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Statistical evaluation of empirical data is the basis of the modern scientific method.

Available tools include various hypothesis tests for specific data structures, as well as

methods that are used to quantify the uncertainty of an obtained result. Statistics are

pivotal, but many misconceptions arise due to their complexity and difficult-to-acquire

mathematical background. Even though most studies rely on a frequentist interpretation

of statistical readouts, the application of Bayesian statistics has increased due to the

availability of easy-to-use software suites and an increased outreach favouring this topic

in the scientific community. Bayesian statistics take our prior knowledge together with

the obtained data to express a degree of belief how likely a certain event is. Bayes

factor hypothesis testing (BFHT) provides a straightforward method to evaluate multiple

hypotheses at the same time and provides evidence that favors the null hypothesis or

alternative hypothesis. In the present perspective, we show the merits of BFHT for three

different use cases, including a clinical trial, basic research as well as a single case study.

Here we show that Bayesian statistics is a viable addition of a scientist’s statistical toolset,

which can help to interpret data.

Keywords: Bayesian statistics, amyotrophic lateral sclerosis, single case studies, clinical trials, tofersen, JASP,

synthetic data, motor neurone disease

INTRODUCTION

The research community in biological, psychological, and medical fields has become increasingly
introspective regarding our applied statistics. Common statistical techniques, such as null
hypothesis significance testing using p-values, have been re-examined (1–3). Additional criticism
concerns the ritualization of statistical analysis whereby researchers propose null hypotheses
without alternative hypotheses, apply the 5% significance level to reject their null hypothesis and
accept the unspecific alternative hypothesis to then continue repeating this procedure indefinitely
(4). This highlights a frequent, detrimental misinterpretation: that a p-value below five percent (p
< 0.05) suggests a “significant” effect. Statistical significance is not to be confused with clinical
relevance [see (1) for theoretical discussions, and our previous work (5) for a demonstration
within ALSALS/MND research]. For some investigators, the implied inference is that because they
have successfully rejected the null hypothesis, they may now accept the alternative hypothesis,
concluding that there is an effect (4, 6). Consequently, the American Statistical Association (ASA)
clarified the appropriate usage of p-values (7): p-values on their own do not measure the probability
of the null hypothesis being true or the probability that the data were produced by random chance,
they do not measure the size of the proposed effect and they do not provide a good estimation
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of evidence regarding a model or hypothesis. Since then, several
solutions have been proposed: applying the p-value correctly (8),
redefining statistical significance to p < 0.005 for exploratory
studies (9) and supplementing every p-value with Bayesian
analysis (10, 11). These approaches are not mutually exclusive,
can point in the same evidential direction and may be combined
to maximize the information we derive from our data (12, 13).

Other problems range from inappropriate data
transformations, incorrect use of statistical methods (14)
to misinterpretation of statistical readouts (15, 16). For
example, basic research often erroneously applies Student’s
t-test to categorical frequency data; in the spirit of self-
correcting science, we point to our own previous work
(17–19). Conclusions drawn from these erroneously conducted
analyses are submitted, where often, they meet peer-reviewers
who misguidedly do not insist on correction. The resultant
manuscripts are later published to audiences who are themselves
less critical with the conducted procedures because they
rely on the established peer review processes, leading to a
vicious cycle of publishing these bad practices and solidifying
the current state. These issues are non-specific; they apply
across the sciences. They may be remedied by improving
our statistical education, as well as the peer reviewer and
publication processes. Bayesian statistics—as outlined above—
may contribute to improving our statistical conclusions. It is
our aim to introduce Bayesian approaches for the amyotrophic
lateral sclerosis research community, to help us improve
our conclusions. First, we will briefly outline how they have
been applied to this in the past, before demonstrating on our
own data.

The Bayesian approach to probability was recognized as a
valuable tool to maximize the efficiency of clinical trials back in
2010 (20). Since then, its applications have remained somewhat
niche: in January 2021, PubMed hosted 18,171 publications
under the MeSH major topic “amyotrophic lateral sclerosis”—
only 40 of which applied Bayesian modeling techniques
(0.002%). In 2013, Sreedharan and Brown (21) had outlined
the importance of epistatic interactions between genetic variants
of ALS/MND and epidemiological studies of environmental
risk factors for the then-coming years of ALS/MND research.
Colak, Kim (22) have since developed a joint Bayesian analysis,
which explored phenotypic heterogeneity and epistasis. Prior
Bayesian work in this area includes an epistasis mapping
algorithm (BEAM), which outperformed previous epistasis
mapping tools (23). Epidemiologically speaking, Bayesian
parameter estimation has been applied to document the
increasing prevalence of ALS/MND in Portugal (24) and
to discover spatial clusters of ALS/MND (25). Dynamic
Bayesian networks have been used to assess disease progression
regarding communication, movement, swallowing, breathing
and weight loss to high degrees of accuracy (26). This
network specifically modeled the progression over time, instead
of time-to-event modeling with common techniques (26).
Bayesian networks have been shown to predict ALS/MND
more accurately than other machine learning techniques
(27). Throughout, Bayesian modeling techniques have been

lauded as advantageous by the ALS/MND researchers who
applied them.

These niche but important Bayesian contributions to our field
necessitate an introduction to Bayesian thinking and modeling
techniques for the wider ALS/MND research community—which
is what we aim to provide here. To appeal to a broad range
of researchers, we will draw on three facets of ALS/MND
research: clinical trials, basic research, and single cases. As
such, this perspective offers applied methodologies for evidence
quantification and future directions for statistical analysis.

INTRODUCING BAYES

Bayesian inference is named after the eighteenth century
Presbyterian minister Thomas Bayes. His theorem describes
an event’s probability, after the occurrence of a different
independent prior event (see Equation 1).
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The event in question is our hypothesis model (M). Prior to
data analysis, researchers specify a prior probability [P(M)] of
the hypothesis being supported by their data, once they have
been collected (see Table 1). As a naïve guess, all possible
hypotheses (including the null hypothesis) can have the same
probability, for example, when there is no prior knowledge
about the experimental outcome. P(data|M) is readily available
because these hypotheses have a distributional assumption and
therefore the likelihood of the data can be calculated. Researchers
then collect and analyse their data [P(data)] to update the prior
probability. This yields the posterior probability [P(M|data)].
This posterior probability can be interpreted as the probability
of the hypothesis after the occurrence of the data. After this
observation, our belief in the hypothesis can be strengthened or
weakened. Of the numerous statistical approaches derived from
Bayesian probability, we will focus on Bayes factor hypothesis
testing (BFHT)which draws on the Bayes factor (BF) as a measure
of evidential strength (13, 28). Commonly used measures
in BFHT inference are listed in Table 1. The BF measures
the relative plausibility of the competing hypotheses—null vs.
alternative hypothesis—after the data have been analyzed (13).
It can be calculated in favor of the null model (BF01), or the
alternative model (BF10) by dividing their posterior probabilities
[P(M|data)]. To obtain the evidence favoring the null hypothesis
H0, divide the posterior probability of H0 by the posterior
probability of the alternative hypothesis H1 to get BF01. To
obtain the evidence in favor of H1 (i.e., BF10), swap denominator
and numerator. This way, BFHT offers direct, probabilistic
evaluation of several hypotheses representing different possible
effects, facilitating a conclusion regarding which of them is most
probable, and how much more probable it is compared to the
others (1, 3, 6, 9, 28, 29). The conclusions provided by BFHT
fall on a continuum between supporting the null hypothesis,
being inconclusive, or supporting an alternative hypothesis (30).
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TABLE 1 | Commonly reported statistics in Bayesian inference.

Notation/ Full name Interpretation

abbreviation

Prior Prior distribution Distribution of the effect size, as assumed prior to data collection/analysis

Posterior Posterior distribution Actual distribution of the effect size after the data at hand have been analyzed

P(M) Prior model probability Probability of this particular statistical model being supported by the data at hand, as assumed prior to data

collection/analysis

P(M|data) Posterior model probability Posterior probability of this particular model being supported by the data at hand, after they have been analyzed

BF Bayes factor The strength of evidence in favor of a given statistical model, relative to another statistical model (see below)

BF01 Bayes factor 0/1 The strength of evidence in favor of model 0, relative to model 1

BF10 Bayes factor 1/0 The strength of evidence in favor of model 1, relative to model 0

Error% Stability of the BF The range of the BF over the chosen Markov chain Monte Carlo iterations, e.g., BF10 = 10 with error% = 20

means that the BF10 ranged from 8-12

However, while p-values are interpreted utilizing a chosen cut-
off (e.g., p < 0.05, p < 0.01, p < 0.001), BF can be interpreted
without them. For example, when BF10 = 30, we can conclude
“H1 is 30 times as likely as H0, according to my data.” This is
intuitive without a cut-off. It is up to the researchers to make
informed decisions as to which cut-off they consider sufficiently
convincing. Additionally, qualitative descriptions of evidential
strengthmay be applied to BF (e.g., BF< 3 and> 1/3 “anecdotal,”
3 < BF < 10 or 1/3 > BF > 1/10 “moderate,” BF > 10 or BF <

1/10 “strong”) (30).
This framework thus quantifies evidence for the most

probable hypothesis, instead of supporting the rejection of the
null hypothesis. Being able to conclude “this effect is most
probable according to the data” is more informative than “the
absence of any effect is unlikely, given the data and hypothetically
existing, more extreme data.” Once an effect has been deemed
sufficiently probable, we may estimate its plausible values
using credible intervals (CI). These condition on the known
data, providing 95% certainty that the estimated parameter’s
true value—say, an effect size—lies within their bounds (28).
This differs from frequentist confidence intervals which merely
contain the true effect in a fixed number of samples, see Morey
et al. (31).

APPLIED EXAMPLES OF BAYESIAN
INFERENCE

Bayesian Hypothesis Testing and
Parameter Estimation in Clinical Trials
We applied Bayesian hypothesis testing to a synthetic data
set based on Biogen’s phase I/II trial of tofersen (32). The
code to generate the synthetic tofersen dataset, the dataset
itself as JASP file and PDF-based results can be obtained
from the Open Science Framework, at https://osf.io/6cpf9/. We
re-created the motor progression of the placebo and 100mg
tofersen treatment groups from the mean and confidence
intervals published in Supplementary Table 3 of (32). The
confidence intervals allowed us to derive standard deviations
assuming a t-distribution for small samples (33). The outcome
of motor progression was measured by the mean change
of the revised amyotrophic lateral sclerosis functional rating

FIGURE 1 | The means and credible intervals of motor progression over the

tofersen phase II trial (synthetic data).

FIGURE 2 | The relative frequency of γH2A.X spots (previously

published data).

scale [ALSFRS-R, (34)]. We used two independent variables,
between-subjects treatment group (placebo vs. 100mg tofersen)
and within-subjects day (15th, 29th, 57th, 85th day of the
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TABLE 2 | Model comparison for the clinical trial data.

Models P(M) P(M|data) BFM BF10 error %

Null model (incl. subject) 0.2 0.37 2.38 1.00

Time 0.2 0.23 1.22 0.63 0.45

Treatment Group 0.2 0.19 0.92 0.50 0.8

Time + Treatment Group 0.2 0.12 0.56 0.33 3.69

Time + Treatment Group + 0.2 0.08 0.36 0.22 0.95

Time * Treatment Group

All models include subject.

study). Comparing our Figures 1, 2 of (32), we see that
the re-creation was successful as our progression mirrors the
original data’s.

Three hypotheses were of interest (Table 2):

1) The null model, representing the absence of effects in
our data,

2) The treatment effect model, representing the expectation that
100mg of tofersen will slow down ALSFRS-R progression
(“Treatment Group” in Table 2),

3) The interaction between treatment group and time,
representing the hypothesis that the treatment groups will
progress differently over time in their ALSFRS-R.

We compared these hypotheses using a mixed measures analysis
of variance (ANOVA) in Jeffreys’s Amazing Statistics Program
(JASP, 35). JASP was set to report the null model on top
of the comparison table (Table 2) and provide the BF10 in
favor of the alternative models listed below. In addition to the
listed models, the sole main effect of time and the combined,
independent main effects of time and treatment group were
included in the model comparison. A priori, we assumed all
hypotheses to be equally probable: P(M) = 0.20. Mean loss
of functioning over time and by treatment group are depicted
in Figure 1, surrounded by 95% credible intervals. These 95%
credible intervals provide us 95% certainty, that the loss of
functioning falls within the depicted bounds (Figure 1). Note
that the smaller width of the credible intervals on days 15 and 29
reflects less uncertainty about the mean loss of functioning than
the greater intervals on days 57 and 85. Frequentist confidence
intervals do not facilitate inferences about the plausibility of
the estimated mean loss of functioning, they do not contain
reasonable values mean loss of functioning may take, and they
do not indicate precision of the estimates (31). Following data
analysis, the null model’s posterior probability increased to
P(M|data) = 0.373, meaning that our belief in the null model
strengthened from 20 to 37.3%. Contrastingly, our belief in
the treatment effect decreased from 20 to 18.7% (P(M|data)
= 0.187). From these posterior probabilities [P(M|data)], we
derived the BF10 by dividing P(M|data) of H1 by P(M|data) of
H0: 0.187/0.373 = 0.502. At BF10 = 0.502, our data are half
as probable under the treatment effect hypothesis compared to
the null hypothesis, which corresponds to BF01 = 1.99 if we
swap denominator and numerator. BFHT informed us that our
data are twice as likely under the null hypothesis compared to
the treatment effect hypothesis. By comparison, a frequentist

ANOVA would inform us that the probability of our synthetic
data—or hypothetical, more extreme data—occurring would be
14%, if the null hypothesis were true [p = 0.140, F(3, 60) = 1.88].
We consider the former conclusion more informative regarding
the treatment effect. The treatment effect explained 29% of the
variance in motor progression (R2

= 0.29, 95%CI [0.14|0.43].
Our data reduced our belief in the hypothesis that treatment

groups will progress differently over time from 20 to 8.2%
[P(M|data) = 0.082]. With a BF10 = 0.22 and conversely, BF01
= 4.54, the null hypothesis is 4.54 times more probable than the
interaction model. This interaction model explained 35% of the
variance in motor progression (R2

= 0.35, 95%CI [0.21|0.47]).
We estimated the effect size using Kendall’s tau correlation

coefficient (τb). As an interaction between Time∗Treatment
Group was improbable (BF01 = 4.54, favoring H0 over the
interaction in Table 2), we correlated treatment group and
progression speed of day 85.We observed a large effect size of τ =

−0.312, which with a probability of 95%, fell between −0.543 to
−0.003. This indicates major uncertainty about tofersen’s effect
size as the credible interval indicates that nearly a quarter of all
possible values (τb range from−1 to+1) are deemed plausible.

In conclusion, we cannot accept or reject the treatment effect
based on the mixed-measures ANOVA in Table 2 (BF10 = 0.502,
in favor of the treatment effect) because the evidence in these
data is insufficient. This sufficiency of evidence is determined
by the BF10: concluding that the treatment effect is 0.5 times
better than its absence is unconvincing either way. However,
if the effect does exist, it ranges from very small to very large
(95%CI between −0.003 and −0.543). This range is consistent
with inconclusive BF as some individuals may exhibit a large
treatment effect, and some may exhibit no treatment effect.
Supplementary Table 1 compares the conclusions possible based
on both statistical frameworks. Clinically, our synthetic data
inform us that we cannot be certain if tofersen works—but if
it works, any effect varies considerably between patients. This
is congruent with tofersen’s phase III results, analyzed and
published using frequentist probability after we first submitted
our manuscript.

Bayesian Hypothesis Testing for
Categorical Data in Basic Research
Biomedical basic research aims to understand molecular
mechanisms underlying diseases as well as to develop disease-
modifying treatments and their translation to the clinics.
Therefore, reliable inference from data is pivotal, as it leads
to more sophisticated experimental approaches or eventually to
clinical trials.

We wanted to examine whether a Bayesian approach is
helpful in biomedical basic research and re-evaluated a subset of
previously published own data (19). We quantified the amount
of DNA-damage in a FUS-ALS cell culture model, γH2A.X,
a marker for double strand breaks (DSBs), was stained with
immunofluorescence. We compared a wild type FUS cell line
with its isogenic control carrying the ALS-causing p.P525L
mutation. The cells were investigated under control condition
(Ctrl) as well as after 1 hour treatment with 5µM of the TOP2
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inhibitor Etoposide (Eto), which is inducing DSBs. The number
of γH2A.X-positive foci per nucleus was then counted and
evaluated. We conducted four independent biological replicates,
took at least five pictures, and evaluated at least 47 nuclei per
condition. Count of γH2A.X-positive foci per nucleus present
mutually exclusive categorical data—not continuous data. To
represent a frequentist approach, we used a chi-square-test,
instead of the t-test previously employed in our publication. We
categorized the raw data into groups of “no damage” (0 spots),
“low damage” (1–2 spots—reflecting the wild type FUS cell line
under Ctrl conditions), “medium damage” (3–5 spots—reflecting
the wild type FUS cell line with Eto treatment) and “high damage”
(>5 spots), see Figure 2. The contingency table was analyzed and
the following statistical parameters were calculated: [Ctrl: χ2(3,
N = 601) = 18.115, p < 0.001, Cramer’s V = 0.174; Eto: χ

2(3,
N = 495) = 13.712, p = 0.003, Cramer’s V = 0.166]. These
results indicate that we may reject the null hypothesis that there
is no association, and that any potential association would be
weak. For the Bayesian approach we examined the contingency
table and assumed a Poisson distribution of the data because we
sampled without restriction on either the cells analyzed or DSBs.
This analysis suggested not only to reject the null hypothesis but,
furthermore, provided strong evidence of an association between
the genotype and the amount of DNA-damage. In our data,
the presence of the association was 11 times more likely than
its absence under control conditions, and 13 times more likely
under Eto treatment (Ctrl: BF10 = 11.304, Eto: BF10 = 13.711,
Supplementary Table 2).

The Bayesian approach for evaluation of this data set led
to a similar conclusion as the frequentist approach, however,
with the important difference that instead of merely rejecting
the null hypothesis without specification of a distinct alternative
hypothesis in the chi square test, the Bayesian approach favored
the hypothesis that there is an association of the genotype with
the amount of DSB.

Bayesian Inferences in Single Case Studies
Historically, single case studies have contributed meaningfully to
ALS-FTSD research: they have been used to describe behavioral
disturbances (35), co-occurrence between ALS/MND and other
diseases (36, 37), verb processing deficits (38), longitudinal
observations (39, 40), and rare familial forms (39, 41–43). Single
cases investigate whether the index patient is qualitatively and
quantifiably different from a healthy control population (44).

Here, the Bayesian approach facilitates probabilistic
conclusions about the index patient (44–46). This enables
comparisons of neuropsychological measures across different
scales while providing detailed clinical information about
cognitive profiles by capturing the range of uncertainty using
CI. Frequentist techniques treat the obtained dependent
variables (or outcomes of interest)—as fixed but unknown
whereas Bayesian techniques treat them as random variables
which have probability distributions, meaning an effect’s size
can be estimated using that probability distribution (44). With
frequentist techniques, an effect size cannot be calculated because
the data from the index patient is treated as a fixed variable and
the distribution of the control cohort is compared to it. This

cohort would either be below the threshold of interest (the index
patient)—or not, depriving us of probabilistic conclusions about
the index patient’s abnormality.

We illustrate these benefits using the SingleBayes_ES.exe
program from our previous work, see Supplementary Table 3

in Temp, Dyrba (39). To summarize briefly: this program’s
modeling is based on a prior distribution whose unknown mean
and unknown variance are obtained by an observation from a
standard normal distribution and a random value from a chi-
square distribution on n-1df, respectively. The point estimate of
abnormality is calculated on the condition that these are the true
mean and variance, and the process is reiterated 100,000 times.
Further details can be obtained in the description of Experiment
1 by Crawford and Garthwaite (44). Table 3 lists the cognitive
assessment, the number of healthy controls, their mean and
standard deviation (SD), the male index patient’s performance,
a p-value based on a two-tailed Bayesian hypothesis test, the
estimated percentage of controls who scored lower than the
patient including 95% CI (point estimate of abnormality), and
the estimated effect size including 95% CI (39).

For the digit span forward task (Table 3), the probability
that a control might obtain a score below the index patient
was 7% (p = 0.070), and the estimated percentage of healthy
controls who might obtain a score below 6 was 3.49%, with a
95% probability that the true percentage fell between 0.24 and
12.41%. In a frequentist context, the interpretation of the interval
estimates would be: “if we could compute a confidence interval
for a large number of control samples collected in the same way
as the present control sample, about 95% of them would contain
the true percentage of the population with scores lower than
[six]” (44). As Bayesians, we estimate the proportion of controls
whose digit span forward performance fell below that of the index
patient which gives us the probability that any control might
score similarly to the index patient. Thus, the Bayesian approach
provides more conclusive evidence for the hypothesis that the
index patient deviates from the control sample.

Commonly, an index patient’s scores are evaluated with z
scores under a normal distribution, treating the statistics from
the normative samples as parameters. This method frequently
exaggerates the abnormality of the index patient, especially with
a small normative sample (for mathematical simulations on this,
see 45). The Bayesian method presented here treats the control
sample statistics as such, minimizing this bias. The index patient
(Table 3) fell two standard deviations below control performance,
with a 95% probability that this effect sizes falls between −2.82
and −1.16. Consequently, the Bayesian method supplements the
above evidence with information on how strongly the index
patient deviates from the control sample without exaggerating
the abnormality.

Bayesian single case analyses are available for comparisons
of a single index patient to a control sample without covariates
(44, 45) and with covariates (46), and for comparing two
single cases to one another (47). A catalogue of free statistical
software has been compiled by John Crawford, and can be
accessed here. These programs operate only in Windows but
the R package “singcar” has recently been developed, so non-
Windows users can implement these techniques (48). Notably,
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while these methods were developed for cognitive tests, they can
and have been applied to other measures, such as psychiatric
well-being (49), hippocampal volume (50), and positron emission
tomography (51), making them informative for single case
researchers of any discipline.

CONCLUSIONS

Our perspective highlights the benefits by giving examples of
BFHT in clinical trials and basic research, as well as parameter
estimation in single case studies. While frequentist approaches
may hinder inference by failing to test the alternative hypothesis,
we can distinguish between evidence supporting the alternative
hypothesis (e.g., our cell culture data), evidence supporting the
null hypothesis and the absence of conclusive evidence (e.g.,
our synthetic tofersen data) using Bayes factors. Once evidence
for a model is established, we can use CI to further quantify
our certainty about a parameter’s size. CI interpretation is much
more straightforward than interpretation of confidence intervals,
which provide only prospective estimation of not yet obtained
data, while CIs are derived from already obtained data and can
be used to characterize them.

Translation of basic research into useful treatments is
an important, however, often unsuccessful endeavor. This is
partly the case due to limitations of the disease models used.
Modeling these diseases in vitro within a reasonable time
frame and using functional assays with readily obtainable
readouts for drug screening (e.g., cell survival, neuronal activity,
energy consumption) imposes the challenge of detecting and
interpreting small effect sizes. Some of the variance can be
controlled by minute experimental setup, while other factors like
biological variances between replicates, lot-to-lot differences of
substances or technical replicates are—albeit well-documented—
usually not considered in statistical procedures to simplify the
model and allow easier interpretation of the results. However,
they still add variance to the data and therefore may mask
small effects. BFHT allows a direct comparison of multiple
alternative hypotheses and an analysis of effects of all variables
across all evaluated alternative hypotheses. Similar comparisons
are possible with likelihood ratio tests or various information
criteria which may also be applied in frequentist contexts and
have been applied in around 25% of ALS-related literature in
PubMed. BFHT offers a straightforward way to compare these
confounding variables with meaningful ones and subsequently
adding them to the null model and keeping their effect included
across all compared models. Addition of confounding variables
to the null model reduces noise and enables the scientist to
observe smaller effects of the meaningful variables like genotypes
and treatments.

Similarly, Bayesian probability allows us to discriminate
between groups of patients as well as an individual patient and a
control group. It can be used alongside frequentist approaches
and provide a framework to include prior information and
harness more information from data. Combined, these
approaches can improve our clinical trials, diagnostics, and
phenotyping, as well as our scientific conclusions, while avoiding
failure within clinical translation, e.g., due to disregarding a
proper testing of the alternative hypothesis in basic science.

Regardless, Bayesian inference is not a one-size-fits-all
solution to all our statistical problems; it is still susceptible
to model misspecification due to violated assumptions [e.g.,
normality, heterogeneity (52)], and it is equally vulnerable
to unintentional (or intentional) misuse. Aspiring and
already-practicing Bayesians should also be aware of on-going,
fundamental discussions and developments in the field; non-
exhaustive examples include critiques aimed at the application
of Bayes factors in ANOVA designs with continuous outcomes
(53) and how to accordingly modify Bayes factors for various test
designs (54–56), and deliberations on how to choose the most
suitable prior distribution [see, for example, (57, 58)].

FURTHER READING

We would like to pinpoint our readers to seminal textbooks
introducing Bayesian statistics (59–62). Readers who prefer
articles instead are wellserved by recent publications illuminating
the theoretical background (3, 6, 63). Those looking for
information about Bayesian “translations” of common statistical
techniques may find them as listed: t-tests (64, 65), ANOVA
(30, 52, 66) and correlations (30, 67), with further details on
clinical trials (68–74). Commercial software packages such as
SPSS, STATA or SAS now include Bayesian approaches. Those
without access to commercial software can turn to JASP (75),
which also offers a Bayesian port for jamovi; and a multitude
of packages in R (76), Research applying Bayesian statistics has
increased steadily over the past three decades (77). In 1975,
Lindley prophesied that the twenty-first century would have
become Bayesian by 2020—let’s make it so (78).
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