

Received 24 July 2016 Accepted 19 August 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; DHPM derivative; monohydrate; Z' = 2; hydrogen bonding.

CCDC reference: 1499989

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of methyl 4-(4-hydroxyphenyl)-6methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5carboxylate monohydrate

Keshab M. Bairagi,^a Katharigatta N. Venugopala,^b Pradip Kumar Mondal,^c Bharti Odhav^b and Susanta K. Nayak^a*

^aDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India, ^bDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and ^cDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462023, India. *Correspondence e-mail:

The title hydrate, $C_{13}H_{14}N_2O_4 \cdot H_2O$, crystallizes with two formula units in the asymmetric unit (Z' = 2). The dihedral angles between the planes of the tetrahydropyrimidine ring and the 4-hydroxyphenyl ring and ester group are 86.78 (4) and 6.81 (6)°, respectively, for one molecule and 89.35 (4) and 3.02 (4)° for the other. In the crystal, the organic molecules form a dimer, linked by a pair of N-H···O hydrogen bonds. The hydroxy groups of the organic molecules donate O-H···O hydrogen bonds to water molecules. Further, the hydroxy group accepts N-H···O hydrogen bonds from amides whereas the water molecules donate O-H···O hydrogen bonds to the both the amide and ester carbonyl groups. Other weak interactions, including C-H···O, C-H··· π and π - π , further consolidate the packing, generating a three-dimensional network.

1. Chemical context

Dihydropyrimidine (DHPM) derivatives are used in the treatment of disease as antiviral, antitumor, antibacterial and antimalarial agents, as first reported by the Italian chemist Pietro Biginelli in 1893 [Kappe (2000), Nayak *et al.* (2010) and references therein]. We have been working on the synthesis of various DHPM derivatives for better biological activities (Narayanaswamy *et al.*, 2013; Nayak *et al.*, 2011) and a wide range of applications (Nayak *et al.*, 2009, 2010). Here, we report the synthesis and single-crystal structure of the title compound, (I).

OPEN 🔂 ACCESS

Figure 1 The asymmetric unit of the title compound with 50% probability ellipsoids. The double-dashed lines indicate hydrogen bonds.

2. Structural commentary

Compound (I) crystallizes as a monohydrate with two formula units in the asymmetric unit (Z' = 2), which may be supported by the formation of hydrogen bonds between the hydroxyphenyl group and the water molecule and dimer formation through N-H···O hydrogen bonds (Fig. 1). The dihedral angles between the planes of the six-membered tetrahydropyrimidine ring with its 4-hydroxyphenyl and ester substituents are 86.78 (4) and 6.81 (6)°, respectively, for the N1-

Figure 2

Crystal structure of title compound showing the dimers formed by N– $H \cdots O$ hydrogen bonds as well as the links to the water molecules, which donate $O-H \cdots O$ hydrogen bonds to the ester groups.

Table 1Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O6$	0.878 (19)	2.10(2)	2.9762 (16)	173.1 (17)
N3−H3N···O1	0.88 (2)	1.98 (2)	2.8626 (16)	174 (2)
$N2-H2N\cdots O9^{i}$	0.89(2)	2.02(2)	2.8971 (19)	170.0 (18)
$N4-H4N\cdots O4^{ii}$	0.87(2)	2.13 (2)	2.9738 (19)	163.4 (18)
O4−H1 <i>O</i> ···O5	0.87(2)	1.78 (2)	2.6473 (16)	175 (2)
O9−H2O···O10	0.90(2)	1.73 (2)	2.6189 (17)	174.7 (19)
O5−H4O···O2 ⁱⁱⁱ	0.84(2)	2.15 (2)	2.8549 (19)	141 (2)
$O5-H3O\cdots O1^{iv}$	0.91(3)	1.91 (3)	2.786 (2)	162 (2)
$C20-H20C\cdots O5^{iv}$	1.00(2)	2.56 (2)	3.332 (2)	133.7 (17)
$C26-H26\cdots O3^{v}$	0.971 (17)	2.571 (18)	3.4607 (18)	152.4 (14)
$C6-H6B\cdots Cg2^{vi}$	0.989 (19)	2.70 (2)	3.392 (2)	127.1 (16)
$C19-H19C\cdots Cg1^{vii}$	0.98 (2)	2.84 (2)	3.395 (2)	116.5 (16)

Symmetry codes: (i) x - 1, y - 1, z - 1; (ii) x + 1, y + 1, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 2; (vi) x, y, z - 1; (vii) x, y + 1, z + 1.

containing molecule and 89.35 (4) $^\circ$ and 3.02 (4) $^\circ,$ respectively, for the other.

3. Supramolecular features

In the crystal of (I), the DHPM molecules form dimers through $N-H\cdots O$ hydrogen bonds with an $R_2^2(8)$ graph-set motif (Fig. 2). The hydroxy groups of the dihydropyrimidine molecules donate $O-H\cdots O$ hydrogen bonds to water molecules, which may explain the preference for the monohydrated crystalline form. Further, the hydroxy group accepts $N-H\cdots O$ hydrogen bonds from amide groups whereas the water molecule donates $O-H\cdots O$ hydrogen bonds to the both the amide and ester carbonyl groups (Table 1). The key

Three-dimensional crystal structure of the title compound showing the role of the water molecules in the hydrogen-bonding network.

Table 2
Experimental details.

Crystal data	
Chemical formula	$C_{13}H_{14}N_2O_4 \cdot H_2O$
M _r	280.28
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.7527 (6), 11.6731 (6), 12.4456 (7)
α, β, γ (°)	98.236 (2), 112.374 (1), 108.944 (2)
$V(Å^3)$	1301.16 (13)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.11
Crystal size (mm)	$0.23 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Bruker Kappa APEXII DUO
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.926, 0.934
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21716, 5116, 4387
R _{int}	0.044
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.099, 1.04
No. of reflections	5116
No. of parameters	489
H-atom treatment	All H-atom parameters refined
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.23, -0.28

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* (Sheldrick, 2008), *SHELXL2014/7* (Sheldrick, 2015), *Mercury* (Farrugia, 2012) and *ORTEP-3 for Windows* (Macrae *et al*, 2008).

role of the water molecule in the hydrogen-bonding network is shown in Fig. 3.

Weak interactions including C-H···O, C-H··· π and $\pi \cdot \cdot \cdot \pi [Cg1 \cdot \cdot \cdot Cg2(2 - x, 1 - y, 1 - z) = 3.652 (1) \text{ Å}; Cg1 and Cg2 are the centroids of the C8-C13 and C21-C26 rings, respectively] help to consolidate the packing and a three-dimensional network arises.$

4. Database survey

A search of the Cambridge structural Database (CSD) (Conquest Version 1.17; Groom et al., 2016) for methyl 4-(4hydroxyphenyl)-6-methyl 2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate gave no hits; however, the crystal structures of sixteen hydroxyphenyl-substituted DHPM derivatives were found. These structures include four 2-hydroxyphenyl-substituted DHPM molecules, one 3-hydroxy-substituted and eleven 4-hydroxyphenyl-substituted DHPM molecules. It is interesting to note that five of the 4-hydroxyphenyl-substituted DHPM molecules prefer to crystallize in a hydrated form (ZOHFIN: Vishnevskii et al. 2014; VOJDOO: Das et al., 2008; VOJDOO01: Nayak et al., 2009; POWXIJ: Thenmozhi et al., 2009; XISMES: Liu et al., 2008). However, of these only ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (VOJDOO: Das et al., 2008) crystallizes with a higher formula unit (Z' > 1), *i.e.* its structure has three formula units in the asymmetric unit (Z' = 3) in the monohydrated form. Hence, the title compound is the second member of this family of monohydrates to crystallize with higher formula units in the asymmetric unit (Z' = 2). The CSD analysis clearly suggests that 4-hydroxy-substituted DHPM molecule are prone to crystallize in their hydrated form compared to 3-hydroxy or 2-hydroxy-substituted DHPM molecules; this may be due to the observed $O-H\cdots O$ hydrogen bonding with water molecule acceptors with the hydroxyl group in the preferred *para* position.

5. Synthesis and crystallization

The title compound was obtained by the reaction of three components, *viz.* methyl acetoacetate, 4-hydroxybenzaldehyde and urea in ethanol solution according to a reported procedure (Tumtin *et al.*, 2010). The reaction progress was monitored by thin layer chromatography and after the completion of the reaction, the solvent was removed and the solid obtained was recrystallized from ethanol to obtain the pure product. Colorless single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in ethanol (yield 75%, m.p. 412.3 K). FT–IR ν_{max} cm⁻¹: 3379 (O–H), 3248 (N–H), 2963 (sp^2 C–H), 2845 (sp^3 C–H), 1763 (C=O ester), 1682 (C=O amide), 1594 (C=C alkene), 1514 (C=C aromatic) and 1260 (C–O, ester).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in difference Fourier maps and freely refined.

Acknowledgements

This research was supported by the Visvesvaraya National Institute of Technology (VNIT), Nagpur, INDIA. We thank Dr D. Chopra, IISER, Bhopal, for the single-crystal X-ray data collection.

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, U., Chheda, S. B., Pednekar, S. R., Karambelkar, N. P. & Guru Row, T. N. (2008). Acta Cryst. E64, 02488–02489.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.
- Liu, B., Zhang, M., Cui, N., Zhu, J. & Cui, J. (2008). Acta Cryst. E64, 0261.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Narayanaswamy, V. K., Nayak, S. K., Pillay, M., Prasanna, R., Coovadia, Y. M. & Odhav, B. (2013). *Chem. Biol. Drug Des.* 81, 219–227.
- Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, 02502.
- Nayak, S. K., Venugopala, K., Chopra, D. & Row, T. G. (2011). *CrystEngComm*, **13**, 591–605.

- Nayak, S. K., Venugopala, K., Chopra, D., Vasu & Guru Row, T. N. (2010). *CrystEngComm*, **12**, 1205–1216.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thenmozhi, M., Kavitha, T., Satyanarayana, V. S. V., Vijayakumar, V. & Ponnuswamy, M. N. (2009). *Acta Cryst.* E65, 01921–01922.
- Tumtin, S., Phucho, I. T., Nongpiur, A., Nongrum, R., Vishwakarma, J. N., Myrboh, B. & Nongkhlaw, R. L. (2010). *ChemInform*, **41**, doi: 10.1002/chin.201024169.
- Vishnevskii, S. G., Drapailo, A. B., Ruban, A. V., Pirozhenko, V. V., Shishkina, S. V., Shishkin, O. V. & Kal'chenko, V. I. (2014). *Russ. J. Org. Chem.* **50**, 571–580.

supporting information

Acta Cryst. (2016). E72, 1335-1338 [doi:10.1107/S2056989016013359]

Crystal structure of methyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate

Keshab M. Bairagi, Katharigatta N. Venugopala, Pradip Kumar Mondal, Bharti Odhav and Susanta K. Nayak

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.* (2008); software used to prepare material for publication: *SHELXL2014/7* (Sheldrick, 2015).

Methyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate

Crystal data

 $C_{13}H_{14}N_2O_4 \cdot H_2O$ $M_r = 280.28$ Triclinic, *P*1 *a* = 10.7527 (6) Å *b* = 11.6731 (6) Å *c* = 12.4456 (7) Å *a* = 98.236 (2)° *β* = 112.374 (1)° *γ* = 108.944 (2)° *V* = 1301.16 (13) Å³

Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.926, T_{\max} = 0.934$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.099$ S = 1.045116 reflections 489 parameters Z = 4 F(000) = 592 $D_x = 1.431 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 740 reflections $\theta = 2.2-30.1^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 150 K Plate, colorless $0.23 \times 0.20 \times 0.15 \text{ mm}$

21716 measured reflections 5116 independent reflections 4387 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.046P)^{2} + 0.5474P] \qquad \Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.39164 (15)	0.54081 (12)	0.87596 (12)	0.0139 (3)
C2	0.60979 (15)	0.53784 (13)	0.86203 (12)	0.0148 (3)
C3	0.53110 (14)	0.42096 (12)	0.77764 (12)	0.0136 (3)
C4	0.36594 (14)	0.34937 (12)	0.73347 (12)	0.0133 (3)
C5	0.60417 (15)	0.35855 (12)	0.72784 (13)	0.0153 (3)
C6	0.56565 (17)	0.17576 (14)	0.58648 (15)	0.0209 (3)
C7	0.77354 (16)	0.61333 (15)	0.91932 (15)	0.0213 (3)
C8	0.26914 (14)	0.32159 (12)	0.59847 (12)	0.0135 (3)
С9	0.16677 (15)	0.19821 (12)	0.52680 (13)	0.0147 (3)
C10	0.07261 (15)	0.17160 (12)	0.40490 (13)	0.0153 (3)
C11	0.07936 (15)	0.26965 (13)	0.35266 (12)	0.0142 (3)
C12	0.18128 (15)	0.39416 (13)	0.42297 (13)	0.0155 (3)
C13	0.27411 (15)	0.41876 (13)	0.54497 (13)	0.0155 (3)
C14	0.62129 (15)	0.92206 (13)	1.09772 (12)	0.0144 (3)
C15	0.40117 (15)	0.90446 (13)	1.12011 (12)	0.0149 (3)
C16	0.46382 (15)	1.02900 (13)	1.18448 (12)	0.0149 (3)
C17	0.62246 (15)	1.11457 (12)	1.21918 (12)	0.0142 (3)
C18	0.37813 (15)	1.08432 (13)	1.22405 (13)	0.0179 (3)
C19	0.37283 (19)	1.26713 (15)	1.32473 (17)	0.0253 (3)
C20	0.24606 (16)	0.81093 (14)	1.07923 (14)	0.0209 (3)
C21	0.72322 (14)	1.15937 (12)	1.35558 (12)	0.0134 (3)
C22	0.81179 (15)	1.28805 (12)	1.41893 (13)	0.0154 (3)
C23	0.90581 (15)	1.32811 (12)	1.54268 (13)	0.0160 (3)
C24	0.91207 (14)	1.23915 (13)	1.60557 (12)	0.0146 (3)
C25	0.82479 (15)	1.10980 (13)	1.54369 (13)	0.0146 (3)
C26	0.73188 (14)	1.07151 (12)	1.41985 (13)	0.0140 (3)
N1	0.53814 (13)	0.59703 (11)	0.90574 (11)	0.0163 (3)
N2	0.31652 (13)	0.42046 (11)	0.80401 (11)	0.0153 (3)
N3	0.48323 (13)	0.85228 (11)	1.08401 (11)	0.0162 (3)
N4	0.68018 (13)	1.04716 (11)	1.15386 (11)	0.0154 (3)
01	0.33372 (11)	0.59969 (9)	0.91804 (9)	0.0185 (2)
O2	0.73271 (11)	0.40171 (9)	0.74845 (10)	0.0225 (2)
O3	0.50735 (11)	0.24088 (9)	0.64955 (9)	0.0191 (2)
O4	-0.01614 (11)	0.23932 (9)	0.23188 (9)	0.0178 (2)
05	-0.03765 (13)	0.44197 (10)	0.16905 (11)	0.0253 (3)
O6	0.68445 (10)	0.86842 (9)	1.05711 (9)	0.0181 (2)

07	0.25613 (12)	1.02650 (11)	1.21377 (13)	0.0372 (3)
08	0.45133 (11)	1.21067 (9)	1.27839 (10)	0.0215 (2)
09	1.00441 (11)	1.28271 (9)	1.72845 (9)	0.0182 (2)
O10	1.02933 (13)	1.10134 (11)	1.82525 (11)	0.0279 (3)
H2	0.3460 (16)	0.2653 (14)	0.7513 (13)	0.012 (4)*
H4	0.6248 (16)	1.1903 (14)	1.1908 (14)	0.013 (4)*
H6C	0.801 (2)	0.695 (2)	0.9685 (19)	0.042 (6)*
H6A	0.6325 (19)	0.1504 (15)	0.6451 (15)	0.020 (4)*
H6B	0.618 (2)	0.2300 (17)	0.5497 (17)	0.032 (5)*
H7A	0.473 (2)	0.1020 (18)	0.5170 (18)	0.037 (5)*
H7B	0.810 (2)	0.6203 (19)	0.8581 (19)	0.043 (6)*
H7C	0.823 (2)	0.572 (2)	0.971 (2)	0.050 (6)*
Н9	0.1627 (17)	0.1297 (15)	0.5647 (14)	0.014 (4)*
H10	0.0015 (18)	0.0858 (15)	0.3535 (15)	0.017 (4)*
H12	0.1873 (18)	0.4638 (16)	0.3874 (15)	0.023 (4)*
H13	0.3430 (18)	0.5067 (16)	0.5956 (15)	0.022 (4)*
H19A	0.272 (2)	1.2425 (19)	1.2587 (19)	0.041 (5)*
H19B	0.430 (2)	1.355 (2)	1.354 (2)	0.050 (6)*
H19C	0.369 (2)	1.2410 (18)	1.3956 (18)	0.035 (5)*
H20A	0.224 (2)	0.8036 (18)	1.1506 (19)	0.040 (5)*
H20B	0.176 (2)	0.8369 (18)	1.0264 (18)	0.035 (5)*
H20C	0.232 (2)	0.725 (2)	1.0365 (19)	0.043 (6)*
H22	0.8056 (18)	1.3477 (16)	1.3726 (15)	0.022 (4)*
H23	0.9677 (18)	1.4181 (16)	1.5872 (15)	0.019 (4)*
H25	0.8305 (18)	1.0473 (15)	1.5905 (15)	0.020 (4)*
H26	0.6728 (17)	0.9814 (15)	1.3765 (14)	0.014 (4)*
H1N	0.587 (2)	0.6755 (18)	0.9547 (16)	0.025 (4)*
H3N	0.442 (2)	0.7732 (19)	1.0363 (18)	0.034 (5)*
H2N	0.220 (2)	0.3872 (16)	0.7813 (16)	0.024 (4)*
H4N	0.769 (2)	1.0913 (17)	1.1660 (16)	0.025 (5)*
H1O	-0.017 (2)	0.308 (2)	0.2135 (19)	0.045 (6)*
H2O	1.007 (2)	1.218 (2)	1.759 (2)	0.047 (6)*
H3O	-0.126 (3)	0.447 (2)	0.147 (2)	0.049 (6)*
H4O	0.033 (2)	0.513 (2)	0.1929 (19)	0.040 (6)*
H5O	0.954 (3)	1.045 (2)	1.824 (2)	0.050 (6)*
H6O	1.115 (3)	1.097 (2)	1.870 (2)	0.048 (6)*
			· ·	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0135 (7)	0.0148 (6)	0.0126 (6)	0.0056 (5)	0.0053 (5)	0.0037 (5)
C2	0.0130 (7)	0.0171 (7)	0.0149 (7)	0.0068 (5)	0.0060 (5)	0.0064 (5)
C3	0.0112 (6)	0.0138 (6)	0.0153 (7)	0.0050 (5)	0.0053 (5)	0.0056 (5)
C4	0.0118 (6)	0.0104 (6)	0.0175 (7)	0.0041 (5)	0.0075 (5)	0.0021 (5)
C5	0.0140 (7)	0.0136 (6)	0.0176 (7)	0.0055 (5)	0.0065 (6)	0.0058 (5)
C6	0.0216 (8)	0.0187 (7)	0.0271 (8)	0.0102 (6)	0.0155 (7)	0.0031 (6)
C7	0.0136 (7)	0.0198 (7)	0.0219 (8)	0.0025 (6)	0.0057 (6)	-0.0002 (6)
C8	0.0104 (6)	0.0133 (6)	0.0171 (7)	0.0055 (5)	0.0071 (5)	0.0021 (5)

supporting information

C9	0.0139 (7)	0.0123 (6)	0.0196 (7)	0.0061 (5)	0.0091 (6)	0.0039 (5)
C10	0.0120 (7)	0.0112 (6)	0.0192 (7)	0.0035 (5)	0.0067 (6)	-0.0008 (5)
C11	0.0111 (6)	0.0171 (7)	0.0147 (7)	0.0067 (5)	0.0066 (5)	0.0019 (5)
C12	0.0140 (7)	0.0137 (6)	0.0190 (7)	0.0056 (5)	0.0079 (6)	0.0051 (5)
C13	0.0112 (6)	0.0111 (6)	0.0201 (7)	0.0026 (5)	0.0061 (6)	0.0010 (5)
C14	0.0125 (6)	0.0160 (6)	0.0116 (6)	0.0059 (5)	0.0026 (5)	0.0034 (5)
C15	0.0121 (7)	0.0191 (7)	0.0117 (6)	0.0066 (5)	0.0038 (5)	0.0041 (5)
C16	0.0119 (7)	0.0173 (7)	0.0157 (7)	0.0063 (5)	0.0060 (5)	0.0052 (5)
C17	0.0137 (7)	0.0128 (6)	0.0169 (7)	0.0061 (5)	0.0074 (6)	0.0038 (5)
C18	0.0142 (7)	0.0180 (7)	0.0205 (7)	0.0067 (6)	0.0072 (6)	0.0050 (6)
C19	0.0263 (9)	0.0200 (8)	0.0398 (10)	0.0132 (7)	0.0224 (8)	0.0086 (7)
C20	0.0140 (7)	0.0191 (7)	0.0216 (8)	0.0023 (6)	0.0065 (6)	-0.0007 (6)
C21	0.0100 (6)	0.0131 (6)	0.0173 (7)	0.0048 (5)	0.0074 (5)	0.0015 (5)
C22	0.0150 (7)	0.0126 (6)	0.0207 (7)	0.0057 (5)	0.0104 (6)	0.0041 (5)
C23	0.0134 (7)	0.0098 (6)	0.0214 (7)	0.0021 (5)	0.0089 (6)	-0.0012 (5)
C24	0.0101 (6)	0.0163 (6)	0.0153 (7)	0.0050 (5)	0.0062 (5)	-0.0008 (5)
C25	0.0120 (6)	0.0142 (6)	0.0187 (7)	0.0058 (5)	0.0079 (6)	0.0041 (5)
C26	0.0110 (6)	0.0095 (6)	0.0190 (7)	0.0028 (5)	0.0068 (5)	0.0008 (5)
N1	0.0130 (6)	0.0115 (6)	0.0173 (6)	0.0017 (5)	0.0051 (5)	-0.0016 (5)
N2	0.0101 (6)	0.0147 (6)	0.0172 (6)	0.0030 (5)	0.0060 (5)	0.0001 (5)
N3	0.0128 (6)	0.0126 (6)	0.0178 (6)	0.0032 (5)	0.0053 (5)	-0.0005 (5)
N4	0.0119 (6)	0.0142 (6)	0.0175 (6)	0.0034 (5)	0.0071 (5)	0.0013 (5)
01	0.0154 (5)	0.0168 (5)	0.0201 (5)	0.0061 (4)	0.0074 (4)	-0.0002 (4)
O2	0.0129 (5)	0.0211 (5)	0.0301 (6)	0.0053 (4)	0.0101 (4)	0.0021 (4)
03	0.0158 (5)	0.0139 (5)	0.0264 (6)	0.0052 (4)	0.0114 (4)	0.0000 (4)
O4	0.0158 (5)	0.0165 (5)	0.0148 (5)	0.0042 (4)	0.0039 (4)	0.0023 (4)
05	0.0141 (6)	0.0149 (5)	0.0356 (6)	0.0039 (5)	0.0036 (5)	0.0026 (5)
06	0.0150 (5)	0.0169 (5)	0.0202 (5)	0.0072 (4)	0.0073 (4)	0.0008 (4)
O7	0.0200 (6)	0.0253 (6)	0.0613 (9)	0.0033 (5)	0.0247 (6)	-0.0035 (6)
08	0.0200 (5)	0.0154 (5)	0.0342 (6)	0.0086 (4)	0.0173 (5)	0.0051 (4)
09	0.0152 (5)	0.0160 (5)	0.0152 (5)	0.0027 (4)	0.0041 (4)	-0.0005 (4)
O10	0.0135 (6)	0.0255 (6)	0.0367 (7)	0.0048 (5)	0.0054 (5)	0.0119 (5)

Geometric parameters (Å, °)

C1-01	1.2481 (17)	C15—C20	1.4984 (19)
C1—N2	1.3342 (17)	C16—C18	1.4659 (19)
C1—N1	1.3653 (18)	C16—C17	1.5177 (19)
С2—С3	1.3579 (19)	C17—N4	1.4776 (17)
C2—N1	1.3872 (18)	C17—C21	1.5188 (19)
С2—С7	1.4973 (19)	C17—H4	0.994 (15)
С3—С5	1.4647 (19)	C18—O7	1.2105 (18)
C3—C4	1.5218 (18)	C18—O8	1.3444 (17)
C4—N2	1.4745 (17)	C19—O8	1.4499 (17)
C4—C8	1.5182 (19)	C19—H19A	0.99 (2)
C4—H2	1.009 (15)	C19—H19B	0.94 (2)
С5—О2	1.2127 (17)	C19—H19C	0.98 (2)
C5—O3	1.3548 (17)	C20—H20A	1.01 (2)

$C(6, 0)^3$	1 4401 (17)	C20 H20P	0.06(2)
C_{0}	1.4491(17)	C20—1120B	0.90(2)
	0.908(17)	C_{20} $H_{20}C$	1.00(2) 1.2021(10)
Со-пов	0.989(19)	$C_{21} = C_{20}$	1.3931(19)
	1.03(2)	C_{21}	1.3946 (19)
	0.95 (2)	C22—C23	1.384 (2)
C/—H/B	0.98 (2)	С22—Н22	0.968 (17)
С7—Н7С	0.96 (2)	C23—C24	1.391 (2)
C8—C9	1.3917 (19)	C23—H23	0.975 (17)
C8—C13	1.3918 (19)	C24—O9	1.3699 (17)
C9—C10	1.384 (2)	C24—C25	1.3965 (19)
С9—Н9	0.982 (16)	C25—C26	1.383 (2)
C10—C11	1.3904 (19)	C25—H25	0.999 (17)
C10—H10	0.972 (16)	С26—Н26	0.971 (16)
C11—O4	1.3696 (16)	N1—H1N	0.878 (19)
C11—C12	1.3966 (19)	N2—H2N	0.890 (19)
C12—C13	1.385 (2)	N3—H3N	0.88 (2)
С12—Н12	0.976 (17)	N4—H4N	0.867 (19)
С13—Н13	0.983 (17)	O4—H1O	0.86 (2)
C14-06	1.2472(17)	05—H30	0.00(2)
C14N4	1.2172(17) 1.3386(18)	05—H4O	0.91(2)
C14 N3	1 3706 (18)	09H20	0.05(2)
$C_{14} = R_{3}$	1.3700(10) 1.3523(10)	010 450	0.90(2)
C15 = C10	1.3323(19) 1.3960(19)	010 460	0.80(3)
013-103	1.3809 (18)	010—100	0.90 (2)
01 01 12	100 42 (10)	NIA C17 C17	100 46 (11)
OI = OI = N2	122.43 (12)	N4 - C17 - C16	109.46 (11)
01—C1—NI	120.57 (12)	N4—C1/—C21	109.83 (11)
N2-C1-N1	116.97 (12)	C16—C17—C21	113.17 (11)
C3—C2—N1	119.80 (12)	N4—C17—H4	106.2 (9)
C3—C2—C7	126.65 (13)	С16—С17—Н4	109.2 (9)
N1—C2—C7	113.53 (12)	С21—С17—Н4	108.7 (9)
C2—C3—C5	120.57 (12)	O7—C18—O8	121.30 (13)
C2—C3—C4	121.63 (12)	O7—C18—C16	126.02 (13)
C5—C3—C4	117.78 (11)	O8—C18—C16	112.66 (12)
N2—C4—C8	108.71 (10)	O8—C19—H19A	109.5 (12)
N2—C4—C3	109.65 (11)	O8—C19—H19B	106.2 (14)
C8—C4—C3	115.47 (11)	H19A—C19—H19B	112.9 (18)
N2—C4—H2	105.7 (9)	O8—C19—H19C	110.4 (11)
C8—C4—H2	107.5 (9)	H19A—C19—H19C	111.3 (16)
C3—C4—H2	109.4 (9)	H19B—C19—H19C	106.4 (17)
02	121.53 (13)	C15—C20—H20A	111.6 (12)
$0^{2}-0^{5}-0^{3}$	127.41 (13)	C15 - C20 - H20B	111.0(12)
03 - 05 - 03	111.05(11)	H_{20A} C_{20} H_{20B}	106.6(16)
03—C6—H6A	107 7 (10)	$C_{15} - C_{20} - H_{20}C_{12}$	109.4(12)
03H6B	112 2 (11)	$H_{20} = C_{20} = H_{20}C$	107.5 (12)
	112.2(11) 110.0(14)	$H_{20}^{-12} = C_{20}^{-112} = H_{20}^{-12} = C_{20}^{-112} $	107.0(10)
10A - CO - 10D $O_2 - C6 - 117A$	110.0(14) 102.6(11)	1120D - C20 - T20C	110.3(10) 118.20(12)
	105.0 (11)	$C_{20} = C_{21} = C_{22}$	110.39 (13)
	113.1 (14)	120 - 121 - 17	120.28 (12)
H0B-C0-H/A	108.1 (15)	$C_{22} - C_{21} - C_{17}$	121.31 (12)

С2—С7—Н6С	110.7 (12)	C23—C22—C21	121.08 (13)
С2—С7—Н7В	112.1 (12)	C23—C22—H22	121.6 (10)
H6C—C7—H7B	109.6 (17)	C21—C22—H22	117.3 (10)
С2—С7—Н7С	109.8 (13)	C22—C23—C24	119.74 (12)
H6C—C7—H7C	107.8 (18)	С22—С23—Н23	121.3 (9)
H7B—C7—H7C	106.7 (17)	С24—С23—Н23	119.0 (10)
C9—C8—C13	118.41 (13)	O9—C24—C23	118.02 (12)
C9—C8—C4	120.22 (12)	09—C24—C25	121.92 (12)
C13—C8—C4	121.27 (12)	C23—C24—C25	120.06 (13)
C10—C9—C8	121.23 (13)	$C_{26} - C_{25} - C_{24}$	119.37 (12)
C10—C9—H9	120.3 (9)	C26—C25—H25	121.7(10)
С8—С9—Н9	118.5 (9)	C_{24} C_{25} H_{25}	118.9 (10)
C9-C10-C11	119.66 (12)	C_{25} C_{26} C_{21}	121.36(12)
C9-C10-H10	122.1 (9)	C25—C26—H26	1194(9)
$C_{11} - C_{10} - H_{10}$	118.2 (9)	$C_{21} = C_{26} = H_{26}$	119.1 (9)
04-C11-C10	117.81 (12)	C1 - N1 - C2	119.3(9) 123 79(12)
04-C11-C12	122 17 (12)	C1 $N1$ $H1N$	125.79(12)
C_{10} C_{11} C_{12}	122.17(12) 120.02(13)	$C_2 N_1 H_1 N_2$	110.9(12) 120.3(12)
$C_{10} = C_{11} = C_{12}$	120.02(13) 110.37(13)	$C_2 = N_1 = M_1$	120.3(12) 126.69(12)
$C_{13} = C_{12} = C_{11}$	119.37(13) 110.8(10)	C1 = N2 = C4	120.09(12)
$C_{13} - C_{12} - H_{12}$	119.8(10) 120.8(10)	$C_1 = N_2 = H_2 N_1$	115.7(11)
$C_{11} = C_{12} = C_{12}$	120.0(10) 121.20(12)	$C_{14} N_{2} C_{15}$	113.0(11) 123.02(12)
$C_{12} = C_{13} = C_{0}$	121.30(12) 110.6(10)	C14 = N3 = C13	123.93(12)
$C_{12} - C_{13} - H_{13}$	119.0(10)	C15 N2 U2N	114.0(13)
	119.1(10)	C13 - N3 - H3N	120.9(13)
06-C14-N4	123.48 (13)	C14 NA HAN	126.51 (12)
06-014-N3	119.81 (12)	C17 N4 H4N	117.2 (12)
N4 - C14 - N3	116./0(12)	C1/-N4-H4N	115.1 (12)
C16—C15—N3	119.54 (12)	C5_03_C6	115.32 (11)
C16-C15-C20	127.09 (13)		109.9 (14)
N3—C15—C20	113.36 (12)	H3O—O5—H4O	112.6 (19)
C15—C16—C18	119.77 (12)	C18—O8—C19	113.98 (11)
C15—C16—C17	122.02 (12)	C24—O9—H2O	111.0 (15)
C18—C16—C17	118.21 (12)	H5O—O10—H6O	113 (2)
N1 C2 C2 C5	179 24 (12)	C_{15} C_{16} C_{19} O_{9}	175 05 (12)
N1 = C2 = C3 = C3	1/6.24(12) -2.6(2)	$C_{13} = C_{10} = C_{18} = 08$	-175.03(12) 5 71 (18)
$C_{-}C_{2} - C_{3} - C_{3}$	-3.0(2)	17 - 10 - 18 - 08	-68.68.(15)
N1 = C2 = C3 = C4	-2.98(19)	N4-C1/-C21-C20	-08.08(13)
$C_{1} = C_{2} = C_{3} = C_{4}$	1/5.15(13)	C10 - C17 - C21 - C20	53.97(10)
$C_2 = C_3 = C_4 = N_2$	-5.41(1/)	N4-C1/-C21-C22	109.60 (14)
$C_3 = C_4 = N_2$	1/3.40 (11)	C10-C1/-C21-C22	-127.75(13)
$C_2 = C_3 = C_4 = C_8$	11/.//(14)	$C_{26} = C_{21} = C_{22} = C_{23}$	-0.2(2)
C_{3} C_{4} C_{8}	-63.42 (15)	C17 - C21 - C22 - C23	-1/8.55(12)
$C_2 - C_3 - C_5 - O_2$	-5.9(2)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.3(2)
-02	1//.25 (13)	$C_{22} = C_{23} = C_{24} = C_{25}$	-1/8./8(12)
$C_2 - C_3 - C_5 - O_3$	1//.24 (12)	$C_{22} - C_{23} - C_{24} - C_{25}$	0.6 (2)
C4 - C3 - C5 - O3	-1.58 (17)	09—C24—C25—C26	1/9.01 (12)
N2-C4-C8-C9	-108.73 (13)	C23—C24—C25—C26	-0.4 (2)
C3—C4—C8—C9	127.59 (13)	C24—C25—C26—C21	-0.2 (2)

$\begin{array}{c} N2-C4-C8-C13\\ C3-C4-C8-C13\\ C13-C8-C9-C10\\ C4-C8-C9-C10\\ C8-C9-C10-C11\\ C9-C10-C11-O4\\ C9-C10-C11-C12\\ O4-C11-C12-C13\\ C10-C11-C12-C13\\ C10-C11-C12-C13\\ C11-C12-C13-C8\\ C9-C8-C13-C12\\ C4-C8-C13-C12\\ C4-C8-C13-C12\\ N3-C15-C16-C18\\ C20-C15-C16-C18\\ N3-C15-C16-C17\\ C15-C16-C17-N4\\ C18-C16-C17-N4\\ C18-C16-C17-N4\\ C15-C16-C17-C21\\ \end{array}$	$\begin{array}{c} 67.52\ (16)\\ -56.15\ (17)\\ 0.6\ (2)\\ 176.94\ (12)\\ -0.3\ (2)\\ -179.75\ (12)\\ 0.3\ (2)\\ 179.50\ (12)\\ -0.6\ (2)\\ 0.8\ (2)\\ -0.8\ (2)\\ -177.17\ (12)\\ -179.33\ (12)\\ 1.5\ (2)\\ -0.1\ (2)\\ -179.25\ (13)\\ 10.20\ (18)\\ -170.57\ (11)\\ -112.65\ (14)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5 \ (2) \\ 178.83 \ (12) \\ -179.62 \ (12) \\ 2.45 \ (19) \\ 5.2 \ (2) \\ -173.19 \ (13) \\ 169.09 \ (12) \\ -13.0 \ (2) \\ -113.04 \ (14) \\ 14.04 \ (18) \\ -176.36 \ (12) \\ 2.68 \ (19) \\ -7.4 \ (2) \\ 171.83 \ (12) \\ -170.82 \ (12) \\ 10.18 \ (19) \\ -15.85 \ (18) \\ 108.97 \ (14) \\ -4.45 \ (19) \end{array}$
C18—C16—C17—N4 C15—C16—C17—C21 C18—C16—C17—C21 C15—C16—C18—O7 C17—C16—C18—O7	-170.57 (11) -112.65 (14) 66.57 (15) 6.7 (2) -172.58 (15)	C21—C17—N4—C14 O2—C5—O3—C6 C3—C5—O3—C6 O7—C18—O8—C19 C16—C18—O8—C19	108.97 (14) -4.45 (19) 174.46 (11) 1.7 (2) -176.70 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8-C13 and C21-C26 rings, respectively.

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
N1—H1 <i>N</i> …O6	0.878 (19)	2.10 (2)	2.9762 (16)	173.1 (17)
N3—H3 <i>N</i> ···O1	0.88 (2)	1.98 (2)	2.8626 (16)	174 (2)
N2—H2 <i>N</i> ···O9 ⁱ	0.89 (2)	2.02 (2)	2.8971 (19)	170.0 (18)
N4—H4 <i>N</i> ····O4 ⁱⁱ	0.87 (2)	2.13 (2)	2.9738 (19)	163.4 (18)
O4—H1 <i>O</i> …O5	0.87 (2)	1.78 (2)	2.6473 (16)	175 (2)
O9—H2 <i>O</i> ···O10	0.90 (2)	1.73 (2)	2.6189 (17)	174.7 (19)
O5—H4 <i>O</i> ⋯O2 ⁱⁱⁱ	0.84 (2)	2.15 (2)	2.8549 (19)	141 (2)
O5—H3 <i>O</i> ···O1 ^{iv}	0.91 (3)	1.91 (3)	2.786 (2)	162 (2)
C20—H20 <i>C</i> ···O5 ^{iv}	1.00 (2)	2.56 (2)	3.332 (2)	133.7 (17)
C26—H26···O3 ^v	0.971 (17)	2.571 (18)	3.4607 (18)	152.4 (14)
C6—H6 B ···Cg2 ^{vi}	0.989 (19)	2.70 (2)	3.392 (2)	127.1 (16)
C19—H19 C ··· $Cg1^{vii}$	0.98 (2)	2.84 (2)	3.395 (2)	116.5 (16)

Symmetry codes: (i) *x*-1, *y*-1, *z*-1; (ii) *x*+1, *y*+1, *z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2; (vi) *x*, *y*, *z*-1; (vii) *x*, *y*+1, *z*+1.