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Transcription-dependent DNA double-strand breaks and human disease
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ABSTRACT
Accumulation of DNA damage in resting cells is an emerging cause of human disease. We identified
a mechanism of DNA double-strand break (DSB) formation in non-replicating cells, which strictly
depends on transcription. These transcriptional DSBs arise from the twinned processing of R-loops
and topoisomerase I and may underlie neurological disorders and cancers.
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DNA double-strand breaks (DSBs) are infrequent but among the
most harmful genomic lesions. Their defective repair can induce
genomic rearrangements, mutations or cell death, and they have
been implicated in the pathogenesis of several human diseases,
including neurodegenerative syndromes and cancers. In dividing
cells, DSBs occur primarily duringDNA replication. Hence, their
mechanisms of formation have beenwell documented, such as in
the events of replication of a damaged DNA template and during
conflicts between replication and transcription machineries.
However, in human, most cells are non-replicating, and increas-
ing evidence indicates that DNA damage and genomic instability
in such cells can cause disease. Accumulation of DNA breaks in
post-mitotic neurons is the underlying cause of multiple neuro-
degenerative syndromes.1 Many solid tumors are also character-
ized by a subpopulation of quiescent cells, which represents a fuel
for cancer diversity and evolution.2 Currently, very little is
known about how DSBs are generated in non-replicating cells,
even though such knowledge is likely to provide information on
the aetiology of several human diseases.

Our recent work has advanced this field by identifying
amechanism forDSB formation in non-replicating cells occurring
under both physiological and pathological conditions.3 DSBs arise
from two nearby single-strand breaks (SSBs) on the opposing
DNA strands, both produced during transcription. One SSB
results from the repair of a transcription-blocking topoisomerase
I cleavage complex (TOP1cc), and the other from the cleavage of
an R-loop structure (Figure 1). TOP1 removes DNA superhelical
tensions generated during transcription by producing transient
TOP1ccs.4 We found that stabilization (trapping) of TOP1ccs on
chromatin primes the formation of DSBs by blocking transcrip-
tion to promote R-loop formation. Notably, TOP1ccs are often
trapped by DNA modifications, such as oxidative base damage,4

and they are associated with human disease (Figure 1). The repair
of TOP1ccs generates SSB intermediates, and we found that DSBs

are produced by concurrent SSBs on the opposing DNA strand of
the R-loops. R-loops are RNA/DNAhybridswith displaced single-
stranded DNA. They are widespread structures that can play
physiological roles, but their unscheduled formation is a source
of DNA breaks.5 Recent work reported the involvement of xero-
derma pigmentosum complementation group F (XPF, also known
as ERCC4) and group G (XPG, also known as ERCC5) flap
nucleases in the production of R-loop-dependent DSBs in repli-
cating cells.6 Our study in non-replicating cells sheds new light on
R-loop processing by nucleases.3 It identified that flap structure-
specific endonuclease 1 (FEN1), XPF and XPG induce SSBs in the
R-loops by the cleavage of one strand and theDSB is created when
another SSB is present on the opposing DNA strand. Our study
further demonstrated that the single-stranded DNA in the R-loop
must be cleaved at both 3ʹ- and 5ʹ-extremities to induce DSBs and
that this dual incision is mediated by XPF/XPG or XPF/FEN1.
However, it is still unclear what defines the choice between these
specific combinations of nucleases.

These transcriptional DSBs have been detected in post-
mitotic neurons7 and quiescent cells,3 and may underlie
human disease. Indeed, we found that genetic defects in
TOP1cc removal pathway [tyrosyl-DNA phosphodiesterase 1
(TDP1), polynucleotide kinase 3ʹ-phosphatase (PNKP), or
X-ray repair cross-complementing 1 (XRCC1)] or in R-loop
resolution [senataxin (SETX)] enhance transcriptional DSBs
in non-replicating cells.3 Notably, all these genetic defects
cause neurological disorders, primarily cerebellar ataxia and
amyotrophic lateral sclerosis (Figure 1), suggesting that these
transcriptional DSBs may be the underlying cause of several
neurodegenerative syndromes. This is further supported by
the observation that numerous other genetic (or protein)
defects that act to increase TOP1ccs [ataxia telangiectasia
mutated (ATM), DNA-dependent protein kinase (DNA-PK),
or chromosome 9 open reading frame 72 (C9orf72) expansion
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repeat], and/or R-loops [C9orf72, frataxin (FXN) or fragile
X mental retardation 1 (FMR1) expansion repeats, or survival
motor neuron 1 (SMN)], are also associated with neurological
disorders (Figure 1). A key question is why do these tran-
scriptional DSBs primarily affect neuronal cells? First, neu-
rons may be particularly prone to produce these breaks
considering their high metabolic and transcriptional activity,
which may promote reactive oxygen species (ROS)-dependent
TOP1cc trapping4 and R-loop accumulation.3 Second, post-
mitotic neurons are non-dividing cells, and as such have
reduced repair capability compared to dividing cells.
Homologous recombination (HR) and non-homologous end
joining (NHEJ) are the main pathways for the repair of DSBs.
HR is the preferred pathway to repair DSBs occurring in
transcribed regions,8 however it is unavailable in non-
dividing cells due to absence of sister chromatids for recom-
bination (Figure 1). Our work further highlights that genetic
defects in TOP1cc removal (TDP1) or R-loop resolution
(SETX) prevent the repair of transcriptional DSBs in non-
replicating cells.3 This raises the possibility that in neurons,
transcriptional DSBs accumulate over time due to enhanced
production and defective repair. Both will contribute to the
neurodegenerative phenotype. Consistent with this, we found
that such DSBs can kill non-replicating cells.3

It is conceivable that the transcriptional DSBs that depend on
R-loops andTOP1ccsmay contribute to other pathologies, includ-
ing cancers. Indeed, many tumors contain a subpopulation of
quiescent cells,2 and increasing evidence indicates that genetic

alterations in cancer cells are linked to R-loop formation9 and
TOP1 activity.4 Notably, many cancers have an altered cell meta-
bolism resulting in increased ROS levels,10 whichmay further trap
TOP1ccs,4 and an altered expression/mutation of many R-loop
resolving factors [e.g. SETX, DExH-box helicase 9 (DHX9), breast
cancer 1 and 2 (BRCA1 and BRCA2), fanconi anemia (FA)
proteins],9 which may further stabilize R-loops. In quiescent can-
cer cells, transcriptional DSBs may promote tumor heterogeneity
and progression because they occur in transcribed regions and
they can’t use error-freeHR repair. Their repairmay rely on error-
prone pathways, which may lead to mutations and genomic rear-
rangements (Figure 1).

Altogether, our work provides a new paradigm for the
occurrence of DNA damage and genomic instability in resting
cells in the context of human disease.
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Figure 1. Outcomes of transcription-dependent DNA double-strand breaks (DSBs) in non-replicating cells. DSBs arise from two single-strand breaks (SSBs) on the
opposing DNA strands: one SSB results from repair of a transcription-blocking topoisomerase I cleavage complex (TOP1cc), and the other from the cleavage of an
R-loop by nucleases. In non-replicating cells, error-free homologous recombination (HR) is unavailable. Hence, DSBs could be repaired by error-prone pathways, such
as non-homologous end joining (NHEJ) and single-strand annealing (SSA), which may promote genomic rearrangements and mutations. If left unrepaired,
transcriptional DSBs may accumulate and induce cell death. The right-hand side table shows human neurological disorders, the genes (or protein expression)
altered in these diseases and their association with increased TOP1ccs (green) or R-loops (red). AOA: ataxia with oculomotor apraxia; ALS: amyotrophic lateral
sclerosis; AT: ataxia telangiectasia; ATM: ataxia telangiectasia mutated; C9orf72: chromosome 9 open reading frame 72; DNA-PK: DNA-dependent protein kinase; FEN1:
flap structure-specific endonuclease 1; FRDA: Friedreich’s ataxia; FMR1: fragile X mental retardation 1; FXN: frataxin; FXS: fragile X syndrome; MCSZ: microcephaly,
seizures, and developmental delay; PNKP: polynucleotide kinase 3ʹ-phosphatase; Pol II: RNA polymerase II, SCAN1: spinocerebellar ataxia with axonal neuropathy-1;
SETX: senataxin; SMA: spinal muscular atrophy; SMN: survival motor neuron 1; TDP1: tyrosyl-DNA phosphodiesterase 1; XPF: xeroderma pigmentosum complementa-
tion group F; XPG: xeroderma pigmentosum complementation group G; XRCC1: X-ray repair cross-complementing 1.
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