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Abstract
Background: While gene duplication is known to be one of the most common mechanisms of
genome evolution, the fates of genes after duplication are still being debated. In particular, it is
presently unknown whether most duplicate genes preserve (or subdivide) the functions of the
parental gene or acquire new functions. One aspect of gene function, that is the expression profile
in gene coexpression network, has been largely unexplored for duplicate genes.

Results: Here we build a human gene coexpression network using human tissue-specific
microarray data and investigate the divergence of duplicate genes in it. The topology of this
network is scale-free. Interestingly, our analysis indicates that duplicate genes rapidly lose shared
coexpressed partners: after approximately 50 million years since duplication, the two duplicate
genes in a pair have only slightly higher number of shared partners as compared with two random
singletons. We also show that duplicate gene pairs quickly acquire new coexpressed partners: the
average number of partners for a duplicate gene pair is significantly greater than that for a singleton
(the latter number can be used as a proxy of the number of partners for a parental singleton gene
before duplication). The divergence in gene expression between two duplicates in a pair occurs
asymmetrically: one gene usually has more partners than the other one. The network is resilient
to both random and degree-based in silico removal of either singletons or duplicate genes. In
contrast, the network is especially vulnerable to the removal of highly connected genes when
duplicate genes and singletons are considered together.

Conclusion: Duplicate genes rapidly diverge in their expression profiles in the network and play
similar role in maintaining the network robustness as compared with singletons.
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Background
Approximately half of human genes are members of
duplicate gene families [1] and such genes might be play-
ing an important role in the robustness of organisms
against mutations (reviewed in [2-4]). Do most duplicate
genes retain the functions of their parental singleton
gene? Or do they diverge after duplication? And how rap-
idly does this divergence occur? Several models predicting
preservation of both duplicate gene copies (e.g., gene
function conservation, subfunctionalization, neofunc-
tionalization, and subneofunctionalization) have been
proposed [5-7] and reviewed in [8,9], however, their rela-
tive prevalence in the fates of duplicate genes is presently
unknown. Originally, these questions were addressed by
analysis of the protein-coding sequences of duplicate
genes. Namely, the pattern of nonsynonymous vs. synon-
ymous substitutions between duplicate genes was used to
predict divergence in function (e.g., [9-11]). However,
protein-coding sequences possess only partial informa-
tion about gene evolution and function. The availability
of genome-wide mRNA expression data allows one to
study another important aspect of duplicate gene evolu-
tion, that is divergence in gene expression after duplica-
tion (e.g., [12-15]).

The divergence of duplicate genes in gene coexpression
networks, where connectivity is based on similarity in
gene expression patterns (e.g., [16-18]), represents yet
another facet of duplicate gene evolution that awaits
detailed investigation. Gene coexpression networks as
well as many other biological networks (e.g., metabolic
and protein-protein interaction networks) were shown to
be scale-free [16,17,19,20]: the topology of these net-
works is dominated by a relatively small number of highly
connected nodes, also called hubs [21,22]. Scale-free net-
works were found to be tolerant against random removal
of nodes, but particularly vulnerable to preferential
removal of hubs [23]. The studies of the evolutionary ori-
gins of scale-free biological networks suggested that gene
duplication can lead to both network growth and prefer-
ential attachment and to result in a scale-free topology
[22,24-26]. Thus, duplicate genes are likely to be the
major players in the evolution of biological networks and
investigation of their divergence in these networks is of
great importance. So far, the divergence of duplicate genes
has only been examined in yeast transcriptional regula-
tion and protein-protein interaction networks [9,27-30],
however, it has not been explored in networks of more
complex organisms, e.g., mammals.

In mammals, where genome-wide transcriptional regula-
tion and protein-protein interaction data are limited
[31,32], coexpression networks provide an alternative for
investigation of duplicate gene divergence at the systems
biology level (protein-protein interaction and transcrip-

tion regulatory links are a subset of links in gene coexpres-
sion networks). Coexpression and functional relationship
of genes are expected to be positively correlated. Indeed,
clustering of mRNA expression data has been successfully
used for grouping genes similar in function [33,34] and a
global correlation was found between gene expression
and protein-protein interaction data [35,36]. Addition-
ally, thousands of coexpression connections between
genes were found to be evolutionarily conserved among
distant organisms [18], again suggesting a strong link
between similar expression pattern and functional relat-
edness. However, some individual links between genes
might not represent direct functional relationships due to
the noisiness of microarray data and network transitivity.

In the present study we build a human gene coexpression
network based on human tissue-specific microarray data.
We examine the divergence of duplicate genes in this net-
work by addressing the following questions: (1) are dupli-
cate genes or singletons represented more frequently
among network hubs; (2) how rapidly do duplicate genes
lose shared parental partners; (3) how quickly do they
acquire new coexpressed partners; (4) is the divergence in
the gene coexpression network symmetric or asymmetric
between two duplicate genes in a pair; and (5) do dupli-
cate genes and singletons play different roles in maintain-
ing the robustness of this network.

Results and discussion
Description of the network
To build the gene coexpression network, we used the
mRNA expression data that provide information about
~45,000 transcripts assayed in 79 human tissues [37]. We
mapped probe sets to genes (see Methods) and as a result
obtained a data set with one-to-one probe set to gene cor-
respondence. This data set consisted of 14,342 genes,
including 261 tissue-specific and 3460 ubiquitously
expressed genes.

Two genes (represented by nodes) were connected by an
edge if (1) both of them were simultaneously expressed in
at least T common tissues, and (2) the Pearson correlation
coefficient of their logarithmically transformed (with base
2) expression values was greater than or equal to R [16].
Nine networks were constructed depending on the combi-
nation of T and R (T ≥ 5, T ≥ 7, or T ≥ 9; and R ≥ 0.5, R ≥
0.7, or R ≥ 0.9). Here in addition to the Pearson correla-
tion coefficient we used a threshold of the minimal
number of common tissues in which both genes are
expressed. Relying on the correlation coefficient alone
could lead to non-biological artifacts, e.g., artifactual sim-
ilarities based on non-expression or expression in a few
tissues only. Thus, by adding this additional criterion we
obtain a meaningful correlation coefficient as it is calcu-
lated from at least five data points and only for tissues in
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which both genes are expressed (AD>200). To character-
ize the global topology of these networks, we used several
graph measures [38]. First, the average node degree <k>
reflected the average number of genes expressed together
with a given gene. Second, the average shortest path length
<d> specified the average number of edges required to
travel from one gene to any other gene. Third, the average
clustering coefficient <c> measured the connectivity of the
neighborhood of a gene. With increases in T and R, the
number of genes in the main cluster and the average
number of genes coexpressed with a given gene decreased,
while the average shortest path length increased (Addi-
tional file 1).

Additionally, we investigated the node degree distribution
P(k) describing the frequency of the number of genes with
k coexpressed genes. For five (out of nine) networks, this
distribution approximated a power law distribution (Fig-
ures 1 and Additional file 2), a characteristic of scale-free
networks [21]. We used the network with T ≥ 7 and R ≥ 0.7
for further examination, since for these thresholds the
degree distribution had a power law tail (Figure 1) and we
still retained a large number of genes for a statistical anal-
ysis (however, our main conclusions hold for all thresh-
olds examined). This network contained 12,897 nodes
(all located in the main cluster) with the average degree of
132.4 (Table 1). The density (the number of observed
connections divided by the number of possible connec-
tions) of the present network is 0.0103, which is compa-

rable to the value of 0.0057 obtained for a human gene
coexpression network consisting of ~9,000 genes and con-
firmed by at least three microarray data sets [34].

Interestingly, we found a complex relationship between
clustering coefficient c and degree k: c increased steadily
with increasing k for k < ~300, then it slowly decreased
(Figure 2A and Additional file 3). The increasing relation-
ship was more pronounced since it represented a larger
sample of nodes. This implied that genes with a moder-
ately high number of coexpressed genes usually had
highly connected neighbors. This observation was unex-
pected as other scale-free networks display either negative
or no correlation between clustering coefficient and
degree [22]. Initially we suspected that the relationship
observed here could be explained by a large number of
ubiquitously expressed genes that have a high probability
of being clustered among themselves and with other
genes. However, a largely positive correlation between c
and k was observed for either ubiquitously expressed or
non-ubiquitously expressed genes (Figures 2B and 2C),
suggesting that this is a general property of the studied
network.

Differences between duplicate genes and singletons
A total of 11,512 duplicate genes were identified among
22,103 Ensembl (NCBI build 34) known and novel pro-
teins (see Methods). The studied network consisted of
6,390 singletons and 6,507 duplicate genes. Interestingly,
while genes in the two categories had similar degree distri-
butions (Additional file 4), duplicate genes had a lower
average node degree and thus were less connected in the
network than singletons, although the difference was
small (102.1 vs. 144.9; Table 1; t = -7.74; P < 0.001 as
assessed by permutation test). Ranking the nodes by
degree indicated that among highly connected genes the
proportion of singletons was higher than the proportion
of duplicates (Figure 3). Thus, the effect of increased copy
number might be more severe for genes with numerous
coexpressed partners in the network and, as a result, dupli-
cations of such genes might have a lower propensity to
become fixed in a population as compared with duplica-
tions of genes with few connections [27]. Interestingly,
the average clustering coefficient was significantly lower
for duplicates than for singletons (Table 1; t = -9.86; P <
0.001 as assessed by permutation test). This suggests a

Table 1: Description of the studied network and the differences between duplicate genes and singletons

Gene categories Number of nodes in the 
giant cluster (n)

Average degree (<k>) Average shortest path 
length (<d>)

Average clustering 
coefficient (<c>)

All genes 12897 132.40 2.64 0.16
Duplicate genes 6507 120.11 n/a 0.14
Singletons 6390 144.92 n/a 0.17

Degree distribution of the studied network (T ≥ 7 and R ≥ 0.7).  Figure 1
Degree distribution of the studied network (T ≥ 7 
and R ≥ 0.7).   The degree distribution of the studied net-
work.
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lower likelihood of a duplication fixation for a gene that
has a tightly connected neighborhood. In this network,
the percentage of duplicate gene pairs with at least one
Gene Ontology [39] term overlap was higher among pairs
connected by a link vs. unconnected pairs (97% vs. 86%).
This is a much higher percentage than that observed for
singletons – either linked (22%) or unlinked (15%).
Thus, duplicate genes, especially if they are linked, had
greater functional similarity.

Among the strongest hubs for duplicates, the proteins par-
ticipating in nucleotide, nucleic acid, ATP, and protein
binding were overrepresented (determined from the Gene
Ontology terms). In addition to these categories, mito-
chondrion, signal transduction, and membrane proteins
were overrepresented among singleton hubs. Interest-
ingly, similarly to duplicate hubs, duplicates with the low-
est number of links were involved in protein and ATP
binding. However, singletons with a small number of

links had different functions: e.g., receptor, transcription
factor and transcription regulation activity.

Duplicate genes rapidly lose shared coexpressed partners
We investigated the dynamics of loss and gain of coex-
pressed partners (genes expressed together with a given
gene, henceforth called partners) between two duplicate
genes constituting a pair. We denoted the number of part-
ners of one and the other duplicate gene in a pair as n1 and
n2, respectively, and the number of partners shared
between the two duplicate genes as n12 (Figure 4). We
assumed that immediately after duplication, each dupli-
cate gene was expressed together with n1 = n2 = n12 other
genes (Figure 4B). With time, duplicate genes lose shared
partners and acquire new ones. Here we assume that
shared partners in a duplicate pair are inherited from a
parental gene.

We discovered that duplicate genes lose shared partners
rapidly with evolutionary time. We calculated the fraction
of shared partners among all partners for each duplicate
gene pair, n12/(n1 + n2 - n12), and used the synonymous
rate per site, KS, as a proxy of evolutionary time since gene
duplication (Figure 5). For this analysis we used the 698
independent duplicate gene pairs (i.e. each gene was
present only once in this data set, see Methods) for which
both genes were present in the network and KS was less
than 2. Our initial observation was that the fraction of
shared partners for duplicate genes within each pair was
usually low: it was <20% for 666 out of 698 duplicate
pairs studied (the highest fraction of shared partners for a
duplicate gene pair was 68%). A significant negative cor-
relation was observed between n12/(n1 + n2 - n12) and KS (R
= -0.66, P < 0.003). The fraction of shared partners for a
duplicate pair was on average 6.6% after only ~50 million
years (MY) since duplication (this corresponds to KS =
0.13 and requires an assumption that human and Old
World monkeys diverged ~25 MY ago and the sequence
divergence between them is ~7%, [40]). At KS ≈ 2, this frac-
tion approached 1.9%, and the partners for the two dupli-
cate genes in a pair were as different as those for a pair of
unrelated singletons (Figure 5).

Several factors could have affected our results. At low KS,
the fraction of shared partners could have been underesti-
mated because the youngest duplicate genes were
excluded from the analysis due to the lack of unique
microarray probes (see Methods). At high KS, some of the
shared partners could have been acquired independently
(i.e. convergently) by each gene in a duplicate pair and
not inherited from a parental gene. And finally, our
assumption of identical expression profiles for two
daughter duplicate genes immediately after duplication
might not be valid in all cases. Indeed, sometimes the
duplication unit is known to partially or completely

The relationship between clustering coefficient c and node degree k for (A) all genes, (B) ubiquitously expressed genes, and (C) nonubiquitously expressed genesFigure 2
The relationship between clustering coefficient c and 
node degree k for (A) all genes, (B) ubiquitously 
expressed genes, and (C) nonubiquitously expressed 
genes. Each point represents an average value for 100 genes.
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exclude the promoter of the parental gene and hence the
two daughter genes might substantially differ in their
expression [41].

Acquisition of new coexpressed partners by duplicate 
genes
We analyzed the same set of 698 independent duplicate
genes and explored the change in the total number of
partners of each duplicate gene pair (as indicated by n1 +
n2 - n12) with evolutionary time. Here we assumed that the
average degree of a parental singleton gene before dupli-
cation is equal to the average degree of a singleton in the
contemporary network. According to this assumption,
immediately after gene duplication, the total number of
partners of a duplicate gene pair is equal to that of a paren-
tal singleton gene, i.e. n1 + n2 - n12 = ns (Figure 4B). Follow-
ing duplication, as the two genes diverge in their
expression profiles, their partners can be classified into
three groups (Figure 4): (1) partners inherited from a
parental singleton gene and still shared between the two
genes in a pair (shared ancestral partners); (2) partners
inherited from the parental singleton gene but present

now only in one of the two duplicates (unique ancestral
partners); and (3) new partners acquired independently by
one of the duplicates (unique acquired partners). The
present study does not allow us to differentiate between
unique ancestral and unique acquired partners directly,
but we can make indirect inferences about their relative
numbers.

In our data set, shared partners constitute a small fraction
among the partners of a duplicate gene pair: on average
lower than 6.6% (see above). If, on average, following
duplication, n1 + n2 - n12 <ns (Figure 4C), this indicates loss
of ancestral partners by duplicate gene pairs. If n1 + n2 - n12
≈ ns (Figure 4D), this can be explained by the presence of
a small fraction of shared partners and a large fraction of
unique ancestral partners, i.e. all of the original partners
of parental genes might still be retained by a duplicate
pair (although some of the partners for a duplicate gene
pair might be unique acquired partners, in this case such
acquisition is compensated by a loss of ancestral part-
ners). If, however, n1 + n2 - n12 > ns (Figure 4E), an excess
of an average number of partners for duplicate pairs over

The number of duplicate genes and singletons in every 500 genes ranked by degreeFigure 3
The number of duplicate genes and singletons in every 500 genes ranked by degree. Duplicate genes are marked by 
triangles and singletons are marked by circles. The genes with the highest degree are shown at the left side of the figure.
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that for singletons can be explained by acquisition of new
partners.

The average number of partners for duplicate gene pairs in
our data set was significantly (~57%) greater than that for
singleton genes (227.9 vs. 144.9; t = 10.57; P < 0.001, sig-
nificance assessed by permutation test), suggesting acqui-
sition of new partners by duplicate gene pairs. This
suggests that on average more than one third of partners
of a duplicate gene pair were acquired after duplication
and not inherited from a parental singleton gene. Such
gain of new partners was rapid: even at low KS (KS = 0.13
for the youngest 40 gene pairs), members of a duplicate
gene pair were already expressed together with 291.4
genes (on average), while a singleton gene was expressed
together with 144.9 genes (on average). Depending on KS,
we observed some variation (and some insignificant
decline) in the average total number of partners for a
duplicate gene pair (Figure 6). Importantly, at any time
point examined (0.13 <KS <2), n1 + n2 - n12 was greater
than ns.

Asymmetric expression divergence of duplicate genes
Two duplicate genes in a pair usually diverged asymmetri-
cally in the network and this asymmetry was acquired
quickly after duplication. For 1,547 independent dupli-
cate gene pairs with KS < 2 (including pairs with only one

copy in the network) we drew a scatter plot with the num-
bers of partners for two duplicate genes at the X and Y
coordinates (Figure 7A). The assignment of a duplicate
gene from each pair to either X or Y was random. Note
that the plot predominantly reflected unique partners,
since the proportion of shared partners was low (see
above). Our simulations showed that if the divergence in
gene expression were symmetric, we would expect a posi-
tive correlation between the numbers of partners for two
duplicate genes in a pair (Figure 7B). However, in reality,
we found a negative correlation (Figure 7A, Spearman's
rank correlation coefficient rs = -0.19, P < 0.001), indicat-
ing that usually two duplicate genes had different num-
bers of partners. Interestingly, 849 out of 1,547 duplicate
gene pairs were located on either the horizontal or vertical
axis, suggesting that one gene had some partners in the
network while the other one had none. Additionally, we
observed that the difference in degree between duplicate
genes in a pair was not related to KS (Figure 7C). Thus, the
asymmetry in expression divergence was established early
and was maintained throughout the evolutionary time
examined.

Robustness of the network
To study the role of duplicate genes vs. singletons in the
robustness of this coexpression network, we computa-
tionally perturbed the network by random removal of
nodes (error) and degree-based removal of nodes (attack
or the preferential removal of the most highly connected
genes; [23]). Error and attack were performed separately
on three categories of genes – singletons, duplicate genes,
and all genes taken together. Thus, a total of six experi-
ments were performed. In each experiment, we removed
nodes in 10%, 20%, 30%, 40%, and 50% increments cal-
culated from the total number of nodes in the network.
The relative size S (the fraction of nodes in the giant con-
nected cluster after node removal) and the average path
length <d> of the largest connected cluster were measured
at each increment (Figure 8). The decrease in S and
increase in <d> indicate network breakdown.

Random removal of duplicate genes, singletons, or all
genes had minimal effect on the network (Figures 8A and
8B). The size of the main cluster did not decrease beyond
the reduction expected due to node removal and the aver-
age path length remained approximately constant, indi-
cating that most unremoved nodes stayed connected. This
error tolerance was expected due to the high connectivity
and scale-free nature of the network [23] and to the simi-
larity in degree distribution of the three categories of
genes (Figure 1 and Additional file 4).

The network also appeared to be resilient to the degree-
based node removal of either singletons or duplicate
genes. Attack on singletons was expected to lead to a faster

The schematic representation of duplicate gene evolution (A) prior to duplication event, (B) immediately after duplication, (C, D, E) after some time following gene duplicationFigure 4
The schematic representation of duplicate gene evo-
lution (A) prior to duplication event, (B) immediately 
after duplication, (C, D, E) after some time following 
gene duplication. The ancestral singleton gene is shown 
with a crossed line, duplicate genes are in black, shared 
ancestral partners are in grey, unique ancestral partners are 
in stripes, and unique acquired partners are in white; ns, n1 
and n2 are the numbers of partners for a singleton, first dupli-
cate, and second duplicate, respectively; n12 is the number of 
shared partners for a duplicate gene pair.
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crash of the network than attack on duplicate genes
because of the higher average degree of singletons (Table
1) and their higher proportion among hubs (Figure 3). At
the 40% and 50% increments, the degree-based removal
of duplicate genes indeed yielded a slightly smaller aver-
age path length (<d>dup = 2.92 vs. <d>sin = 2.96 at 40%;
<d>dup = 2.79 vs. <d>sin = 2.86 at 50%; Figure 8D), thus
providing marginal support for this expectation. How-
ever, contrary to the expectation, attack on singletons and
attack on duplicate genes led to similarly minimal
decreases in the relative sizes of the main cluster (Figure
8C).

In contrast with attack on either duplicate genes or single-
tons, attack on all genes severely damaged the network
(Figures 8C and 8D). After 50% of all genes were removed
by attack, the network broke down into many small clus-
ters and as a result the relative size of the main cluster was
only 0.30 as compared with 0.50 after error (Figures 8A
and 8B). Additionally, this led to ~two-fold increase in the
average shortest path length as compared with the effect of
error (<d>error = 2.66 vs. <d>attack = 4.91, both after removal
of 50% of nodes; Figures 8A and 8D).

Why did the network break down so rapidly after we
attacked duplicate genes and singletons combined? We
hypothesized that this could be due to the removal of a
large number of hubs and edges. Indeed, although the
same number of genes was removed in each experiment,
more strong hubs were removed by attack on all genes
(e.g., 20% of the strongest hubs for the 20% increment;
Figure 8D) than on either duplicates or singletons sepa-
rately (e.g., only ~10% of the strongest hubs in each case
for the 20% increment; Figure 8D). Similarly, more edges
were eliminated by attack on all genes (e.g., ~84% of
edges for the 20% increment; inset in Figure 8D) than on
either duplicates or singletons (~62% and ~68%, respec-
tively, for the 20% increment; inset in Figure 8D).

Conclusion
The analysis of duplicate genes in the human gene coex-
pression network allowed us to make the following con-
clusions. First, in agreement with analysis of yeast
duplicate genes (e.g., [13,14,29,30]), our observations
suggest that human duplicate genes quickly lose similarity
in gene expression profiles. As a result, except for immedi-
ately after duplication, they cannot be considered redun-
dant parts in the network. This might explain why the

The change in the fraction of shared partners with evolutionary time (measured by KS)Figure 5
The change in the fraction of shared partners with evolutionary time (measured by KS). Each point represents an 
average value for 40 duplicate gene pairs. Dashed line indicates the fraction of shared partners averaged among 1000 randomly 
selected pairs of singletons (random selection process was repeated 1000 times).
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network was similarly tolerant to attack and error on
either duplicate genes or singletons – rapidly after dupli-
cation, duplicate genes diverge in their expression pro-
files, reaching the level of similarity only slightly higher
than that observed for random singletons. Since only 79
tissues were examined in our study, we cannot exclude a
possibility that some additional links among duplicate
genes could be revealed in other tissues and/or under dif-
ferent physiological conditions.

Second, the acquisition of new coexpressed partners was
found to be rapid and to play a prominent role in the evo-
lution of duplicate genes. This process might lead to
attainment of new functions and operate as an engine cre-
ating diversity at the phenotypic level that is vital for adap-
tation. The importance of addition of new interactions
was also pointed out in the yeast transcriptional regula-
tion network, although there a net loss of interactions was
observed [30]. The proportion of unique acquired part-
ners is difficult to determine precisely in the present study,
because we cannot directly distinguish between unique
ancestral and unique acquired partners. For instance, as
mentioned above, acquisition of new partners can be

compensated by loss of ancestral partners and in this way
will not be reflected in the total number of partners for a
duplicate pair. In the future, experiments using expression
information for an outgroup should allow one to differ-
entiate between the two classes of unique partners and to
provide more precise estimates of their numbers.

Although more evidence is necessary, asymmetry might
represent a common scenario in the functional divergence
of duplicate genes. Yeast, fruit fly, nematode, and human
duplicate genes exhibit asymmetric divergence at the
amino acid level [11,42,43]. Additionally, asymmetric
divergence of protein-protein interactions was found for
yeast duplicate genes [28].

In summary, this study provides an example of the use of
duplicate genes to investigate the evolution of a gene coex-
pression network. By investigating the divergence of
duplicate genes in the network, the speed and pattern of
divergence within a network can be assessed. An alterna-
tive approach is to compare orthologous genes in the net-
works of different organisms [16]. Unlike the analysis of
orthologs where divergence is determined by speciation

The change in the total number of coexpressed partners with evolutionary time (measured by KS)Figure 6
The change in the total number of coexpressed partners with evolutionary time (measured by KS). Each point 
represents an average value for 40 duplicate gene pairs. The lower dashed line is the average number of partners for a single-
ton and the upper dashed line is twice the average number of partners for a singleton.
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time, utilization of paralogs provides an opportunity to
inspect a range of divergence since duplications usually
occur at various times in the evolution of a lineage (unless

a duplication is due to a polyploidization event). A paral-
ogous approach has an additional advantage of requiring
sequence and expression information from just one

Asymmetric divergence in gene expressionFigure 7
Asymmetric divergence in gene expression. (A) Plot of degree of one gene versus degree of another gene for 1,547 
duplicate gene pairs with KS < 2 (inset shows pairs with both degrees below 200). (B) The same plot after numerical simulation 
of symmetric divergence with equal probability of loss and gain of coexpressed partners (P = 0.5). (C) The relationship 
between the difference in degree and time since duplication (measured by KS) for a pair of duplicate genes. Each point repre-
sents an average value for 40 duplicate gene pairs.
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genome. Utilization of paralogous and orthologous infor-
mation is expected to provide complementary informa-
tion and bring us closer to understanding network
evolution.

Methods
Network construction
To map probe sets to genes, the exemplar and consensus
sequences for U133A and GNF1H arrays [54] were used as
queries to search against the longest transcripts of known
and novel genes retrieved from Ensembl (NCBI build 34)
using BLAST [44] with E = 10-20. The criteria of acceptable
alignments were as described in [45]. Briefly, the align-

ment was accepted if (1) the identity was higher than 94%
and the length was greater than either 99 bp or 90% of the
length of the query, or (2) the identity was 100% and the
length was greater than 49 bp. There were three cases: (1)
a single probe set hit a single gene (9381 genes); (2) mul-
tiple probe sets hit a single gene (4961 genes and 13071
probe sets); (3) a single probe set hit multiple genes
(18718 genes and 4377 probe sets). All genes and probe
sets in case 1 were considered. In case 2, a probe set with
the highest expression value (measured by average differ-
ence or AD) value was selected, similar to [15]. All genes
and probe sets from case 3 were deleted due to potential
cross-hybridization. As a result, we obtained a data set of

The results of in silico perturbations of the networkFigure 8
The results of in silico perturbations of the network. The effect of random removal of genes (error) on (A) the relative 
size of a giant cluster and (B) the average shortest path length. The effect of degree-based removal of genes (attack) on (C) the 
relative size of a giant cluster and (D) the average shortest path length (inset shows the fraction of edges removed). Singletons 
are marked by circles, duplicate genes by triangles, and all genes by squares.
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14,342 genes and probe sets with the one-to-one corre-
spondence. Another data set (9,056 genes) represented a
subset of the previous one from which the probe sets with
suboptimal design (with _s, _x, _r, _i, _f, _g suffixes) were
excluded. However, only the original data set is discussed
henceforth since it contained a larger number of genes
and the results obtained from the two data sets were sim-
ilar. Following [37], genes with AD > 200 in a particular
tissue were considered to be expressed in this tissue. The
AD values were logarithmically transformed (with base
equal to 2). Tissue-specific genes were defined as those
expressed only in one tissue, and ubiquitously expressed
genes were defined as those expressed in at least 78 out of
79 tissues.

A series of Perl and C programs (Additional file 5) were
written to conduct the study. Two nodes were connected
if they both were expressed in at least T common tissues
with the Pearson correlation coefficient (calculated
among these T common tissues) greater than R. We used
an adjacency matrix A (Additional file 6) to store the
topology of the network. The matrix stored binary sym-
bols: "aij = 1" indicated the existence of an edge between
nodes i and j and "aij = 0" indicated its absence. The matrix
was symmetric with the diagonal equal to zero because of
no inference of the direction of edges and no self-loops
(simple graph). We focused on the genes located in the
main (giant) cluster in which every gene was connected to
every other gene by at least one path. Genes that formed
small and isolated clusters were regarded as outside of the
main network. The clustering coefficient, c, is defined as
the ratio between the number of edges among nodes adja-
cent to i and the maximum possible, ki(ki-1)/2 [46]. The
clustering coefficient approaches 1 if the neighbors of a
node are connected to each other. The shortest path
length was calculated according to the Floyd-Warshall's all
pairs shortest paths algorithm [47].

Transitivity is a property of networks that are based on
correlation coefficients of gene expression values [16]. If
gene A is correlated in expression with gene B and gene B
is correlated in expression with gene C, then gene A might
be correlated with gene C. However, as mentioned by Jor-
dan et al. [16], the level of such transitive correlation is
unknown. In the network investigated in the present
study, a link was defined by two parameters – the number
of tissues in which the two genes are expressed and the
correlation coefficient of expression values. This led to
decreased transitivity of the network. Indeed, the average
clustering coefficient (c) of the network is only 0.16
(under high transitivity c is expected to approach 1). This
can be explained by the following example. Let gene A be
expressed in 20 tissues with expression values {eA

1, eA
2, ...,

eA
20}, gene B be expressed in the first 10 of these 20 tissues

with expression values {eB
1, eB

2, ..., eB
10}, and gene C be

expressed in the other 10 of these 20 tissues with expres-
sion values {eC

11, eC
12, ..., eC

20}. If the correlation coeffi-
cient between {eA

1, eA
2, ..., eA

10} and {eB
1, eB

2, ..., eB
10} is

higher than 0.7, then genes A and B form a link. Similarly,
if the correlation coefficient between {eA

11, eA
12, ..., eA

20}
and {eC

11, eC
12, ..., eC

20} is higher than 0.7, genes A and C
form a link. However, in this example genes B and C do
not form a link because they are expressed in different tis-
sues. Thus, transitivity is not an inherent feature of all
genes in the network.

The 79 tissues studied by Su et al. [37] include six tissues
that overlap with several other tissues in the data set. Each
of these six tissues represents a more inclusive set of cells
(usually an organ, e.g., the whole brain) as compared with
its parts also present in the data (e.g., parts of brain).
When we generated a separate network without these six
tissues, only approximately 88% of connections were the
same between this and original networks. Moreover, 84%
of connections stayed constant when we removed any six
tissues at random (repeated 10 times). This indicates that
each tissue possessed unique expression information and
we did not exclude any of them from the study.

Identification of duplicate genes
Duplicate genes among 22,291 protein sequences of
known and novel genes in Ensembl (NCBI build 34) were
identified according to Gu et al. [48]. Briefly, each protein
was used as a query to search against all other proteins
using FASTA [49] with E = 10. The alignments were
retained if: (1) the alignment length (L) was over 80% of
the longer sequence, and (2) the identity (I) was ≥ 0.3 if L
was over 150 amino acids or I ≥ 0.06 + 4.8 L-0.32(1+exp(-L/

1000)) if otherwise. We deleted proteins if they formed a hit
due to the presence of a repetitive element of the same
family. A single-linkage clustering algorithm was carried
out to assemble duplicate genes into families. As a result,
11,512 duplicate genes were assigned to 2,865 families.
The complete protein-coding gene sequences were re-
aligned using CLUSTALW [50]. The synonymous and
nonsynonymous substitution rates per site (KS and KA,
respectively) were calculated using the YN00 module [51]
of PAML [52] implemented in PERL. To identify the set of
independent duplicate gene pairs we proceeded as fol-
lows. First, within each gene family we sorted gene pairs
by KS in the ascending order and selected the pair with the
lowest KS (pairs with KS < 0.05 were excluded). Next,
within each gene family, we selected other independent
pairs (with genes that have not yet been selected) sequen-
tially with increasing KS. This resulted in 4,997 independ-
ent gene pairs (Additional file 7). Only independent
duplicate gene pairs were considered for the analysis of
divergence of duplicate genes, however, all duplicate
genes were considered for the analysis of robustness and
of the differences between duplicate genes and singletons.
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Permutation tests
The permutation test was used to assess the statistical sig-
nificance of the difference in the network measures
between duplicate genes vs. singletons. First, we removed
original labels and randomly relabeled genes keeping the
numbers of genes of the two categories consistent with the
original data set. Second, we calculated the 2-sample t-sta-
tistic [53]. Third, we repeated the process 1000 times and
built a null distribution of the t-statistic. Finally, we com-
pared the observed t value (true labeling) with its null dis-
tribution to determine the P value.

Asymmetry analysis
To simulate symmetric divergence in gene expression, we
followed the method developed by Wagner [28]. Briefly,
the number of lost partners was randomly generated from
binomial distribution B(n1 + n2 - 2n12, P). We tested three
possible scenarios: divergence by loss of function (P = 0),
divergence by gain of function (P = 1), and equal proba-
bility of loss and gain of function (P = 0.5). To test each of
the three scenarios we proceeded as follows. The ancestral
number of partners for each pair was approximated by the
sum of the current number of shared partners (n12) and of
a random number (nl) generated from the binomial distri-
bution B(n1 + n2 - 2n12, P). The number of gained partners
(ng) after duplication was approximated by n1 + n2 - 2n12 -
nl. Within each duplicate gene pair, the lost connections
were assessed by nl1 ~ B(nl, 0.5) and nl2 = nl - nl1 for the first
and second duplicate copies, respectively. The recon-
structed number of coexpression partners from the sym-
metric divergence model were (n12 + nl) - nl1 + ng1 and (n12
+ nl) - (nl - nl1) + (ng - ng1) for the first and second gene cop-
ies, respectively.

Robustness analysis of the network
The degree-based and random node removals were per-
formed separately for duplicate genes, singletons, and
duplicates and singletons combined (a total of six experi-
ments). In each experiment, nodes were deleted in five
increments (f): 10% (1290 genes), 20% (2580 genes),
30% (3770 genes), 40% (5158 genes) and 50% (6449
genes). The same number of nodes was removed in each
experiment. For instance, by attacking 10% of duplicates,
we removed 1290 (10% of 12897) duplicate genes with
the highest number of connections. Similarly, by attack-
ing 10% of all genes, we removed 1290 of the genes with
the highest connections. Two quantities were used to
assess the damage to the network: S, the fraction of nodes
in the giant connected cluster after node removal (the rel-
ative size of the giant cluster), and <d>, the average short-
est path length between any two nodes in this cluster. If
nodes stay connected except for those that are removed
(minimal damage), S = 1-f. For random removal of nodes
from a scale-free network, S ≈ 1-f and <d> stays approxi-
mately constant until a considerable fraction of nodes is

removed [23]. However, degree-based removal leads to a
fast decay of S and an increase in <d> until the network
breaks down into small isolated clusters. Thus, the average
shortest path length tends to first increase (the overall sys-
tem is still functioning but it takes longer to travel from
one node to another) and to decrease later, after a certain
number of nodes is removed [23].
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