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A B S T R A C T

Coronary computed tomography angiography (CCTA) allows the assessment of the presence and severity of obstructive and nonobstructive atherosclerotic
coronary artery disease. With software developments incorporating artificial intelligence-based automated image analysis along with improved spatial
resolution of CT scanners, volumetric measurements of atherosclerotic plaque, detection of high-risk plaque features, and delineation of pericoronary ad-
ipose tissue density can now be readily and accurately evaluated for a given at-risk patient. Many of these expanded diagnostic measures have been shown
to be prognostically useful for prediction of major adverse cardiac events. The incremental value of plaque quantification over diameter stenosis has yet to
be thoroughly discovered in current studies. Furthermore, the physiological significance of lesions can also be assessed with CT-derived fractional flow
reserve, myocardial CT perfusion, and more recently shear stress, potentially leading to selective invasive coronary angiography and revascularization. Along
with these technological advancements, there has been additional high-quality evidence for CCTA including large randomized clinical trials supporting high-
level recommendations from many international clinical practice guidelines. Current trials largely compare a CCTA vs functional testing strategy, yet there is
minimal evidence on CCTA plaque-guided therapeutic trials to measure regression of atherosclerosis and prevention of major coronary artery disease
events. In this review, we summarize current evidence on comprehensive risk assessment with CCTA and future directions.
Introduction

With 17.8 million deaths per year, coronary artery disease (CAD) is
the most common cardiac pathology and is currently the third leading
cause of death in the world.1 Coronary atherosclerosis, commences
with activation of the endothelium before a cascade of events, namely
lipid accumulation, fibrous elements and microcalcification, triggers
activation of inflammatory pathways and ultimately narrowing of the
arterial luminal diameter.2 These processes result in an atheromatous
plaque, potentially causing anginal symptoms and complications.
Various tests are currently available for the diagnostic evaluation of
CAD, either direct detection of plaque or the functional consequence of
myocardial ischemia. Ischemia can be assessed with noninvasive im-
aging tests such as exercise electrocardiography, myocardial perfusion
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imaging, or radionuclide scintigraphy. Coronary computed tomography
angiography (CCTA) directly visualizes the plaque, independently of
ischemia, and therefore may identify atherosclerotic risk at an earlier
stage. Prior studies have shown a high sensitivity and good specificity of
CCTA for the detection of CAD and also established the prognostic
importance of anatomically mild, nonobstructive, plaques.3,4 Identifi-
cation of which patients are at increased risk of major adverse cardio-
vascular events (MACE) is a topic of ongoing research, especially as the
different therapies available to treat CAD continue to expand. With
developments in CT scanner technology and analytic tools, athero-
sclerotic plaques can be accurately quantified. Common features
assessed with CCTA are plaque extent and diameter stenosis, but
quantification techniques now also enable the assessment of plaque
volume, composition, and high-risk plaque (HRP) features.5–7 In
ngiography; FFR, fractional flow reserve; HRP, high-risk plaque; MACE, major adverse

adverse cardiac event.
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addition, hemodynamic significance of coronary lesions can be
measured noninvasively with CT-derived fractional flow reserve
(FFRCT).

8 Lastly, CCTA enables the evaluation of the pericoronary adi-
pose tissue (PCAT), a biomarker of coronary inflammation, a driver of
plaque progression, vulnerability, and rupture, and predictor of MACE.
This review will provide an overview and a discussion of how CCTA aids
in risk stratification of patients at risk for and with known CAD.
Randomized trials with CCTA

There are now several randomized trials available, with most
comparing CCTA to standard diagnostic testing. The trials range across
a variety of patient populations from those presenting to the emer-
gency department (ED) with acute onset of chest pain symptoms to
those presenting for an outpatient evaluation of suspected CADwith de
novo symptom evaluation.9 In total, there are 11 ED trials with most
enrolling lower-risk patients with the results demonstrating that CCTA
provided a rapid and accurate diagnosis of CAD which facilitated
prompt discharge of patients with normal coronary arteries or minimal
CAD but did not provide an improvement in longer-term outcomes
when compared to standard testing approaches. Importantly, a general
message from these trials was that there were no safety issues in
promptly discharging patients including no adverse risk of death,
myocardial infarction (MI), repeat ED visit, or ACS over ~1 to 6 months
when compared to standard testing, including stress testing.9 More
recently, there are 2 trials that focus on a higher risk patient in the ED
including those with acute MI, abnormal ECG, or elevated
troponin.10,11 Among the higher-risk patients in these 2 latter trials,
there were no differences in near-term outcomes. For example, in the
report by Gray et al,11 use of an early CCTA (at ~4.2 hours) did not yield
improvement in 1-year death or MI (hazard ratio [HR], 0.91; P ¼ .65).

In the stable chest pain setting of patients with suspected CAD,
there are 9 published randomized trials enrolling more than 22,000
patients with comparisons largely to stress testing to compare near-
term (2-3 year) effectiveness. None of the trials established an
improvement in MACE over 2 to 3 years of follow-up. However, over a
longer duration of follow-up (ie, 5 years), the Scottish Computed To-
mography of the Heart (SCOT-HEART) trial demonstrated benefits in
patients in whom CCTA was added to routine testing, with lower rates
of cardiovascular death or nonfatal MI at 5 years.12 In addition, there are
2 trials that have compared an initial CCTA strategy to an invasive
coronary angiography (ICA) strategy among patients with stable chest
pain and intermediate pretest risk of CAD who qualify for elective
ICA.13,14 In both studies, there were no differences in MACE between
the CCTA and ICA strategies. For example, in the Diagnostic Imaging
Strategies for Patients with Stable Chest Pain and Intermediate Risk of
Coronary Artery Disease trial (n ¼ 3561), the 1-year MACE rates were
similar between CCTA and ICA strategies, with an HR of 0.70 (P¼.10). A
key message from both trials was that a lower rate of procedural com-
plications occurred in the CCTA as compared to ICA arm of the trials.13
Risk stratification among symptomatic patients

Coronary computed tomography angiography enables anatomic
visualization of atherosclerosis in the whole coronary tree, among
arterial diameters >2 mm. The presence, location, and extent of
atherosclerotic plaque can be assessed, as well as its absence, the latter
of which portends excellent prognosis with a low rate of MACE.15,16

Nielsen et al15 demonstrated a 1.5% event rate of the composite
endpoint of death, MI, and coronary revascularization at 3.5 years of
follow-up for patients with new-onset symptoms suggestive of CAD and
a normal CCTA. Patients at an early stage of atherosclerosis with non-
obstructive CAD (diameter stenosis <50%) can be identified by CCTA
as well. Nonobstructive CAD may not correlate with cardiac symptoms
or positive stress test findings but is associated with worsening prog-
nosis as compared to patients with normal coronaries.17,18 The annual
event rate for MACE for individuals with nonobstructive CAD is
approximately 1.6%, whereas it was 0.2% for patients with no CAD,
presenting an 8-fold higher rate among patients with nonobstructive
disease.19

Atherosclerotic plaque burden provides value in cardiovascular risk
prediction independently of how plaque burden is assessed. Increasing
vessel involvement by plaque relates to MACE in a stepwise fash-
ion.20–22 Other commonly used scores are the segment involvement
score, the segment stenosis score, and the Coronary Artery
Disease-Reporting and Data System (CAD-RADS) score.3,23,24 The
segment involvement score, calculated by counting the number of
coronary segments with atherosclerosis, is linearly associated with
mortality.4,25–28 Specifically, patients with chest symptoms and a score
>5 had a mortality rate of 8.4% whereas patients with a score �5 had a
mortality rate of 2.5% (P ¼ .05).3 The segment stenosis score grades
each segment based on the degree of stenosis (no plaque, mild,
moderate, severe) which subsequently is summed leading to a score
between 0 and 48, and has shown prognostic significance for MACE as
well.28 Min et al3 showed an absolute difference in mortality rate of 5%
between patients with a score >5 and �5 (6.6% vs 1.6%, P ¼ .05).

The CAD-RADS scoring system is based on standardized categories
of the most stenotic lesion on a scan, and graded as 0% (CAD-RADS 0),
1% to 24% (CAD-RADS 1), 25% to 49% (CAD-RADS 2), 50% to 69%
(CAD-RADS 3), 70% to 99% (CAD-RADS 4) and 100% (CAD-RADS 5).29

CAD-RADS 4 has 2 subgroups, 4A including 1 or 2 vessels with 70% to
99% stenosis and 4B including 3-vessel obstructive (�70%) disease or
�50% diameter stenosis in the LM. Recently, CAD-RADS 2.0 was
published and added a grading scale for the estimation of plaque
burden (ranging from P1 to P4) and the possible assessment of ischemia
by FFRCT or CT perfusion.24 The CAD-RADS classification has demon-
strated accurate predictive capability for MACE, including unstable
angina, MI, or death. Better predictive performance has been shown for
the CAD-RADS when compared to traditional cardiovascular risk fac-
tors, and the coronary artery calcium score (CACS).30–32
Quantitative measurement of atherosclerotic plaque

The major advantage of quantification of atherosclerosis compared
with visual estimation of plaque is a greater accuracy and reproducibility
in measurement that may, in turn, improve prognostication. In some
cases, quantitative plaque assessment has been shown to provide
additional value beyond traditional CCTA assessment in risk stratifica-
tion and has been validated against histology, IVUS, andOCTwith good
concordance.33–40

Compositional plaque analyses are commonly based on Hounsfield
units (HU) and categorized into 4 groups with slightly different HU
ranges depending on the interpretive platform.37,41,42 The latest Soci-
ety of Cardiovascular Computed Tomography expert consensus docu-
ment describes: low-attenuation plaque for HU densities from �30 to
30 HU; fibrofatty plaque for HU values from 31 to 130; fibrous plaque for
values ranging from 131 to 350 HU and dense calcium is defined as all
voxels with HU >350.19 These values may differ when software pack-
ages use adaptive thresholding for instance adjusted for contrast
attenuation in the coronary lumen. The association between quantita-
tive plaque assessment and event prediction has been a topic of in-
terest in research.43 Low-attenuation plaque, which is thought to
correlate with a lipid-rich necrotic core of high-risk atheroma, has been
shown to be an important marker of plaque instability and independent
cardiovascular risk predictor.5,7,44,45

Williams et al5 demonstrated in a substudy of the SCOT-HEART trial
that patients with a low-attenuation plaque burden >4% were 5 times
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more likely to suffer a subsequent fatal or nonfatal MI (HR, 4.65; 95% CI,
2.06-10.5; P < .001), independent of diameter stenosis, CACS, and
overall plaque burden. Analyses of patients with nonobstructive lesions
and>4% low-attenuation plaque burden showed an even higher HR for
subsequent MI (HR, 6.61; 95% CI, 1.91 to 22.82; P ¼ .003). De Knegt et
al46 conducted a quantitative plaque analysis in a cohort comprising
274 asymptomatic individuals, 254 patients with acute chest pain
without ACS, and 328 patients with ACS and found a significant in-
crease in plaque volumes across the clinical risk profiles (148 mm3, 257
mm3, 407 mm3, respectively, P < .001). Furthermore, plaque
morphology volumes differed between the 3 cohorts as well, with an
increased proportion of fibrofatty and necrotic core and a decrease of
dense calcium (fibrofatty: 50%, 61%, 57%; necrotic core: 17%, 17%,
20%; and dense calcium: 33%, 23%, 23%; respectively).

On the other hand, “brighter” calcified plaques on CCTA, the dense
calcified plaque, have been associated with a reduced risk of
events.47,48 Criqui et al47 demonstrated that overall calcium density
score obtained by noncontrast CT was inversely related to coronary
heart and cardiovascular disease risk after adjustment for overall cal-
cium volume. Furthermore, a secondary analysis from the Incident
Coronary Syndromes Identified by Computed Tomography study,
showed that so-called “1K plaque,” dense calcified plaque with voxels
above 1000 HU, was associated with a lower risk for future ACS.48

Dundas et al49 derived cutoffs for total plaque burden and every
subtype using the Assessing Diagnostic Value of Non-invasive FFR-CT in
Coronary Care registry and compared these with outcomes. They found
that the total PAV above the cutoff was associated with both MACE/late
revascularization (total PAV >24.4%; HR, 2.05; P < .001) and cardiovas-
cular death/MI (total PAV >37.2%; HR, 4.53; P < .001). Elevated levels of
calcified, noncalcified, and low-attenuation PAV were associated with all
adverse outcomes; however, after stratification by median plaque vol-
umes, this did not remain significant for cardiovascular death/MI.

Besides plaque phenotypes, identification of HRP features has been
used to identify high-risk lesions and provide incremental information in
relation to the overall plaque burden. HRP features on CCTA include
the napkin ring sign, low attenuation plaque (<30 HU), spotty calcifi-
cation, and positive remodeling, and is defined by the CAD-RADS
classification as a coronary lesion with at least 2 of these features
(Table 1 and Figure 1).24 The qualitative assessment of HRP and find-
ings on OCT and IVUS have shown good correlation in several stud-
ies.50–52 Kinoshita et al53 saw associations of all 4 HRP features with
features of vulnerability on OCT, like thin-cap fibroatheroma. Feuchtner
et al7 evaluated the prognostic value of HRP features and demonstrated
that after adjustment for risk factors, diameter stenosis and plaque
phenotype, low-attenuation plaque, and napkin-ring sign were the
most powerful MACE predictors (HR, 4.50 and HR, 7.0; P < .001,
respectively). Spotty calcification was less powerful (HR, 2.6; P < .001),
Table 1. Definitions of high-risk plaque features.

High-risk plaque features

Low-attenuation
plaque

Presence of a central focal area with low CT attenuation,
usually at least 1 voxel with HU below 30, within the plaque.
Thresholds of HU below 60 and 90 are used as well.

Positive
remodeling

The outer vessel diameter is at least 10% greater than the
average diameter of the normal adjoining segments.

Napkin ring sign Presence of circumferential necrotic core, a central area of
low HU, that abuts the lumen, with a ring of high attenuation,
not above 130 HU, surrounding this low attenuation area.

Spotty calcification Focal calcification smaller than 3 mm diameter in any
direction. Another description is the calcium burden length,
in the longitudinal direction of the vessel, smaller than 1.5
times the vessel diameter, and width below two-thirds of the
vessel diameter.

HU, Hounsfield units.
and positive remodeling showed no significance before adjustment
(HR, 1.69; P ¼ .34).

A substudy of the Prospective Multicenter Imaging Study for Eval-
uation of Chest Pain trial, evaluated the predictive value of HRP, defined
as lesions with �1 HRP feature present.6 Lesions defined as HRP were,
after adjustment for the atherosclerotic cardiovascular disease risk score
and significant stenosis, predictive for MACE (HR, 1.72; 95% CI,
1.13-2.62). In patients with nonobstructive disease and HRP, the HR
even doubled when compared to patients without HRP (HR, 4.31; 95%
CI, 2.25-8.26 vs HR, 2.64; 95% CI, 1.49-4.69; respectively). In the Inci-
dent Coronary Syndromes Identified by Computed Tomography study,
independent from diameter stenosis, volumes of low-attenuation and
fibrofatty plaque were associated with increased risk for ACS, and HRP
features offered the greatest prognostic utility to pinpoint patients who
will experience future ACS.41
Fractional flow reserve with CCTA

Coronary computed tomography angiography is a noninvasive
imaging modality that offers the opportunity to integrate a functional
measurement in addition to the prior discussed anatomical and
quantitative coronary description, by the use of FFRCT. Considering
nearly 50% of high-grade stenoses do not cause ischemia, and on the
contrary, a proportion of nonobstructive lesions manifest ischemia by
invasive fractional flow reserve (iFFR), which implies that the correla-
tion between physiological and angiographic stenosis severity may
not be optimal.54 However, prior research reveals the relevance of
identifying lesions that cause ischemia, which helps for management
of symptomatic patients and potentially provides incremental
anatomical features for prognosis.55,56

Using computational fluid dynamics principles and the 3-dimen-
sional anatomical and physiological models retrospectively derived by
coronary CT images, a 3-dimensional pressure map is made and pro-
vides a physiological assessment of coronary atherosclerosis of all cor-
onary segments simultaneously (Central Illustration).8

A prospective subanalysis of the Analysis of Coronary Blood Flow
Using Coronary CT Angiography: Next Steps trial showed an excellent
correlation between FFRCT and iFFR (Pearson's correlation coefficient
0.82; P < .001).57 In addition, a positive FFRCT (�0.8) in patients with
stable CAD was superior to anatomically significant stenosis (diameter
stenosis >50%) and was a significant predictor of MACE, driven by
planned and unplanned revascularization (HR, 5.5; 95% CI, 1.6-19.0; P
¼ .006). Madsen et al58 studied 900 individuals with new-onset angina
who underwent FFRCT if there was at least 1 lesion with diameter ste-
nosis greater than 30%. The FFRCT was obtained in the most stenotic
lesion of each coronary artery and successfully stratified risk between
patients with and without normal FFR (�0.80). The rate of the com-
posite end point of nonfatal MI and all-cause death at 3 years in patients
with normal FFR was 2.1% and in patients with an abnormal FFR was
6.6% (relative risk, 3.1; 95% CI: 1.6, 6.3; P < .001). This increased risk in
patients with an abnormal FFR persisted after adjustment for degree of
stenosis and CAC score (relative risk, 2.5; 95% CI, 1.2-5.2; P ¼ .01).

A head-to-head comparison of noninvasive coronary artery imaging,
The PACIFIC trial, showed that positron emission tomography (PET) was
the most accurate diagnostic test in diagnosis of myocardial ischemia
compared to CCTA or single photon emission computed tomography
using iFFR as reference standard.59 A post hoc analysis added FFRCT into
this comparison and showed a very good diagnostic performance for
identification of ischemia on a per-vessel level as FFRCToutperformed all
3 other modalities (area under the receiver-operating characteristic curve
[AUC] for FFRCT, 0.94; AUC for CCTA, 0.83; P<.01; AUC for SPECT, 0.70;
P < .01; AUC for PET: 0.87; P < .01).60 However, per-patient analyses
showed better performance of PET (AUC FFRCT, 0.91 and AUCPET, 0.92;
P ¼ .56) in identifying ischemia, and in intention-to-diagnose analyses,



Figure 1.
Progression of coronary artery disease and high-risk plaque features on coronary computed tomography angiography (CCTA). An example of a patient with plaque progression
and an increase in high-risk plaque features shown on serial CCTA with (A) baseline and (B) follow-up CCTA of the proximal left anterior descending artery.
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PET performed better than FFRCT on both per-patient and per-vessel
levels (AUC PET, 0.86 vs AUC FFRCT, 0.83; P ¼ .157; and AUC PET,
0.90 vs AUC FFRCT, 0.79; P ¼ .005, respectively).

The 1-year outcomes from the Assessing Diagnostic Value of Non-
invasive FFR-CT in Coronary Care registry including 4288 patients,
revealed that patients with an FFRCT �0.80 were 4 times more likely to
experience MI or cardiovascular death than patients with FFRCT >0.80
(25 [0.80%] vs 3 [0.20%]; relative risk, 4.22; 95% CI, 1.28-13.95;
Central illustration.
CT-derived fractional flow reserve (FFRCT) of the left anterior descending artery with modera
P ¼ 0.01). Additionally, revascularization occurred less in the FFRCT
>0.80 group (1208 [38.40%] vs 89 [5.60%]; relative risk, 6.87; 95% CI,
5.59-8.45; P < .001) and was uncommon 90 days after the test (4.4%
within 90 days, 1.20% between days 91 and 365).61

In addition, noninvasive hemodynamic analysis on CCTA, including
assessment of FFRCT, ΔFFRCT, wall shear stress, and axial plaque stress,
has been demonstrated to enhance the identification of HRP in patients
at risk for cardiac events.62 The investigators of the EMERALD study62
te stenosis of the proximal LAD with a negative FFRCT.



S.E. van Rosendael et al. / Journal of the Society for Cardiovascular Angiography & Interventions 3 (2024) 102230 5
found that the integration of noninvasive, lesion-specific physiology
assessment improved the identification of culprit lesions for subsequent
ACS. The EMERALD II trial investigated the performance of AI-enabled
CCTA-derived quantitative plaque and hemodynamic analysis for ACS
prediction and found that the best AI-enabled quantitative plaque
features were ΔFFRCT, plaque burden, total plaque volume, low
attenuation plaque volume, and averaged percent total myocardial
blood flow. The authors concluded that AI-enabled quantitative plaque
and hemodynamic analysis has the potential to enhance the prediction
of lesion-specific ACS risk when added to conventional CCTA analysis,
and integration of these algorithms in clinical practice can improve risk
stratification to prevent ACS and optimize CAD treatment strategy.63

The effect of FFRCT on clinical costs was studied in the FORECAST
trial, showing that routine management vs the use of CCTA with se-
lective FFRCT decreased the use of ICA but did not reduce revascular-
ization and costs.64 In addition, both groups had similar clinical
outcomes including angina, quality of life, MACE, and cerebrovascular
events after 9 months. The PRECISE trial demonstrated in 2103 patients
with stable chest pain that the specific use of CCTA with FFRCT ac-
cording to the patients’ risk status, led to less frequent ICA and
increased diagnostic yield for obstructive disease, without an increase
in nonfatal MI or death at 1 year compared to usual testing and care.65

Studies have been performed to assess the utility of FFRCT to guide
coronary procedures in the catheterization laboratory. The so-called
FFRCT planner is a novel tool allowing virtual stenting of stenosis and
prediction of FFR post percutaneous coronary intervention (PCI), based
on changes to patient-specific lumen geometry.66 Post-PCI FFR is a
metric of the degree of functional revascularization, with higher
post-PCI FFR values associated with a better prognosis.67,68 Sonck et
al66 found that the FFRCT planner accurately predicted post-PCI FFR
with high accuracy using invasively measured post-PCI FFR as refer-
ence, demonstrating its potential in predicting physiological benefits of
PCI. Furthermore, the FASTTRACK CABG trial,69 a prospective, multi-
center study, assessed the safety and feasibility of planning and
execution of bypass surgery in patients with complex CAD, based on
CCTA combined with FFRCT. The investigators found that in 99% of the
included patients with a high disease burden who were candidates for
coronary artery bypass grafting, treatment planning using CCTA and
FFRCT was feasible, offering a safe alternative to ICA.

It is important to highlight that image quality is a critical component
of FFRCT analysis. In the PACIFIC study, 83% of all arteries were deemed
of sufficient quality for FFRCT evaluation.60 This indicates that use of
FFRCT in clinical practice largely depends on good-quality scans arising
from sufficient prescan medications and high-quality scanners. Mickley
et al70 observed moderate diagnostic accuracy of FFRCT to identify
hemodynamically significant CAD in patients with an Agatston score
above 399 using FFR/ICA as a reference. The sensitivity was 95% but
the specificity was only 32%. When the FFRCT values were colocalized
to the approximate site of iFFR measurements, the specificity improved
but remained low at 52%.
PCAT

Pericoronary adipose tissue, a biomarker associated with vascular
inflammation, is postulated to provide added risk information.71 Detec-
tion and quantification of vascular inflammation may enhance early risk
assessment of patients. Vascular inflammation is a key factor in coronary
atherosclerotic plaque formation, progression, and rupture and affects
the differentiation, proliferation, and lipolysis of the adipocytes in the
fatty tissue around the coronary arteries.71–76 This leads to smaller adi-
pocytes with lower intracellular lipid content which is correlated with
higher HU, or attenuation values, on CCTA. The feasibility of PCAT
attenuation obtained with CCTA and vascular inflammation detection has
been shown.71,77,78 Significantly different PCAT attenuation values have
been identified between coronaries with and without atherosclerotic
plaque, within culprit and nonculprit lesions, and between flow-limiting
and non–flow-limiting stenosis.77–80 Lin et al81 observed significant dif-
ferences in HU of PCAT of the proximal right coronary artery (RCA) in
patients with an MI, stable CAD and no CAD (acute MI, –83.1 [–86.6 to
–79.8] HU; stable CAD, –90.4 [–95.2 to –86.6] HU; no CAD, –93.7 [–98.2
to –87.9 HU], P< .001). The proximal RCA is characterized by the highest
volume of surrounding adipose tissue and by the absence of confound-
ing nonfatty structures such as side branches, myocardium, or coronary
veins.71,82 However, prior studies analyzing differences between the 3
coronary arteries show significant differences in PCAT values.79,83,84 The
Cardiovascular Risk Prediction using Computed Tomography study
incorporated PCAT attenuation values in a propriety algorithm (CaR-
iHEART, Caristo Diagnostics) to calculate the fat attenuation index (FAI)
and validated its prognostic value.85 A difference in the prognostic value
of the 3 coronary arteries was observed, but when measured around the
proximal RCA, the perivascular FAI improved cardiac risk prediction
beyond current best practice assessment of coronary CTA. High peri-
vascular FAI values �70.1 HU after adjustment were an indicator of
increased cardiac mortality in both derivation and validation cohorts
(HR, 9.04; 95% CI, 3.35-24.4; P < .001 and HR, 5.62; 95% CI,
2.90-10.88; P < .001; respectively).

In contrast, Chatterjee et al86 evaluated the predictive value of PCAT
attenuation for MACE in high-risk patients referred for ICA but reported
no predictive value of PCAT for events in any of the 3 coronary arteries
during 5 years follow-up (RCA, 0.96; 95% CI, 0.75-1.22; P ¼ .71, LAD,
1.31; 95% CI, 0.96-1.78; P ¼ .09, and LCx, 0.98; 95% CI, 0.78-1.22; P ¼
.84; respectively). Other study results are ambivalent as well, with a
positive study by van Diemen et al87 demonstrating incremental value of
PCAT values of the proximal RCA beyond clinical and quantitative plaque
characteristics and ischemia, whereas no added prognostic value was
found beyond the CAD-RADS byWen et al88 in patients with acute chest
pain. Independent of cardiovascular risk factors, elevated PCAT attenu-
ation has been shown to be associated with the presence of noncalcified
plaque78 and HRP.89 Tzolos et al90 reported in patients with stable chest
pain a significant predictive effect of PCAT measured around the RCA for
the risk of future MI. When RCA PCAT was added to low-attenuation
plaque burden >4%, it led to improved prediction of future MI.

The association of PCAT and cardiovascular medical therapy is not
well explored yet. One study evaluated the effect of statin therapy on
PCAT and did not find significant differences in PCAT attenuation
values at follow-up between 31 statin-taking patients and 70 statin-
naïve patients (�1.61 � 6.82 HU vs þ1.39 � 7.87 HU; P ¼ .065).78

Currently, there is no consensus yet on the gold standard of how to
measure PCAT, which leads to many different methods. Studies that
include the proximal part of 1 coronary artery (mainly the RCA) or all 3
coronaries are more/most often published,78,80,81,85–87,89–97 along with
lesion-specific PCAT analyses, ranging from assessment of the most
stenotic lesion only, to culprit lesions, or the average of all lesions in 1
patient.81,89,93,96,98–100

While assessing PCAT, specific image acquisition and patient fea-
tures might be considered confounding variables. Considering tech-
nical factors, significant differences in mean PCAT attenuation based on
the CTscanner type used have been demonstrated in prior studies, and
positive associations between PCAT and tube voltage, current, and
pixel spacing have been discovered.79,87,97 Boussoussou et al97

determined in their study that the association between PCAT and
noncalcified plaque did not hold after adjustment for these imaging
characteristics and the patients’ heart rate. Adjustments for potential
confounding factors vary widely within studies, and more research is
needed to better understand which factors influence this parameter and
how to adjust for them. Furthermore, the association of PCAT with
atherogenesis and events, and the optimal way to implement this
parameter clinically, are poorly understood and necessitate further
research.
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Sex differences on CCTA identified atherosclerosis

Significant sex differences in pathophysiology of ischemic heart
disease are identified in prior research.101 An approximate 10-year
delay in onset of atherosclerosis is often reported in women when
compared with men, and sex-specific atherosclerotic plaque profiles
have been described. Women have less calcified and a high percent of
nonobstructive CAD, with the potential to have more frequent coronary
microvascular dysfunction as an etiology for symptoms.102–107 In the
setting of more extensive CAD, acute and long-term mortality risk is
higher among women, especially those with 2-vessel or 3-vessel/left
main disease.16 A post hoc analysis of the CONFIRM registry demon-
strated a significantly increased risk of events in women compared with
men when categorized in the same atherosclerotic burden group using
a risk score.105 Women in the highest atherosclerotic burden group
(score >20) had an HR of 6.71 (95% CI, 4.36-10.32) whereas men had a
hazard score of 2.38 (95% CI, 1.73-3.29) (adjusted P-interaction ¼
0.003). Specifically, postmenopausal women (aged �55 years) with a
high disease burden demonstrated a notable increase in risk relative to
their male counterparts, with an HR of 6.11 (95% CI, 3.84-9.70) vs 2.25
(95% CI, 1.58-3.22) for men (adjusted P-interaction ¼ 0.004). Despite
lower cardiovascular risk in premenopausal women compared to
age-matched men, the risk increases significantly after menopause.

Age- and sex-specific nomograms for quantitative atherosclerotic
plaque on CCTA are derived from 11,808 patients, presenting age- and
sex-stratified distributions of plaque subtypes assessed with artificial
intelligence plaque analysis software.108 Women showed lower vol-
umes of total plaque volume and all subcomponents than men. Both
sexes showed an increase in plaque volumes with increasing age, with a
shift from a higher proportion of noncalcified plaque to a higher pro-
portion of calcified plaque.

A higher discriminatory value of atherosclerotic plaque to predict
MACE is found in women.104,109 Among 1127 patients, the extent of
nonobstructive CAD was found to be of prognostic value in women, but
not in men.18 In addition, Xie et al109 found a significantly higher pre-
dictive value of nonobstructive CAD in the left main coronary artery
leading to cardiac events in women than in men.95 Furthermore, Fer-
encik et al6 demonstrated that HRP was a stronger predictor of MACE in
women compared to men, even after adjusting for stenosis severity (HR,
2.41; 95% CI, 1.25-4.64 vs HR, 1.40; 95% CI, 0.81-2.39, respectively).

Sex-specific plaque burden and its association to ischemia obtained
with iFFR was studied by Han et al.110 They found lower stenosis
severity, plaque volumes of total, calcified, noncalcified, and
low-density plaque, and fewer adverse plaque characteristics, in
women compared to men. In ischemic vessels, only low attenuation
plaque was significantly lower in women (β: �0.183; P ¼ 0.035),
whereas the other plaque morphologies showed no difference by sex.
All plaque subtype burdens were independently associated with
abnormal FFR (�0.80) in both sexes, without a significant interaction for
the prediction of ischemia between sex and total plaque amount
(interaction P ¼ 0.108). Importantly, women have smaller coronary ar-
teries and a lower myocardial mass, which leads to a higher coronary
volume to myocardial mass ratio for the same degree of diameter ste-
nosis compared to men.111 Women are therefore, despite a similar
degree in diameter stenosis, less likely to have an FFRCT �0.80
compared to men, potentially leading to sex-differences in referral for
revascularization.
Screening of asymptomatic individuals with CCTA

The majority of patients who develop MACE have no prior cardiac
symptoms or manifestations of CAD,112 and more than 50% of acute
coronary syndromes arise from previously documented nonobstructive
lesions.17,41 It seems to be reasonable then that the detection of CAD in
the asymptomatic individual is worthy of consideration. In general,
identification of patients at risk is recommended using established
cardiovascular risk scores with the addition of CACS.113 Certain scores
have undergone updates in the past years to incorporate new factors
like inflammatory conditions; however, their accuracy in estimating
disease prevalence remains imperfect.114 This is particularly the case
when applied to underrepresented populations in the literature, like
women and diverse ethnic groups.115 A Cochrane systematic review
andmeta-analysis included 41 randomized controlled trials and showed
that the use of cardiovascular risk scores compared to usual care,
reduced total cholesterol, systolic blood pressure, and multivariable
cardiovascular risk.116 The authors stated that the use of a cardiovas-
cular risk score potentially reduced the adverse events rate, but the
results were imprecise (1.9% vs 2.7%; RR, 0.72; 95% CI, 0.49-1.04; I2 ¼
0%; 4 trials, N ¼ 4630, low-quality evidence). Preventive medication
prescription increased in this study among patients identified as higher
risk with no apparent evidence of harm.

The CACS visualizes calcified lesions, by which it provides a marker
of atherosclerosis. It is quick and associated with minimal radiation
exposure (~1-2 mSv). Many studies have shown it improves prediction
of MACE above and beyond clinical risk scores (MESA studies). How-
ever, in studies showing that noncalcified plaque occurs first, CACS
would be considered a late marker of CAD risk. The SCAPIS trial
included asymptomatic patients and demonstrated a prevalence of any
atherosclerosis on CCTA of 42.1%.117 Moreover, among patients with a
CACS of 0, atherosclerosis was present in 8.1% of diabetics, 6.0% in
patients with a strong family history of MI, and 6.8% in current
smokers.117 This highlights the prevalence of atherosclerosis as a silent
disease. FACTOR-64, the only randomized controlled trial in asymp-
tomatic patients to date, included 900 patients with diabetes mellitus
who either underwent CCTA imaging or not, with a follow-up time of 4
years.118 The CCTA arm showed a 20% reduction in MACE, but did not
reach statistical significance (HR, 0.8; 95% CI, 0.49-1.32; P ¼ .38).
Important in this study is that only diameter stenosis on CCTA was
measured, which might have reduced the precision of prognostication.

However, CCTA has some important limitations. The radiation
exposure for CCTA is higher compared to calcium scoring. Further-
more, the use of contrast and if necessary, the admission of β-blockers
and nitroglycerin, can potentially cause side effects and/or adverse
reactions.

The SCOT-HEART 2 trial has started enrolling 6000 asymptomatic
individuals at risk of coronary heart disease to determine whether
CCTA-based screening is associated with changes in medical therapy
and rates of development of CAD, compared with standard of care,
which includes the use of a Scottish risk score. Another study is the
TRANSFORM trial, which aims to enroll 7500 asymptomatic patients
with prediabetes, diabetes mellitus type 2, or metabolic syndrome who
will all undergo CCTA. The aim is to prove that for the primary pre-
vention of MACE, a personalized care strategy, including CAD plaque
staging system reports, is better than usual care based on ASCVD risk
factors.
Serial CCTA

It has been demonstrated that early identification of CAD and timely
implementation of preventative measures lower the risk of subsequent
cardiovascular events.12 Plaques undergo morphological progression
over time, and this can bemeasured through serial CCTA.119–125 Plaque
progression has been associated with higher risk of long-term mortal-
ity,126 and the quantification of progression using CT imaging may
enhance prognostication and help guide the utilization of preventive
therapy. Motoyama et al127 demonstrated that plaque progression
independently predicted ACS, with adverse events in 14.3% of 56 in-
dividuals in the plaque progression group and 0.3% of 367 patients in
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the group with no plaque progression (HR, 33.43; 95%CI, 4.13 to 78.03;
P ¼ .0006). The Progression of Atherosclerotic Plaque Determined by
Computed Tomographic Angiography Imaging registry is a multina-
tional registry, including individuals with serial CCTA at least 2 years
apart with the objective of understanding the nature of atherosclerosis
progression and the factors associated with it.128,129 They showed that
atherosclerosis progression, independent from baseline plaque vol-
ume, has prognostic significance.42,130 Specifically, an annual increase
of 1.0% percent atheroma volume was associated with a higher rate of
events. Additionally, quantitative plaque assessment was more impor-
tant in identifying patients at risk of rapid coronary plaque progression
than clinical, laboratory, and qualitative measures.131 Pattern evaluation
of plaque progression from nonobstructive to obstructive lesions ac-
cording to the presence of HRP showed that baseline PAV and percent
diameter stenosis were predictive (HR, 1.04; 95% CI, 1.02-1.07; and HR,
1.07; 95% CI, 1.04-1.10; respectively, all P < .05).120

Moreover, the effect of lipid-lowering therapies on plaque
morphology and progression has been studied and evidence is avail-
able regarding the impact of statins on the progression of atheroscle-
rosis. Statins have been shown to attenuate plaque progression with
slower progression of noncalcified plaque and larger progression of
calcified plaque.132,133 Figure 2 provides an example of a patient with
serial CCTA and statin therapy initiation after baseline CT. Lee et al129

demonstrated similar results with slower progression of overall plaque
volume in statin users compared to statin-naïve patients (annualized
percent atheroma volume increase: 1.76 � 2.40% vs 2.04 � 2.37%,
respectively; P ¼ .002), with increased progression of calcified percent
atheroma volume (1.27 � 1.54% per year vs 0.98 � 1.27% per year,
respectively; P < .001), and lower progression of noncalcified percent
atheroma volume (0.49� 2.39% per year vs 1.06� 2.42% per year) and
incidence of HRP features (0.9% per year vs 1.6% per year, respectively;
all P < .001).98 Patients at risk for plaque progression despite statin
therapy, defined as an annual �1.0% increase in percent atheroma
volume, were patients with high plaque burden and HRP at baseline.134

In a meta-analysis including 12 studies, intensive statin therapy
demonstrated a reduction of total plaque volume by 20.87 mm3 or
3.6% compared to a 14.96 mm3 or 5.8% increase observed in control
groups (P¼.002).135 Additionally, statin therapy decreased noncalcified
plaque volume by 7.62 mm3 and low-attenuation plaque volume by
5.84 mm3 and increased calcified plaque volume by 11.83 mm3.

The EVAPORATE trial evaluated whether icosapent ethyl, previously
shown to reduce risk of ischemic events in patients with elevated tri-
glyceride levels,136 given in addition to diet and statin therapy, would
cause a larger change in plaque volume than in patients treated with
Figure 2.
Serial CCTA with initiation of statin therapy after baseline coronary computed tomograp
anterior descending artery in a patient with coronary artery disease. Statin therapy is start
demonstrates progression of mainly calcified plaque.
statins and placebo.137 A regression of low-attenuation plaque volume
at 18 months was seen in patients treated with icosapent ethyl, whereas
the volume of low-attenuation plaque in the placebo group doubled
(�17% vs þ109%; P ¼ .0061). In addition, a reduction of fibrous,
fibrofatty, total noncalcified, and total plaque volume was seen in the
icosapent ethyl group whereas there were increases of all plaque vol-
umes in the placebo group (�20% vsþ1%, P¼.0028;�34% vsþ32%, P
¼ .0002; �19% vs þ9%, P ¼ .0005; �9% vs þ11%, P ¼ .0019; respec-
tively). Alfaddagh et al138 found that eicosapentaenoic acid and do-
cosahexaenoic acid added to statins in nondiabetic patients with mean
LDL cholesterol <80 mg/dL, prevented coronary plaque progression of
all plaque morphologies when an omega-3 index �4% was achieved.

Patients with an elevated lipoprotein(a) [Lp(a)] level were associated
in a prior OCT study with more frequent thin-cap fibroatheroma.139

Kaiser et al140 studied the association of Lp(a) and plaque progression,
showing that patients with high Lp(a) (� 70 mg/dL) had significantly
accelerated progression of low-attenuation plaque compared with pa-
tients with low Lp(a) (26.2 � 88.4 mm3 vs �0.7 � 50.1 mm3; P ¼ .020).
No differences were found in total, noncalcified, and calcified plaque
progression between the 2 groups.

Pontone et al141 established a risk score in order to predict disease
development in patients with a low-to-intermediate chance of CAD.
New occurrence of HRP and/or �50% diameter stenosis was classified
as atherosclerosis progression and occurred more often in patients with
a higher segment involvement score, HRP features like spotty calcifi-
cation and low attenuation plaque, and diameter stenosis between 25%
to 49% at baseline coronary CT. Independent predictors of plaque
progression were included in the model: scan interval between CCTA
scans (OR, 1.21; 95% CI, 1.02-1.42; P ¼ .026), number of plaques with
low-attenuation plaque (OR, 3.73; 95% CI, 1.46-9.52; P¼.006), number
of plaques with spotty calcification (OR, 4.59; 95% CI, 1.69-12.48; P ¼
.003), number of bifurcation plaques (OR, 1.47; 95% CI, 1.17-1.84; P ¼
.001), and stenosis severity of 25% to 49% (OR, 2.71; 95% CI, 1.62-4.50;
P < .001). Based on the weight of regression coefficients, a score was
obtained and was able to distinguish between low- and high-risk pa-
tients with similar C-statistics in the derivation and validation cohorts
(0.732 [0.676-0.788] and 0.668 [0.583-0.752], respectively). To under-
stand which patient would benefit most from repeat CCTA, validation of
the risk score in larger cohorts is necessary.

The clinical use of serial CCTA in patients on guideline-directed
management and therapy, with no change in clinical or functional sta-
tus, received the class 3 recommendation in the 2023 American Heart
Association (AHA)/American College of Cardiology (ACC) Multisociety
Guideline for the Management of Patients with Chronic Coronary
hy angiography. Example of plaque on (A) baseline and (B) follow-up of the proximal left
ed after the baseline coronary computed tomography angiography. The follow-up CT



8 S.E. van Rosendael et al. / Journal of the Society for Cardiovascular Angiography & Interventions 3 (2024) 102230
Disease.142 There is no clear recommendation in patients with changes
in clinical or functional status, but we can anticipate that in certain
subgroups with concerning quantitative plaque features on CCTA such
as a high low-attenuation plaque burden or HRP features, repeat
evaluation may be beneficial, based on its capability to assess plaque
progression over time. In those patients, it could potentially be used to
guide the intensity of medical therapy. In patients with rapid plaque
progression (ie, an increase in plaque volume or development of HRP),
intensified preventive care would be a part of the therapeutic strategy.

Of note, the rapid advancement in CT technology and the diverse
types of scanners in the clinical setting pose significant issues for
employing serial CCTA strategies. Multiple studies have used different
CT scanners with different specifications at baseline and follow-
up.120,121,131 Symons et al143 studied scanner variability in 40 individuals
showing lower scan-rescan reproducibility in patients scanned with 2
different brand CT scanners. The scanner variability was approximately
18.4% (coefficient of variation) when the same scanner was used for both
scans, whereas the scanner variability was � 29.4% when different
scanners were used. In addition, Takagi et al144 reviewed in 1236 patients
from the Progression of Atherosclerotic Plaque Determined by
Computed Tomographic Angiography Imaging registry, the impact of
tube voltage on quantitative plaque quantification and composition on
CCTA. Scanning with higher tube voltages (from 80 kV to 100 kV, and to
120 kV) resulted in decreased luminal HU and calcified plaque volume,
and increased fibrofatty plaque and necrotic core volumes.
Photon counting and ultrahigh spatial resolution CCTA

The diagnostic reliability of CCTA is closely linked to image quality.
Factors influencing image quality include body habitus, heart rate as
well as acquisition parameters, and scanner hardware.145 In addition,
blooming artifacts, partial volume effects beam hardening from calci-
fication, and artifacts related to motion affect the interpretability of the
CCTA, especially in smaller vessels (<2 mm). However, ultrahigh reso-
lution (UHR) CCTA with photon counting CT is a promising new type of
scanner having excellent image quality and reduced blooming induced
by calcium.146 Photon counting CT uses new, energy-resolving x-ray
detectors to count and categorize incoming photons based on their
energy and convert them into electrical signals.147 Measurement speed
increases with this 1-step conversion which allows measurement of all
x-ray photons individually within a single projection, with optimized
geometric dose efficiency at very high spatial resolution.148 In addition,
a UHR mode is available with a maximum in-plane resolution of
0.11mm.149 It leads to an absence of electric noise and enhances
visualization of stent patency, smaller distal coronary segments, and
coronary calcification.150

Latina et al151 assessed the diagnostic accuracy in 15 high-risk pa-
tients who underwent UHR-CT and ICA for suspected CAD. In this small
sample, 7 patients were obese, 8 patients had at least 1 intraluminal stent
and every patient had to have at least severe stenosis (>50% stenosis) at
prior imaging, or a calcium score >400 or a stent. The studies with the
UHR-CTwere all interpretable and showed a high diagnosis accuracy with
a high sensitivity (86%; 95% CI, 65%-97%) and specificity (88%; 95% CI,
77%-95%) in a per-vessel analysis vs ICA. Motoyama et al152 studied 79
patients with 102 calcified lesions and 79 stents, and showed, compared
to conventional-resolution CT, improved median stenosis grading on
UHR-CT, a significantly larger in-stent lumen, and significantly thinner
stent struts. An additional 59 individuals also underwent ICA within 3
months of the UHR-CT, and per-patient analysis demonstrated high
sensitivity (100%) and specificity (80%) for the detection of severe stenosis
(�70%), with a positive predictive value of 93.6% and a negative pre-
dictive value of 100%. Sensitivity and negative predictive value were
similar in per-segment analysis (both 100%), the specificity was 95.8%,
and a positive predictive value of 79.5% was found. Hagar et al153
assessed plaque severity in 68 high-risk patients using dual-source UHR
photon counting CT. The individuals were considered for transcatheter
aortic valve replacement and underwent ICA. The AUC for the detection
of CAD with UHR photon-counting CT was 0.93 per patient, 0.94 per
vessel, and 0.92 per segment. Per-patient analysis showed for the
detection of CAD with �50% stenosis a high accuracy (88%), sensitivity
(96%), and specificity (84%), and for detection of obstructive CAD (�70%
diameter stenosis) an accuracy of 83%, sensitivity of 100%, and speci-
ficity of 76%. Despite a high coronary artery calcium score (�1000), a
prior stent, or known history of CAD, the accuracy for identification of
stenosis �50% remained high (83% in patients with Agatston score
�1000 vs 91% in patients with a CACS <1000) but decreased in the
identification of stenosis �70% in these patients (71% in patients with
Agatston score �1000 vs 89% in patients with an Agatston score
<1000). This implies that significant coronary calcification still yields
interpretive challenges. Soschynski et al154 demonstrated in scans ob-
tained by photon-counting CT scanners, a significant decrease in
accessibility of segments in patients with a calcium score >600, wors-
ening at Agatston scores >900.

With positive results in studies showing high accuracy of the
detection of CAD, in certain high-risk patients, UHR photon counting
CT shows promise to overcome certain limitations of conventional CT.
However, further validation in larger groups is necessary to verify which
patients benefit most from this new CT scan, given the decreased
accessibility in patients with high calcium scores.
Summary and future directions

Coronary computed tomography angiography has developed into
a reliable, noninvasive imaging technique for the evaluation of pa-
tients with suspected atherosclerosis, with high accuracy for the
detection and exclusion of CAD. Cardiovascular risk increases grad-
ually as stenosis severity or plaque extent increases, and CCTA im-
proves risk prediction throughout the entirety of the disease burden.
Advances in CT technologies allow detailed atherosclerotic assess-
ment of the whole coronary tree including atherosclerosis quantifi-
cation and assessment of PCAT around the coronary arteries. Plaque
location, morphology, burden, and diameter stenosis all affect car-
diovascular risk and have been combined in different risk scores.
Quantification of low attenuation plaque, a sign of HRP with a high
likelihood of developing ACS has shown to be important in risk
assessment. The dense calcified plaque on the other side of the HU
spectrum presents the end stage of the atherosclerotic plaque and
appears to denote most stable plaques with a lower incidence of ACS.
However, currently, there are no clinically useful thresholds available
to assist with understanding a patient's disease extent and to provide
guidance for diagnosis and management, in contrast with CAC
scoring and an overall assessment of plaque burden.

Changes in plaque over time can be detected by serial CCTA.
Although a worse prognosis is linked to plaque progression, it is not yet
known if focusing on the total amount of plaque is the best target to
guide clinical management of the patient. With expansion of available
therapies to halt progression and events, finding the “vulnerable pa-
tient” seems most important. CCTA used as a screening tool in high-
risk, asymptomatic patients, might potentially be the future, given
that many MI arise from asymptomatic lesions and that CACS solely
identifies calcified plaque. However, additional studies are warranted to
evaluate the incremental role of CCTA over CACS in this scenario. New
advances in CT technology, such as photon counting CT have shown
promising results and may be particularly helpful with visualization of
intraluminal stents, smaller coronary segments, and lesions with heavy
calcification. The CCTA evidence has amassed rapidly over the past
decade and newer approaches and guided therapy based on plaque
findings will certainly be a strong part of future research findings.
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