Data
are presented as the percent of TMRE high cells.

Statistical Analysis
All experiments were conducted in triplicates. The Student’s t-
test analyzed the statistical significance of differences between
test groups. The difference was considered significant when the
p-value was less than 0.05.
RESULTS

Effect of Glutor Treatment on the Survival
of DL Cells
DL cells (1 × 105) and thymocytes obtained from healthy mice
were examined for expression of GLUT1 and GLUT3 by
Western blotting as described in the Materials and Methods
section. Results are shown in Figure 1A. DL cells displayed an
upregulated expression of GLUT1 and GLUT3 compared to
thymocytes. Therefore, in the subsequent experiments, the
effect of glutor on the survival of DL cells was explored. DL
cells (1 × 105) were incubated for 24 h in a medium alone or
containing the indicated concentrations of glutor, followed by
evaluation of cell viability by Trypan blue dye exclusion test
(Figure 1B) and survival by MTT assay (Figure 1C). In another
set of experiments, the DL cells (1 × 105) were incubated in a
medium alone or containing glutor (0.01 µM) for the indicated
time durations, followed by an evaluation of cell viability
(Figure 1D) and survival (Figure 1E). As shown in the results
(Figures 1B–E), exposure of DL cells to glutor in vitro caused a
significant decrease in viable cell count and survival in a dose-
and time-dependent manner compared to untreated control. The
IC50 was determined to be 0.01 µM. Hence, in all subsequent
experiments, DL cells were treated with 0.01 µM dose of glutor
for 24 h, unless mentioned otherwise, a period determined to
display optimal cytotoxic action of glutor for deciphering the
molecular mechanisms underlying the antitumor action of
glutor. Thymocytes (1 × 105) obtained from healthy mice
without tumor transplantation were also incubated with
various concentrations of glutor to estimate its effect on cell
survival. Results indicated that glutor did not exert any cytotoxic
action on thymocytes (data not shown). Given these observations
that glutor can exert a tumor cell-specific cytotoxic action, the
mode of observed cytostatic action of glutor was determined in
the next set of experiments. DL cells (1 × 105) were incubated in a
medium with or without glutor (0.01 µM) for 24 h, followed by
an examination of the mode of cell death by Wright–Giemsa
(Figures 1F, G) and Annexin V/PI (Figures 1H, I) staining. The
cells displaying features of apoptotic morphology were
enumerated. The results revealed that treatment of DL cells
with glutor significantly increased the number of cells
exhibiting typical characteristics of apoptotic morphology
compared to untreated control.
Frontiers in Oncology | www.frontiersin.org 4
Glutor Alters GLUT Expression in DL Cells,
Accompanied by Decreased Glucose
Uptake
To understand if the tumoricidal action of glutor was
accompanied by alterations in GLUT expression and glucose
uptake, DL cells (1 × 105) were incubated in a medium alone or
containing glutor (0.01 µM) for 24 h followed by estimation of
glucose level in culture supernatant and examination of GLUT1
and GLUT3 expression by RT-PCR, Western blot, and
immunofluorescence microscopy as described in the Materials
and Methods section. Results are shown in Figure 2. DL cells
incubated with glutor displayed a decrease in the expression of
GLUT1 and GLUT3 at the mRNA (Figure 2A) and protein levels
(Figures 2B–D) compared to the untreated control. The glucose
uptake of DL cells showed a significant decrease in the glutor-
treated DL cells compared to the untreated control (Figure 2E).
The culture medium containing glutor was supplemented with
indicated amounts of glucose or fructose to understand if the
anti-survival action of glutor could be reversed. Results are
shown in Figure 3. The addition of glucose to the culture
medium did not rescue the inhibition of DL cell survival by
glutor, which was partially reversed by adding fructose.

Glutor-Induced Tumoricidal Action Is
Associated With Modulated Expression of
Cell Survival and Metabolism Regulatory
Molecules
In the next set of experiments, DL cells (1 × 105) were incubated
for 24 h in a medium alone or containing glutor (0.01 µM),
followed by an examination of the expression pattern of
indicated metabolism (Figure 4A) and cell survival regulatory
molecules (Figure 4B) to understand the molecular mechanism
(s) of the antineoplastic action of glutor. Treatment of DL cells
with glutor inhibited the expression of hypoxia-inducible factor
1-a (HIF-1a), hexokinase 2 (HK-2), and lactate dehydrogenase
A (LDH-A) compared to untreated control (Figure 4A).
Furthermore, glutor treatment of DL cells also modulated the
expression of cell survival regulatory molecules B-cell lymphoma
2 (Bcl-2), Bcl-2-associated X (BAX), and p53 (Figure 4B). The
expression of Bcl-2, transforming growth factor-b (TGF-b), C-
myc, and heat shock protein 70 (Hsp70) was decreased in DL
cells treated with glutor, whereas the expression of BAX and p53
increased compared to the untreated control (Figure 4B). An
immunofluorescence examination was carried out to investigate
the effect of glutor on the expression of CD25. Glutor treatment
of DL cells inhibited the expression of CD25 compared to the
control (Figure 4C).

Glutor Treatment Alters the Expression of
Intracellular Reactive Oxygen Species in
DL Cells
Next, we checked the expression of intracellular ROS in glutor-
treated DL cells. DL cells (1 × 105) were incubated in a medium
alone or containing glutor (0.01 µM) for 2 h, followed by an
estimation of ROS expression by dichlorodihydrofluorescein
diacetate (DCFDA) staining as described in the Materials and
June 2022 | Volume 12 | Article 925666
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FIGURE 1 | Glutor exerts cytotoxic action on DL cells. DL cells or thymocytes (1 × 105) harvested from the thymi of healthy mice without tumor transplantation were
processed for immunoblotting for GLUT1 and GLUT3 as described in the Materials and Methods section (A). DL cells (1 × 105) were incubated in a medium alone or
containing the indicated concentrations of glutor for 24 h (B, C) or with 0.01 µM of glutor for the various indicated time durations (D, E), followed by estimation of
cell viability by Trypan blue dye exclusion assay and cell survival by MTT assay as described in the Materials and Methods section. DL cells incubated in a medium
alone or containing glutor (0.01 µM) for 24 h were examined for the mode of cell death by Annexin V/PI (H, I) and Wright–Giemsa (F, G) staining. Values shown in
(B–E) and (G, I) are mean ± SD. The plates shown in (A), (F), and (H) are from a representative experiment out of at least two experiments with similar results. The
bar diagram accompanying (A) is the densitometry of respective bands. *p < 0.05 vs. values of the respective control.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 9256665
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Methods section. Results are shown in Figure 5. Glutor treatment
of DL cells resulted in a significantly higher ROS expression than
the untreated control.

Effect of Glutor on Mitochondrial
Membrane Depolarization
We also examined the effect of glutor treatment of DL cells on
mitochondrial membrane potential. DL cells (1 × 105) were
incubated for 24 h in a medium alone or containing glutor
(0.01 µM), followed by TMRE staining and observation of the
stained cells under fluorescence optics. As shown in Figure 6,
glutor treatment was found to trigger depolarization of the
mitochondrial membrane as observed by inhibited fluorescence
of TMRE compared to untreated control.

Glutor Interferes With pH Homeostasis of
DL Cells
Considering that glucose metabolism influences the pH
homeostasis of tumor cells, we investigated the impact of
glutor treatment on the expression of pH regulator
monocarboxylate transporter 1 (MCT1) along with the
estimation of pH and lactate of the culture medium. Glutor
Frontiers in Oncology | www.frontiersin.org 6
(0.01 µM) treatment of DL cells inhibited the expression of
MCT1 compared to untreated control (Figure 7A). The pH
(Figure 7B) of the culture supernatant of glutor-treated DL cells
was found to be remarkably increased whereas the level of lactate
was significantly decreased (Figure 7C) compared to the
respective untreated control.

Glutor Alters Chemosensitivity of DL Cells
As reprogrammed glucose metabolism of tumor cells is implicated
in the modulation of the chemosensitivity of tumor cells, next, we
examined the effect of glutor treatment on the susceptibility of DL
cells to the anticancer drug cisplatin. DL cells (1 × 105) were
incubated in a medium alone or containing glutor (0.01 µM) in the
absence or presence of cisplatin for 24 h, followed by an
examination of cell survival by MTT assay and expression of
multidrug resistance protein 1 (MDR1) by Western blotting as
described in the Materials and Methods section. The treatment of
DL cells with glutor plus cisplatin resulted in a significantly higher
inhibition of cell survival than the DL cells incubated in a medium
alone or containing cisplatin or glutor (Figure 8A). The
expression of MDR1 decreased in DL cells treated with glutor
compared to the untreated control (Figure 8B).
A

B

C

D

E

FIGURE 2 | Effect of glutor on the expression of GLUT1, GLUT3, and glucose uptake by DL cells. DL cells (1 × 105) were incubated in a medium alone or
containing glutor (0.01 µM) for 24 h, followed by evaluation of GLUT1 and GLUT3 expression by RT-PCR (A) and Western blotting (B) as described in the Materials
and Methods section. The expression of GLUT 1 and GLUT 3 was also examined by immunofluorescence (C, D). The glucose level in the culture supernatant of
control and glutor-treated DL cells was measured (E) as described in the Materials and Methods section. Values shown in (E) are mean ± SD. The plates shown in
(A–D) are from a representative experiment out of at least two experiments with similar results. Accompanying bar diagrams are densitometric images of the
respective bands. Bar diagrams accompanying the fluorescence images depict fluorescence intensity. *p < 0.05 vs. respective control.
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A C

B

FIGURE 4 | Glutor modulates expression of metabolism and cell survival regulatory molecules in DL cells. DL cells (1 × 105) were incubated in a medium alone or
containing glutor (0.01 µM) for 24 h, followed by Western blotting to study the expression of the indicated metabolism (A), cell survival (B) regulatory molecules and
CD25 (C) as described in the Materials and Methods section. The plates shown in (A–C) are from a representative experiment out of at least two experiments with
similar results. The accompanying bar diagrams are densitometry of the respective bands.
FIGURE 3 | Fructose antagonizes the inhibitory action of glutor on tumor cell survival .DL cells (1 × 105) were incubated in a medium alone or containing glutor in
the presence or absence of glucose (1 mM) or fructose (1 mM) for 24 h, followed by an estimation of survival by MTT assay as described in the Materials and
Methods section. Values are mean ± SD. *p < 0.05 vs. DL cells incubated in a medium alone. #p < 0.05 vs. DL cells incubated in a medium containing glutor or
glutor plus glucose.
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DISCUSSION

The present investigation demonstrates the antineoplastic and
chemosensitizing action of glutor against DL cells. To understand
the underlying mechanisms, we considered various possibilities.
The likelihood of impaired glucose uptake due to the inhibitory
action of glutor was supported by the observation of diminished
glucose consumption. This observation is validated further as
glutor inhibits glucose uptake in neoplastic cells of other
etiologies (29, 47). Although the mechanism(s) of the inhibition
of GLUT by glutor is not precisely understood, observations from
our in silico experiments indicate a direct binding of glutor to
GLUTs, possibly causing transformational alterations, which may
impair glucose transport (communicated). As we observed that
glutor could efficiently inhibit DL cell survival and induce
Frontiers in Oncology | www.frontiersin.org 8
apoptosis at a low IC50 value of 10 nM, it strongly indicates that
glutor may have a high-affinity binding to GLUTs.

The pioneering work of Reckzeh et al. (29) reported the
upregulated expression of GLUT1 and GLUT3 in the
colorectal cancer cell line DLD-1 cultured under hypoglycemic
(1 mM), no glucose condition or following treatment with glutor
(0.5 µM) in the presence of glucose (25 mM). The difference with
our observations could be attributed to differences in the etiology
and physiology of the target cells, glucose, and glutor
concentrations used. Interestingly, cell-to-cell variations has
been observed in many cancer cells for GLUT expression upon
the treatment with GLUT inhibitors (22, 29, 48–51).

Interestingly, we also observed downregulation of HIF-1a in
glutor-treated DL cells. Moreover, tumor cells display upregulation
of GLUT1 and GLUT3 expression in response to HIF-1a (52). It is
FIGURE 5 | Glutor treatment elevates intracellular ROS expression in DL cells. DL cells (1 × 105) were incubated for 2 h in a medium with or without glutor (0.01
µM), followed by staining with DCFDA and examination of the cells in fluorescence optics as described in the Materials and Methods section. The plates shown are
from a representative experiment out of at least two experiments with similar results. The accompanying bar diagram depicts the fluorescence intensity of control and
glutor-treated cells. Values are mean ± SD. *p < 0.05 vs. control.
FIGURE 6 | Glutor alters mitochondrial membrane potential. DL cells (1 × 105) were incubated in a medium alone or containing glutor (0.01 µM) for 24 h, followed
by TMRE staining as described in the Materials and Methods section. The plates shown are from a representative experiment out of at least two experiments with
similar results. Values shown in the accompanying diagram are the mean ± SD of the fluorescence intensity. *p < 0.05 vs. control.
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noteworthy that GLUT expression is downstream of and regulated
by HIF-1a (53–55). Moreover, high glucose concentrations have
been reported to upregulate HIF-1a expression (56). As a result,
the low glucose uptake caused by glutor-dependent-inhibition of
GLUT would have triggered the observed downregulation in HIF-
1a expression. Nevertheless, transcription of GLUT genes is also
under the regulation of several HIF-1a independent factors,
including the C-myc, K-Ras, PI3K/Akt/mTOR, cytokines,
hormones, HOX transcript antisense RNA (HOTAIR), and
miRNA (54, 57–64). Indeed, we also observed glutor-dependent
inflection of C-myc. However, more studies will be required to
Frontiers in Oncology | www.frontiersin.org 9
interpret mechanisms underlying glutor-dependent inhibition of
GLUT expression in hypoglycemic conditions.

The present observations also showed that glutor treatment of
DL cells induced cell death, accompanying alterations in regulatory
molecules and metabolic machinery. Indeed, our observations
demonstrate mitochondrial membrane depolarization and
increased ROS expression in glutor-treated DL cells. Moreover,
hypoglycemia caused by impaired glucose uptake could be another
trigger for induction of apoptosis. Hypoglycemia has been
demonstrated to cause a decrease in ATP production associated
with the induction of apoptosis (65, 66). Our experimental findings
A B

FIGURE 8 | Chemosensitizing action of glutor DL cells (1 × 105) were incubated in a medium alone or containing glutor (0.01 µM) for 24 h in the presence or
absence of cisplatin, followed by estimation of cell survival (A) by MTT assay as described in the Materials and Methods section. Control and glutor-treated DL cells
were also evaluated for MDR1 expression (B) by Western blotting. Values in (A) are the mean ± SD. The plates shown in (B) are from a representative experiment
out of at least two experiments with similar results. The accompanying bar diagram depicts the densitometry of the bands. *p< 0.05 vs. respective control; p< 0.05
vs. DL cells treated with glutor or cisplatin alone.
A CB

FIGURE 7 | Glutor interferes with pH homeostasis of DL cells. DL cells (1 × 105) were incubated for 24 h in a medium alone or containing glutor (0.01 µM), followed
by an examination of MCT1 expression by Western blotting as described in the Materials and Methods section. The culture media of control and glutor-treated DL
cells were also examined for pH and lactate levels. The plates shown in (A) are from a representative experiment out of at least two experiments with similar results.
The accompanying bar diagram depicts the densitometry of the bands. Values in (B) and (C) are mean ± SD. *p < 0.05 vs. respective control.
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do not indicate a direct implication of glutor in the modulation of
mitochondrial functions such as mitochondrial membrane
potential; however, our results suggest the role of glutor-
modulated p53 expression in the implication of altered
mitochondrial membrane polarization. Indeed, p53 is reported to
maintain mitochondrial membrane integrity and oxidative
phosphorylation (67). Moreover, elevated intracellular ROS is also
observed in disrupting the mitochondrial membrane potential
through the AMPK/p38 MAPK signaling pathway (G. T. 68).
ROS also play a vital role in activating p53 (69). Besides ROS and
p53, the altered levels of Bcl-2 and BAX have also been associated
with the depolarization of the mitochondrial membrane and,
consequently, mitochondrial-dependent apoptosis (70–72).
Moreover, p53 upregulation is implicated in glycolytic inhibition
and oxidative stress-induced apoptosis in DL cells (73). Together,
the experimental evidence of the present study demonstrates that
Frontiers in Oncology | www.frontiersin.org 10
glutor alters mitochondrial membrane potential in DL cells,
possibly via increasing the levels of p53 and ROS and altering
Bcl-2 and BAX levels. Nevertheless, upregulation of BAX, along
with inhibition of Bcl-2, is implicated in the induction of apoptosis
in neoplastic cells (74–76). Moreover, the inhibited expression of
HK-2 and LDH-A in glutor-treated DL cells could also impede
glycolysis. Thus, the inhibited glycolysis-associated multiple
alterations could be one of the likely reasons for the induction
of apoptosis.

Interestingly, intracellular ROS has been shown to inhibit
various enzymes of glycolysis such as GAPDH, PDK, and PFK,
strongly suggesting its crucial role in the regulation of glycolysis
(77, 78). Other studies have also reported that inhibition of
GLUT1 leads to increased expression of ROS (79, 80). Moreover,
intracellular ROS has been demonstrated to trigger apoptosis in
neoplastic cells (81).
FIGURE 9 | Summary of the molecular mechanisms of the antineoplastic and chemosensitizing action of glutor. The antineoplastic action of glutor involves diminished uptake
of glucose, modulated expression of metabolic and cell survival regulatory molecules, altered pH homeostasis, intracellular ROS production, and chemosensitivity.
Abbreviations: GLUT, glucose transporter; HK 2, hexokinase 2; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PFK, phosphofructokinase; HIF-1a, hypoxia-inducible
factor 1-alpha; LDH-A, lactate dehydrogenase A; MCTs, monocarboxylate transporters; Bcl-2, B-cell lymphoma 2; BAX, Bcl-2 Associated X; ROS, reactive oxygen species;
ABC transporter, ATP-binding cassette transporters.
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Nevertheless, glutor treatment also modulated the expression
of Hsp70 and TGF-b, which are downstream of HIF-1a and play
a crucial role in regulating cell survival (82, 83). As IL-2 plays an
indispensable role in T-cell proliferation (84–88), we also
checked if IL2 receptor expression is modulated in DL cells
following the decrease of glucose assimilation. Interestingly,
glutor treatment of DL cells caused a decrease in CD25
expression, which could be possibly another reason for the
observed decrease in the proliferation of DL cells. Indeed, the
expression of HIF-1a impacts CD25 expression (84).

Another exciting aspect of the present study was the deregulation
of pH homeostasis in glutor-treated DL cells, associated with
decreased lactate production and MCT1 expression. Additionally,
lactate has been shown to exert a predisposing effect on HIF-1a
expression in neoplastic cells displaying the Warburg phenomenon
(89).Nevertheless, p53 can also regulateMCT1expression andhence
pH homeostasis of cancer cells (90; Monde 91, 92). Moreover,
modulated ROS level has been demonstrated to alter the expression
of MCT1 (78, 93, 94). Even glucose levels can modulate MCT1
expression (95). Moreover, HIF-1a also regulates the expression of
both MCT1 and LDH-A in cancer cells (96, 97). As we observed a
decrease in HIF-1a expression, it could be one of the crucial reasons
for the observed decrease in the expression of MCT1 and LDH-A in
glutor-treated DL cells.

Next, we examined if glutor can alter the vulnerability of cancer
cells to the chemotherapeutic agent cisplatin, considering the role
of glucose metabolism in regulating chemosensitivity and MDR
expression in neoplastic cells (98). Treatment of DL cells with
glutor resulted in augmented cytotoxicity of cisplatin, indicating
that it enhances chemosensitivity. Thus, this observation reflects
the potential of a new therapeutic modality of using glutor as an
adjuvant to increase the chemosensitivity of DL cells. Our
observations align with earlier studies showing that p-
glycoprotein expression is modulated by glucose levels rendering
neoplastic cells susceptible to anticancer drugs (99, 100). Indeed,
accelerated glycolysis of cancer cells has been reported to elevate
ABC transporter activity in neoplastic cells (101, 102). Moreover,
GLUT inhibition has been associated with altered drug efflux in
cancer cells. Nevertheless, the expression ofMDRmolecules is also
downstream of HIF-1a, which was inhibited in glutor-treated DL
cells. Moreover, modulated levels of lactate have also been
implicated in altering MDR1 expression (103).

The present study’s findings suggest that glutor exposure of
thymic tumor cells can manifest hypoglycemic conditions leading
to a catastrophic effect on the carbohydrate metabolism of
neoplastic cells with multiple consequences. Moreover, the
cytotoxic and chemosensitizing action of glutor could be
facilitated by interdependent molecular events, implicating
modulated expression of cell survival and metabolism regulatory
molecules, pHregulation, intracellularROSproduction, andMDR1
expression. It must also be noted that adding extra fructose but not
glucose to the culturemedium could partially reverse the inhibitory
action of glutor on tumor cell survival. This observation indicates
the extraordinary ability of neoplastic cells to utilize alternative fuels
to compensate and revive theirmetabolismeven if one pathwaygets
blocked by an inhibitor. Therefore, these observations must be
Frontiers in Oncology | www.frontiersin.org 11
considered while designing therapeutic regimens using glutor. A
summary of the possiblemolecularmechanisms underlying glutor-
dependent inhibition of tumor cell survival is depicted in Figure 9.
This study also opens future possibilities to explore the translational
value of these observations by testing the tumor growth-retarding
action of glutor under in vivo preclinical models. Thus, these
findings will have a long-lasting clinical significance in evaluating
and optimizing the antineoplastic potential of glutor.
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