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Abstract

This work aimed to identify pre-existing health conditions of patients with traumatic brain injury 

(TBI) and develop predictive models for the first TBI event and its external causes by employing 

a combination of unsupervised and supervised learning algorithms. We acquired up to five years 

of pre-injury diagnoses for 488,107 patients with TBI and 488,107 matched control patients who 

entered the emergency department or acute care hospitals between April 1st, 2002, and March 
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31st, 2020. Diagnoses were obtained from the Ontario Health Insurance Plan (OHIP) database 

which contains province-wide claims data by physicians in Ontario, Canada for inpatient and 

outpatient services. A screening process was conducted on the OHIP diagnostic codes to limit the 

subsequent analysis to codes that were predictive of TBI, which concluded that 314 codes were 

significantly associated with TBI. The Latent Dirichlet Allocation (LDA) model was applied to 

the diagnostic codes and generated an optimal number of 19 topics that concur with published 

literature but also suggest other unexplored areas. Estimated word-topic probabilities from the 

LDA model helped us detect pre-morbid conditions among patients with TBI by uncovering the 

underlying patterns of diagnoses, meanwhile estimated document-topic probabilities were utilized 

in variable creation as form of a dimension reduction. We created 19 topic scores for each 

patient in the cohort which were utilized along with socio-demographic factors for Random Forest 

binary classifier models. Test set performances evaluated using area under the receiver operating 

characteristic curve (AUC) were: TBI event (AUC = 0.85), external cause of injury: falls (AUC 

= 0.85), struck by/against (AUC = 0.83), cyclist collision (AUC = 0.76), motor vehicle collision 

(AUC = 0.83). Our analysis successfully demonstrated the feasibility of using machine learning to 

predict TBI due to various external causes and identified the most important factors that contribute 

to this prediction.
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1. Introduction

Traumatic brain injury (TBI) is a leading cause of death and disability globally [1]. In 

Canada, approximately 22.6% of injury deaths between 2002 and 2016 were associated 

with a TBI diagnosis [2]. It is imperative that we exhaust all possible data sources and 

analytic tools available to inform prevention for TBI as the consequences of this injury can 

be various disorders and diseases [3,4] with a significant impact on morbidity and mortality 

[4,5]. In efforts to improve injury surveillance and guide primary prevention decisions, it is 

critical to identify risk factors that are important in the prediction of TBI event.

Previous quantitative studies utilizing machine learning (ML) techniques have shown 

promising results for predicting post-injury short-term and long-term outcomes [6-13] to 

prevent from adverse consequences, such as in-hospital morbidity and mortality, disability, 

need for supervision, and productivity outcomes [6,14,15]. However, their results were 

restricted to small clinical samples with limited generalizability across diverse cohorts 

of patients who sustained TBI through various mechanisms, representing one of the 

central barriers to the implementation of emerged algorithms into preventive medicine 

and public health initiatives. Our objective was to overcome this critical issue by utilizing 

administrative healthcare data from population-based sources in a publicly funded healthcare 

system. In TBI research, the implementation of ML algorithms on large scale high-

quality datasets would improve robustness and enable low-cost identification of complex 

associations between pre-morbid conditions and TBI. Indeed, recent studies developed data 
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mining algorithms [16,17] to detect health status markers associated with TBI [5] and its 

severity [18]. However, there still exists a gap in knowledge to develop prediction models for 

TBI sustained due to various external causes to prevent from the injury event itself.

Predicting the occurrence of TBI is a great challenge due to the spontaneous nature of 

the injury and the difficulty in recognising pre-injury risk factors. It is evident that certain 

behavioral patterns and external hazards increase the susceptibility of someone to a head 

injury, such as, taking part in sports-related activities, drug and alcohol usage, self-harming, 

and exposure to violence [5,19-21]. These exposures are often hard to measure or not 

reported prior to injury, making it difficult to gather retrospective data. Research findings 

suggest that many disorders and diseases are significant risk factors of TBI and are often 

reflected in the cause of injury and severity [5,17]. Hence, it is critical to design primary 

prevention strategies [22] that capture the complexity of this injury on an individual level by 

considering all necessary clinical, physiological, social, demographic, and lifestyle factors.

To fill the gap in knowledge, our study proposes to predict TBI by exploiting the results 

of a topic modelling approach, namely the Latent Dirichlet Allocation (LDA) model. In 

addition to well-known risk factors (age, sex, place of residence, income) of TBI [5], our 

study looked at diagnostic history of patients with TBI during their pre-injury period of 

up to five years, where the diagnoses were made by physicians for inpatient, outpatient, 

and long-term care services. This two-step modelling approach would allow us to directly 

identify pre-existent health conditions that increase the risk of TBI and recognize diagnostic 

patterns that may reveal habits and behavior that are common amongst TBI patients.

The LDA model is a generative probabilistic model designed to extract topics from 

collections of discrete data and is mainly adopted as a flexible approach for unsupervised 

classification of a text corpora [23]. In the healthcare field, many large and unstructured 

textual datasets utilize this approach to mine topics, including, but not limited to, 

clinical notes by nurses and physicians [24,25], and survey data about patient feedbacks 

and experiences [26-31]. Additionally, LDA was successfully applied to International 

Classification of Disease (ICD) based diagnostic codes to explore associations amongst 

diagnostic groups [32], discover patterns of care [33], and facilitate information retrieval 

for clinicians [34]. However, the popularity of LDA comes from its wide range of 

applications, such as being frequently used as a dimensionality reduction technique to 

reduce computational costs for predictive modelling [23,35,36]. Since we have a high 

number of attributes in the diagnostic data, LDA model can be utilized to create new 

variables on a reduced feature space for predictive modelling. The fitted LDA model also 

offers an additional insight into common pre-morbid conditions of TBI patients that would 

assist in designing primary prevention frameworks and improving injury surveillance by 

primary care providers and policymakers.

In the context of TBI, the underlying cause (mechanism) of injury emphasizes the complex 

nature of this disease process [3], hence, identifying main drivers of each mechanism may 

be helpful in informing preventive decisions for those who are more susceptible to certain 

external cause(s) of injury. Therefore, the main goal of this study is to build ML algorithms 

to predict the initial TBI event as well as its four leading causes of injury (e.g., falls, 
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struck by/against, cyclist collision, motor vehicle collision [18]) using pre-injury physician 

diagnoses and socio-demographic information.

2. Materials and methods

2.1. Data sources

We accessed the ICES (formerly Institute of Clinical Evaluative Sciences) [37] data 

repository to collect health insurance claims data for all residents of Ontario, Canada who 

received physician services between the fiscal years of 2002 and 2020 from the Ontario 

Health Insurance Plan (OHIP) database. The ICES data repository stores population-wide 

de-identified, linkable health data sets for all publicly funded services provided to the 

residents of Ontario. As such, we were able to link patient-level data between the 

OHIP database with the records for emergency department (ED) visits, obtained from 

National Ambulatory Care Reporting System (NACRS), and acute care visits, obtained from 

Discharge Abstract Database (DAD).

The NACRS and DAD datasets contained primary and secondary diagnoses recorded using 

International Classification of Diseases, Tenth Revision, Canada (ICD-10-CA) codes [38] 

in addition to various clinical, demographic, and socio-economic variables. We identified 

488,107 patients with TBI, i.e., cases, who were discharged from their first TBI-related 

hospitalization in the ED or acute care (defined as “TBI event”) between April 1st, 2002, 

and March 31st, 2020 and diagnosed with a TBI-specific code (ICD-10-CA codes: S020, 

S021, S023, S027, S028, S029, S040, S071, S06) [5]. For patients with TBI (referred to as 

TBI patients), their cause(s) of injury [39] were grouped into five categories according to 

their ICD-10-CA external cause of injury codes: falls, struck by/against, cyclist collision, 

motor vehicle collision, and other (Supplementary Table 1 for the full list of ICD-10-CA 

codes). From the NACRS and DAD datasets, we also gathered information on age at injury 
(continuous), sex (binary), rurality indicator (binary), and income quintile (categorical), 

and individually matched the TBI patients to one control patient based on these socio-

demographic factors as well as fiscal year of admission to the ED or acute care. Control 

patients were identified from those without a TBI-related visit to the ED or acute care 

between April 1st, 2002, and March 31st, 2020. Patients were aged from 0 to 95 years old at 

the time of their injury.

The OHIP database contains billing information from primary care physicians in Ontario, 

including date of service, diagnostic code, age at service, and other fee-related information. 

For billing purposes, there is only one diagnosis assigned per row, so one physician service 

could result in more than one observation in the dataset. It was found that 30-days preceding 

the TBI event (i.e., TBI index date) is part of the TBI event window [17], hence, our study 

included OHIP diagnoses made between 5 years and 30 days to30days before the first 

TBI event. This window was defined as “pre-injury phase”. Since control patients have no 

TBI-related visit, we used the admission date of a visit to the ED or acute care that happened 

closest to their index date (index date for control patients does not correspond to an event) 

as a “pseudo event” date to determine their pre-injury phase. For each patient, diagnoses 

were filtered according to the OHIP date of service and all OHIP diagnostic code(s) assigned 

during the pre-injury phase were collected. We then selected the OHIP diagnostic codes 
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according to the OHIP claims data dictionary provided by ICES, where diagnostic codes 

are either in a three-digit numeric format or alphanumeric, starting with the alphabetic letter 

“C” followed by two digits [40]. We only included diagnostic codes that were in the data 

dictionary and removed diagnostic codes “999 = Undiagnosed” and “100 = Monitored”.

Our cohort consisted of 488,107 matched pairs who were hospitalized in the ED/acute care 

where some patients have no history of a publicly funded physician service made during 

their pre-injury phase, hence, not every patient has OHIP diagnosis. After applying the 

inclusion criteria, there were a total of 23,563,833 OHIP diagnoses for 468,313 TBI patients, 

and the number of distinct diagnostic codes per patient ranged from 1 to 95. For controls, 

there were 17,439,627 OHIP diagnoses for 459,374 patients, with a range of 1 to80 distinct 

diagnostic codes claimed per patient (see Supplementary data file for the list of unique 

diagnostic codes and their prevalence in cases/controls).

The entire cohort was randomly split into 244,064 matched pairs for training, 122,018 

matched pairs for validation, and 122,025 matched pairs for testing (Table 1 for summary 

statistics). The number of patients without any OHIP diagnoses were: 9,899 cases and 

14,286 controls in the training set; 4,881 cases and 7,266 controls in the validation set; 5,014 

cases and 7,181 controls in the test set.

2.2. Proposed approach

2.2.1. Diagnostic code selection—We began with a diagnostic code screening 

process on the training set to limit the subsequent analysis to OHIP codes that were 

associated with TBI event and to ensure that the diagnostic codes are likely to have some 

“signal” when grouping TBI patients using LDA. We only assessed the presence of a 

diagnostic code in a patient’s diagnostic history rather than the frequency. McNemar’s test 

for matched pair data [41] was conducted for each unique diagnostic code in the training 

set to detect diagnostic codes that were significantly associated with TBI event, and if the 

number of discordant pairs were less than 25, Fisher’s exact test was used instead [42]. 

Benjamini-Yekutieli (BY) correction was used to control for the false discovery rate (FDR) 

[16,43]. This was followed by a calculation of the Phi-coefficient for binary data [44] 

to calculate the correlation between the significant codes (resulting from McNemar’s test 

with BY adjustment) and TBI event, where any diagnostic codes that had negative or zero 

correlation were eliminated from further analysis, and diagnostic codes that were positively 

correlated with TBI event were retained as the final list of “selected diagnostic codes”.

2.2.2. Topic modelling with LDA—We employed a two-step ML approach to develop 

predictive models for TBI and its causes of injury by first creating new features using LDA. 

The LDA method can be utilized as a dimensionality reduction technique on our highly 

sparse and high dimensional OHIP diagnoses dataset by collapsing together terms that have 

the same semantics [35], thus enabling us to create new variables called “topic scores”. 

Hence, some concepts have a slightly different meaning in our context:

• a word or a term is equivalent to a diagnostic code,

• a document is equivalent to a sequence of diagnostic code(s) for a patient
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• a corpus is a collection of patients’ sequence of diagnostic code(s)

• a topic is a distribution of diagnostic codes

• a vocabulary is a list of distinct diagnostic codes in a corpus (bounded by the 

selected diagnostic codes)

We used R packages “topicmodels” [45] and “lda” [46] for topic modelling with LDA, 

and “ldatuning” package for tuning the number of topics [47] on the TBI-training set. 

Each split set of cases and controls makes a “corpus”, however, only the TBI-training set 

corpus was used to train the LDA model, where the resulting fitted model was used to 

estimate parameters of the other five corpora, i.e., TBI-validation, TBI-test, control-training, 

control-validation, and control-test. After subsetting to the selected diagnostic codes as per 

Section 2.2.1, each corpus was expressed as document-term matrices (DTM) based on the 

number of occurrences of diagnoses. Therefore, the dimension of DTM is equals to the 

number of patients in the corpus by the number of unique diagnostic codes in the corpus. 

The entries in the matrix are the number of times a patient has been diagnosed with the 

corresponding diagnostic code during the pre-injury phase.

The number of topics have to be set a priori to training the LDA model. This is the 

only hyperparameter that needs to be tuned for the LDA model. The TBI-training set 

was used to perform a grid-search over 2 to 50 topics by optimizing four metrics; 

Griffiths2004, Deveaud2014, Arun2010, and CaoJuan2009 [48-51] using the Variational 

Exception Maximization (VEM) algorithm [52] for estimation. The most parsimonious 

number of topics, K, would have to maximize the first two metrics while minimizing the last 

two metrics. The LDA model was then trained on the same corpus using the optimal number 

of topics, K, and VEM algorithm to infer topics.

The fitted model was then utilized in two ways:

1. Detect pre-morbidities:  The model estimates the probability of a word given topic 

denoted by posterior beta (β), which is the probability of each diagnostic code belonging to a 

specific group.

βi, k = P(wordi ∣ topick) = P(diagnosis codei ∣ groupK)
wℎere i = 1, …, lengtℎ of vocabulary in a corpus and
k = 1, …, K

This can be utilized as an unsupervised learning approach to group and characterize TBI 

patients according to their OHIP diagnoses made during the pre-injury phase and detect any 

pre-existent health conditions of TBI patients and common co-occurring diagnoses.

2. Topic score creation:  The model also estimates the probability of a topic given 

document denoted by posterior gamma (Γ), which is the probability of a patient belonging to 

each group.
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Γk, j = number of diagnosesj × P(groupk ∣ patientj)
wℎere k = 1, …, K and
j = 1, …, number of patients in a corpus

This probability multiplied by each patient’s total number of OHIP diagnoses made during 

the five-year pre-injury period results in weighted topic scores which can then be used as 

features for predictive modelling.

Topic Scorek, j = document lengtℎj × Γkj
wℎere k = 1, …, K and
j = 1, …, number of patients in a corpus

(1)

The fitted LDA model can be used to obtain the posterior gammas of the TBI-training 

corpus, as well as infer topic distributions of unseen documents, which would allow us to 

estimate gammas for the other five corpora. Patients with no OHIP diagnosis during the 

pre-injury phase or those who were eliminated due to the diagnostic screening process were 

assigned a topic score of zero (TS= 0) for all topics.

Number of visits made to a physician is associated with the health of a patient, hence, 

the weighted document-topic probability score, i.e., topic score, reflects the patient’s 

health status. The number of diagnoses has a large variability across patient populations 

as some patients experience more recurrent visits to a physician’s office due to chronic 

health problems, making the topic scores highly skewed to the right. We performed rank-

normalization on the topic scores within each group of the split sets using “RankNorm” 

function which applies rank-based inverse normal transformation [53].

2.2.3. Predicting TBI event and causes of injury—The primary prediction task of 

our study is to develop a classification model for TBI event by utilizing the normalized 

topic scores (created in Section 2.2.2) along with the patient socio-demographics (age at 
injury as a continuous variable, binary sex (male, female), rurality indicator (yes, no), and 

income quintile (levels from lowest to highest: 1, 2, 3, 4, 5)) as candidate predictors. The 

secondary task includes developing individual binary classifier models for each of the four 

main external causes of injury; falls, struck by/against, cyclist collisions, and motor vehicle 

collisions. External causes were modelled individually as they are not mutually exclusive 

events (i.e., TBI could be sustained due to one or more cause(s) of injury occurring at the 

same time). We considered the same candidate predictors as TBI prediction, however, for 

external cause prediction, we limited the analysis to the patients that had the cause of injury 

of interest and their matched controls, unlike TBI prediction where we considered the entire 

cohort. Table 1 shows the number of patients who sustained TBI due to each cause of injury, 

i.e., the number of cases for each cause of injury prediction task.

Random forest is an ensemble ML algorithm that consists of many decorrelated decision 

trees and has a very powerful predictive performance due to the process of bagging and 

feature randomness that are involved in building each tree [54]. This algorithm is widely 
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used as a variable selection method as it naturally identifies informative features with the 

most predictive power by calculating the importance of a feature [55]. There are several 

measures for variable importance (VIMP) calculation, we’ve used “anti-VIMP” measure 

offered by the “random-ForestSRC” package in R [56]. It simply calculates the effect of 

each variable by comparing the out-of-bag error that results from assigning the variable of 

interest to the opposite node whenever there is a node split on that variable. This would 

allow us to see the main drivers of TBI as well as each external cause of injury.

For each prediction task, the training set was used to train the RF model, and the validation 

set was used to tune the hyperparameters and select the best model, whereas the test set was 

used to assess the performance of the selected model. There are several hyperparameters in 

RF that need to be optimized, including the number of random splits used for splitting, the 

number of trees to grow, minimum terminal node size, and the number of features randomly 

sampled as candidates at each split. We tuned the number of trees starting from 100 and 

iteratively increased by 100 trees, until there was no further improvement in the validation 

set area under the receiver operating characteristic curve (AUC). For a given number of 

trees, the terminal node size and the number of randomly sampled features were optimized 

by minimizing the out-of-bag error. Number of random splits used for splitting was kept at 1 

by default. Test set performance was assessed for the selected model using AUC.

3. Results

3.1. Diagnostic code selection

There were 578 distinct diagnostic codes discovered in the TBI-training set, and 575 for 

control-training set, with a total of 580 unique codes in the combined training set. After 

conducting McNemar’s test on each of the 580 distinct codes, 397 codes were found 

significant with *P, which reduced to 353 after controlling for the FDR. Furthermore, a 

total of 39 diagnostic codes were screened out after the calculation of Phi-coefficient, in 

which 12 of them had a negative correlation with TBI status and 27 had a zero correlation. 

Consequently, 314 OHIP diagnostic codes (Supplementary Table 2 for odds ratios) made it 

to the final list of selected diagnostic codes.

3.2. Topic modelling with LDA

After subsetting to the selected diagnostic codes in Section 3.1, TBI-training set had 

9,786,264 observations for 231,594 patients, which was used to tune the number of topics 

for the LDA model and train the LDA model using that optimal number of topics. As seen 

in Fig. 1, a grid search performed over 2 to 50 topics showed that Griffiths2004 (maximize) 

metric failed to converge, CaoJuan2009 (minimize) reaches a plateau after 19 topics, and 

Arun2010 (minimize) metric is reasonably small at k = 19, meanwhile Deveaud2014 

(maximize) has a local maxima at 19 topics and a global maxima at 48 topics. A manual 

inspection of high-ranking terms in each of the 48 topics revealed multiple topics with 

similar themes (i.e., same term(s) representing several topics) and any additional topic over 

19 topics did not provide us with a distinct clinically relevant theme. For our study purposes, 

we wanted to ensure diversity across topics to assist clinicians set up distinct surveillance 

measures for each risk factor. Therefore, through the recommendation of clinical experts, 
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19 topics were preferred over 48 topics as it provides us with the most diverse range of 

topics with an added benefit of reduced computational costs for the subsequent predictive 

modelling. In addition, smaller number of groups would allow us to distinguish diagnoses 

that are most likely to co-occur in a topic and yield more insightful results for inferential 

purposes.

To get a better understanding of the pre-morbid conditions that often co-occur together 

in TBI patients, we selected the top terms for each topic using the following criteria: if 

there is a term with β > 0.8, only retain that term; else keep the highest-ranking terms 

until the sum of β reach 0.8 or 15 terms are selected. This criterion was applied strictly 

for exploratory purposes only and to see the diagnostic patterns within each topic as well 

as to gather representative diagnoses of each topic. As a result, 132 terms were selected 

for 19 topics, with 119 unique terms. Table 2 shows topic names assigned for each 

group based on the diagnoses that are most likely to belong to the topic of interest, see 

Supplementary Fig. 1 and Supplementary Table 3 for the list of top diagnostic codes and 

their corresponding probabilities. Some topics, such as, Topic 17 has a dominant term with 

β = 0.9888 corresponding to “304 = Drug dependence, drug addiction”, which means that 

TBI patients with this pre-injury diagnosis most likely don’t have any other pre-existent 

health conditions. On the other hand, some topics are composed of multiple diagnoses with 

small word-topic probabilities, for instance, Topic 1 is distributed over many diagnoses with 

β < 0.2 that correspond to various conditions related to heart disease and these diagnoses 

tend to co-occur in a patient during the five years preceding TBI event.

3.3. Predicting TBI event and causes of injury

Table 1 provides the following information for each split set: the number of TBI patients, 

and the number of patients who sustained TBI due to each external cause of injury, i.e., the 

number of cases for each prediction task. Each split set was composed of matched pairs 

only.

As per Table 4, the best model for TBI event prediction had 300 trees, terminal node size of 

1, and 22 variables were randomly sampled at each node split. This trained model yielded 

an AUC of 0.908 on the validation set. Test set performance was AUC = 0.8474 for 122,025 

TBI patients and 122,025 without TBI (Supplementary Tables 4 and 5 for other performance 

metrics and confusion matrices calculated using a threshold of 0.5 for all prediction tasks). 

According to Table 5, the top 5 variables for TBI prediction were, listed from most 

important to least important, “Topic 17 – Drug dependence and addiction”, “Topic 14 – 

Newborn/infant care and ill-defined infections”, “Topic 5 – Injuries to extremities, disorders 

of musculoskeletal system, overexertion”, “Topic 4 – Kidney failure, sepsis, anemia”, and 

“Topic 2 – Microbia and allergic skin, eye, and upper airway manifestations”. See Table 5 

for the full list of VIMP measurements for each predictor.

According to the highest validation AUC of 0.8988 in predicting TBI due to falls, the 

optimal hyperparameters were 400 trees, node size of 1, and 22 randomly sampled features. 

The best model was able to discriminate with AUC = 0.8536 on the test set with 54,703 

matched pairs. The most important predictors were “Topic 14 – Newborn/infant care and 
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ill-defined infections”, “Topic 17 – Drug dependence and addiction”, “Topic 5 – Injuries to 

extremities, disorders of musculoskeletal system, overexertion”, “Topic 2 – Microbial and 

allergic skin, eye, and upper airway manifestations”, and “Topic 4 – Kidney failure, sepsis, 

anemia”.

As for predicting TBI due to being struck by/against, the optimal hyperparameters were 

200 trees, terminal node size of 1, and 6 randomly sampled variables, which resulted in an 

AUC of 0.8969 on the validation set. Test set performance was AUC = 0.8269 for 42,012 

TBI patients who got struck and 42,012 matched controls. The strongest predictors were 

“Topic 17 – Drug dependence and addiction”, “Topic 5 – Injuries to extremities, disorders 

of musculoskeletal system, overexertion”, “Topic 14 – Newborn/infant care and ill-defined 

infections”, “Topic 4 – Kidney failure, sepsis, anemia”, and “Topic 2 – Microbial and 

allergic skin, eye, and upper airway manifestations”.

Hyperparameters for predicting TBI due to cyclist collision were tuned to be 400 trees, 

terminal node size of 2, and 22 randomly sampled features. The validation set AUC of this 

model was 0.8664. Test set performance was AUC = 0.7608 for 3,046 matched pairs. The 

most important features were “Topic 17 – Drug dependence and addiction”, age at injury, 

“Topic 14 – Newborn/infant care and ill-defined infections”, “Topic 4 – Kidney failure, 

sepsis, anemia”, and “Topic 5 – Injuries to extremities, disorders of musculoskeletal system, 

overexertion”.

The selected model for predicting TBI due to motor vehicle collision had a validation AUC 

of 0.8997 for a model trained with terminal node size of 1 and 18 randomly sampled 

variables at each node split for 600 trees. The final model performance on the test set was 

evaluated to be AUC = 0.8312 for 13,137 cases who had motor vehicle collision and 13,137 

matched controls. The top 5 variables were “Topic 17 – Drug dependence and addiction”, 

“Topic 14 – Newborn/infant care and ill-defined infections”, “Topic 4 – Kidney failure, 

sepsis, anemia”, “Topic 5 – Injuries to extremities disorders of musculoskeletal system, 

overexertion”, and age at injury.

4. Discussion

In this study, we aimed to facilitate the development of TBI event prediction by 

incorporating unsupervised and supervised ML algorithms on a province-wide population-

based dataset and explored the patterns of pre-injury physician diagnoses of TBI patients 

using LDA. The study has demonstrated how administrative healthcare data could be used 

to predict the occurrence of TBI, including its external causes of injury. To the best of our 

knowledge, this is the largest study in predicting TBI event at the population level in terms 

of the number of patients in the study, the number of attributes related to pre-morbidities and 

social circumstances, and the length of period covered in the study.

Stemming from this ML research, and in agreement with earlier TBI studies 

[5,17-19,21,57,58] three top strategies to the planning of preventive programmes, across 

external causes of injury, are to focus on drug dependence and addiction, musculoskeletal 

injuries and overexertion, and ill-defined conditions [59]. These roughly correspond to 
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strategies that would use, respectively: (i) direct communication to influence the knowledge, 

attitudes and beliefs of the individual persons, community, and population as a whole 

concerning drug use/dependence-brain injury relationship; (ii) ergonomic, engineering, 

physical rehabilitation and legal developments that would enable risk reduction associated 

with musculoskeletal injuries and overexertion; and (iii) public-private resource and 

coalition developments through policy, social organizations and other agencies that care 

about growing concern of the ill-defined conditions and declining population health, to 

reinforce and reward for health-directed lifestyle. Since OHIP diagnoses are associated with 

services made by primary care physicians, they are often less serious than diagnoses made 

during hospitalization. This enabled us to capture risk factors that were previously not 

recognized [5, 17], such as symptoms associated with cold and allergic reactions, kidney and 

renal failure, newborn/infant care and conditions. On the other hand, some health conditions 

that are known to be associated with TBI and certain cause(s) of injury were not discovered 

in our study such as Alzheimer’s disease and related dementia, which are recognized as 

significantly linked to TBI and falls [5,17,60]. However, many of our topics encompass 

diagnostics codes that tend to become more prevalent with age and are associated with 

Alzheimer’s diseases and other forms of dementia [17], e.g., Topic 1 - Heart disorders 

and symptoms and Topic 3 - Stroke and excessive involuntary movement disorders (i.e., 

conditions like hypertension, coronary artery disease, heart failure, and stroke become more 

common with age, and for people with dementia).

The importance of “Topic 2 – Microbia and allergic skin, eye, and upper airway 

manifestations” in predicting TBI and its external causes of injury is a novel finding in 

literature. We have two hypotheses that require further study: (i) infections and allergies, 

and upper airway manifestations may increase the person’s susceptibility to brain injury 

through altered immune system; and (ii) side effects caused by medications that are used 

to treat these symptoms and diagnoses may also increase their vulnerability to brain injury. 

To elaborate, infections and allergic reactions can trigger inflammatory responses in the 

body which further impact the central nervous system therefore influencing the severity 

of symptoms even due to a minor force to the head/body, leading to a concussion or 

a mild TBI. It is also possible that the medications used to treat infections or allergen 

exposures/upper airway manifestations, e.g., corticosteroids, antihistamines, may cause 

side effects including muscle weakness, sleep disturbances, drowsiness/blurred vision, 

and low blood pressure, putting the person at risk of brain injury due to falls and motor-

vehicle collisions. Table 5 also shows that age is one of the most important variables 

in predicting TBI and its causes. Our results are consistent with prior research [61-64] 

on the topic, where the nature of age relationship observed here can be attributed to a 

combination of biological, behavioral, and multimorbidity factors. Babies and children have 

disproportionally larger heads as compared to the body and weaker muscles of the neck, 

making them more susceptible to brain injury caused by falls or assault. In addition, their 

protective mechanisms of the developing brain are not fully developed and in an event of 

an injury this can lead to more severe presentations, resulting in a greater likelihood of 

seeking care. In the older age, brain atrophy causes less cushioning between it and the 

skull, making it more susceptible to injury from falls or other impacts. This can also lead 

to more persistent and severe symptoms, and therefore care-seeking. Likewise, vascular wall 
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becomes less elastic and more prone to rupture in an impact injury to the head, causing 

intracranial hemorrhage and secondary TBI. Older people have number of chronic medical 

conditions, such as, cardiovascular diseases, diabetes, and liver disorders, making them 

more susceptible to TBI due to falls. Hence, younger, and older people (due to changes in 

cognition/dementia) may be less aware of potential dangers and may engage in activities 

that put them at risk for TBI. Another finding was that “Topic 14 – Newborn/infant care 

and ill-defined infections” was one of the leading predictors in Table 5. In addition to 

aforementioned factors that increase the risk of TBI in newborns and children, while our 

study does not concern cause-effect, the following ideas prompt further hypotheses on the 

relevance of Topic 14. Newborns/infants and children with ill-defined infections might have 

compromised immune system and weaker coordination, making them more vulnerable to 

a concussion caused by minor acceleration-deceleration forces applied to the body (even 

in a gentle rocking, swaying). If a child has an ill-defined infection at the time of a 

concussion, determining the primary cause of their symptoms might be challenging because 

the symptoms of infection and concussion can overlap (e.g., fever, weakness, disturbed 

sleep, changes in behavior). Further, infants or young children who may have conditions that 

result in prolonged crying for instance may be at risk of abusive head trauma [65]. The most 

common cause of severe TBI in children less than two years of age is abusive head trauma 

[66].

Compared to previous TBI-related prediction studies [7,67], we were able to achieve a 

significantly higher prediction performance of AUC = 0.85 for TBI event prediction due to 

RF’s ability to explain complex relationships within a large set of attributes by capturing 

non-linear and higher order interaction effects of features [68]. OHIP dataset fits this 

criterion as it is composed of a highly sparse, noisy, and interrelated features. However, RF 

is often referred to as a “black box” model as its predictive power comes at the expense of 

interpretability. Unlike regression models, it is difficult to replicate the results of this model 

and make direct inferences, such as calculating odds ratio (OR) or estimated coefficients. 

In Supplementary Table 7, we calculated the matched ORs for all topics by converting the 

untransformed topic scores to binary topic score: BTSi = 1 if TSi > 1 for i = 1,…, 19, which 

concluded that all topics are significant with OR > 1. To prevent from overfitting, we used 

validation sets to tune the hyperparameters, however, overfitting can still be observed in all 

our selected RF models. It is more evident in models trained with smaller datasets, such as, 

prediction model for TBI due to cyclist collision was trained on 5956 matched pairs and 

yielded a validation AUC of 0.8664 and test AUC was dropped to 0.7608. Future work may 

focus on using cross-validation technique to optimize the hyperparameters or introduce more 

data to avoid overfitting.

The effectiveness of LDA model in topic modelling of textual data has been proven in 

various languages, yet the application of this method on other types of discrete data have 

not been extensively studied. Even though diagnostic codes have no direct meaning like 

textual data, the model was able to group TBI patients successfully as underlying health 

conditions and lifestyle habits are discovered within the selected terms for each topic. For 

instance, diagnoses that are most associated with “Topic 5 – Injuries to extremities, disorders 

of musculoskeletal system, overexertion” are common sports-related injuries that athletes 

or active people are more susceptible to. Since Topic 5 is relatively uniformly distributed, 
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consisting of many diagnostic codes with low β, the diagnoses are likely to co-occur in 

a patient’s diagnostic history with a small frequency, revealing a behavioral pattern of 

athletes. Meanwhile, there are only two diagnostic codes selected for “Topic 15 -Unspecified 

anxiety, neurotic, and associated states” where the dominant term (β = 0.73) corresponds to 

mental health disorders and the other term is its associated symptoms. “Topic 14 – Newborn/

infant care and ill-defined infections” is composed of multiple diagnoses typically made for 

children which can be confirmed as the patients with the topic (TS14> 1) are young children 

with 25th quantile = 2, Median = 5, 75th quantile = 11 years old at injury (Supplementary 

Tables 6a-c). The model is able to capture such high-level information because LDA is a 

“bag-of-words” model, meaning it ignores the order of the terms or words and tends to 

assign words that co-occur together in a document a higher chance of belonging to the same 

topic [69]. In our case, the order and the time of patient diagnoses are ignored making the 

dataset simpler to analyze and explore without the issue of missing data. For this reason, 

LDA has been previously applied as a data mining approach to ICD codes for exploratory 

purposes [32-34], but the results were never utilized for predictive modelling. Text data 

based LDA and RF combined approach was proven to yield powerful predictions [70-72], 

yet our study was the first to show that diagnostic code based LDA model results can be 

exploited for predictive modelling with RF. We applied this approach to reduce the features 

from 314 binary diagnostic codes to 19 continuous rank-normalized topic scores, which 

gave us computational benefits with a minimal loss of information. However, our models 

were very sensitive to patients who were not diagnosed with any of the selected diagnostic 

codes or with no diagnostic history, as misclassification and overfitting were observed due 

to the manual assignment of TS= 0. For example, the selected model for TBI prediction 

task misclassified 38,944 patients in the test set, among them was all the patients who were 

assigned TS= 0 (6,246 TBI patients and 9,588 controls). It is naturally challenging to predict 

outcomes for people with no previous history as the model did not have enough examples 

to learn from, limiting the application of our method to patients with the selected diagnostic 

codes for better prediction results.

Although, the population-based dataset we used is significantly larger than all other TBI-

related ML studies, several considerations need to be taken when applying our results to 

different populations. To begin with, we need to address the potential risk of bias that 

was introduced due to cohort selection. Since our cohort was composed of patients who 

were hospitalized in ED or acute care, they may have more serious underlying health 

problems than the general population. In addition, there is an extreme underrepresentation 

of patients without TBI in the dataset as our sample prevalence of TBI is much higher 

than the population prevalence [73] due to 1:1 matching. However, even if we were to 

have the same population prevalence (0.5% in Canada) [73] in the sample, it is challenging 

to deploy ML classification models with a reliable strong accuracy when there is such 

an extreme class imbalance because the classifiers often tend to be biased towards the 

majority class [74,75]. Nonetheless, we were able to identify pre-existing health conditions 

and lifestyle factors that distinguish patients with TBI from their controls. Previous non 

population-based studies indicated that low socioeconomic status, male sex, and place of 

residence were risk factors of TBI and significant predictors for TBI outcome [76-79], 

which do not agree with our results as sex, income quintile, and rurality indicator were 
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the least important variables for all prediction tasks, this is because we matched cases and 

controls based on these variables. Secondly, the accuracy and the quality of codes assigned 

is overall questionable as we eliminated a total of 1,351,089 observations from cases, and 

1,442,646 from controls due to typos in their OHIP diagnostic codes as per ICES data 

dictionary [40]. Since Electronic Health Records (EHR) are often misreported, it is not 

feasible to determine which codes are inaccurate. Instances of inaccurate code assignments 

can be seen in “916 = Well baby care” where 20,854 out of 528,000 OHIP diagnoses 

with this code were for patients with age at OHIP service date of over two years old. 

Thirdly, we might have overlooked important OHIP diagnoses due to the screening process 

or absence in the diagnostic history of patients in the training set, as well as many known 

clinically relevant predictors were not available in our dataset [80-88], such as race/ethnicity, 

education, and occupation; predictive performance might be improved with the introduction 

of these variables. Lastly, one could further explore other common causes of injury, such 

as assaults, firearms, which were grouped under “other” category and were not individually 

predicted due to lack of representation in our cohort. We also did not investigate the severity 

of injury and its relationship with pre-injury health conditions due to missingness (unknown 

for 45.7% of TBI patients).

5. Conclusion

Our study results demonstrate the feasibility of using LDA model on diagnostic data to 

predict TBI event as well as its external causes. Similar approaches can be replicated 

in other public health research to retrieve information from diagnostic codes and to gain 

computational benefits for predictive modelling. An introduction of meaningful clinical and 

physiological parameters, additional observations from a longer period, and a larger cohort 

(both cases and controls) may improve the performance and the robustness of our proposed 

approach. Future studies could take advantage of the longitudinal nature of the dataset and 

integrate the time and the order of diagnoses to boost prediction performance, however, 

this needs to be carefully studied as there would be a problem of missing data. We could 

do so by employing Recurrent Neural Networks for predictive modelling or utilize Latent 

Semantic Analysis [89] to discover associations among diagnoses based on closeness since 

physician diagnoses that happen close in time may be connected to each other.

Since this research was conducted on a retrospective data, the results need to be applied 

with caution due to ever-changing circumstances. The world has been greatly affected by 

the novel coronavirus (COVID-19) pandemic since 2019, and the virus’ and the vaccines’ 

long-term health impacts in relation to TBI are largely unknown. In addition, acceleration 

in the development of auto-pilot cars may eventually prevent from all road traffic injuries, 

including TBI. An improved access to information and better education in the society might 

reduce incidences of assault-related TBI.

The study results show that prevention of initial TBI could be possible by early detecting 

pre-morbid conditions that increases the risk of TBI and targeting individuals based on their 

lifestyle habits, age, and other socio-demographic factors to improve precision medicine. 

Furthermore, safety interventions can be put in place for an individual based on their 

behavior that potentially exposes them to certain types of external causes of injury.
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Fig. 1. 
LDA tuning number of topics. Line graphs showing calculated metrics across different 

number of topics. Note. Griffiths2004 did not converge.
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Table 1

Summary statistics by split sets. Abbreviations: SD = standard deviation; Pctl. = percentile; AIS = Abbreviated 

Injury Scale.

Variables Training Validation Test

(N = 488,128) (N = 244,036) (N = 244,050)

Socio-demographics

Age at injury (years)

 Mean 35.1 35.1 35.1

 SD 25.5 25.6 25.6

 Pctl. 25 15 15 15

 Median 27 27 27

 Pctl. 75 54 54 54

Sex, n (%)

 Male 274,186 (56.2) 136,412 (55.9) 137,220 (56.2)

Rurality indicator, n (%)

 Rural 75,516 (15.5) 37,578 (15.4) 37,828 (15.5)

Income quintile, n (%)

 Q1 (lowest income) 99,290 (20.3) 49,216 (20.2) 49,390 (20.2)

 Q2 94,866 (19.4) 47,638 (19.5) 47,518 (19.5)

 Q3 96,042 (19.7) 48,174 (19.7) 47,708 (19.5)

 Q4 98,886 (20.3) 49,880 (20.4) 49,914 (20.5)

 Q5 (highest income) 99,044 (20.3) 49,128 (20.1) 49,520 (20.3)

OHIP-specifica

Patients with a diagnosis, n (%) 463,943 (95.1) 231,889 (95.0) 231,855 (95.0)

Total number of diagnoses 20,441,616 10,290,796 10,271,548

TBI-specificb

Patients with TBI 244,064 122,018 122,025

Injury severity, n (%)

 Unknown 111,387 (45.6) 55,869 (45.8) 55,958 (45.9)

 Mild (AIS 1–2) 101,081 (41.4) 50,235 (41.2) 50,087 (41.0)

 Moderate (AIS = 3) 6072 (2.5) 3076 (2.5) 3134 (2.6)

 Severe (AIS >3) 25,524 (10.5) 12,838 (10.5) 12,846 (10.5)

Cause of injury, n (%)

 Falls 109,485 (44.9) 54,707 (44.8) 54,703 (44.8)

 Struck by/against 84,382 (34.6) 42,351 (34.7) 42,012 (34.4)

 Cyclist Collision 5956 (2.4) 3005 (2.5) 3046 (2.5)

 Motor Vehicle Collision 25,742 (10.5) 12,675 (10.4) 13,137 (10.8)

 Other 21,263 (8.7) 10,725 (8.8) 10,586 (8.7)

a
Summary for patients with OHIP diagnosis.

b
Summary for patients with TBI.
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Table 2

Topic names. Names were assigned based on their top diagnostic codes (Supplementary Fig. 1 and 

Supplementary Table 3 for the full list of selected diagnostic codes).

There were 24,860 TBI patients and 38,284 control patients who were assigned TSi = 0 where i = 1, 2,…,19 

due to not being diagnosed with any of the 314 selected diagnostic codes during their pre-injury phase. For the 

remainder of the patients, topic scores were computed for all 19 topics as per Equation (1), which were 

extremely positively skewed for each group, with the highest range being 0.0368 to 2796.025 for TBI-

Validation set (Table 3 for statistics). Topic scores were then rank-normalized within each group of the split 

sets. The normalized topic scores, from here on referred to as Topici where i = 1, 2,…, 19, were then used 

along with socio-demographic variables (age at injury, sex, rurality indicator, income quintile) for prediction 

tasks.

Topic Name

Topic 1 Heart disorders and symptoms

Topic 2 Microbial and allergic skin, eye, and upper airway manifestations

Topic 3 Stroke and excessive involuntary movement disorders

Topic 4 Kidney failure, sepsis, anemia

Topic 5 Injuries to extremities, disorders of musculoskeletal system, overexertion

Topic 6 Respiratory disorders, obstruction, and symptoms

Topic 7 Infectious/inflammatory diseases of skin and urinary system, and related concerns

Topic 8 Arthritis and manifestations of inflammatory, traumatic, and autoimmune disorders

Topic 9 Disorders of sense organs, trauma of upper extremities, and nutritional deficiencies

Topic 10 Inflammatory, traumatic multisystem disorders and mental manifestations

Topic 11 Lesions in anorectal area, venous and skin insufficiencies

Topic 12 General symptoms, migraine, and diseases of central nervous system

Topic 13 Unspecified back, depressive, and other diseases

Topic 14 Newborn/infant care and ill-defined infections

Topic 15 Unspecified anxiety, neurotic, and associated states

Topic 16 Symptoms of digestive, nervous, musculoskeletal, and excretion systems

Topic 17 Drug dependence and addiction

Topic 18 Unknown causes of morbidity and mortality

Topic 19 Disorders of glucose intolerance and complications
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Table 4

Random forest hyperparameter tuning for each prediction task.

Target variable Number
of Trees

Terminal
Node Size

Sampled
Variables

Validation
AUC

TBI 100 4 22 0.906

200 1 18 0.9068

300 1 22 0.908

400 1 15 0.9062

Cause of Injury Falls 100 2 22 0.8954

200 1 22 0.8975

300 1 22 0.8987

400 1 22 0.8988

500 1 18 0.8988

Struck by/against 100 1 6 0.892

200 1 6 0.8969

300 2 5 0.8939

Cyclist Collision 100 1 18 0.856

200 1 18 0.8589

300 1 18 0.86

400 2 22 0.8664

500 2 12 0.8629

Motor Vehicle Collision 100 4 22 0.8944

200 2 22 0.8971

300 2 18 0.8981

400 2 23 0.8985

500 2 18 0.8989

600 1 18 0.8997

700 1 18 0.8996
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