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and individual level in different production 
systems for growing pigs
Hongding Gao1*  , Guosheng Su1, Just Jensen1, Per Madsen1, Ole F. Christensen1, Birgitte Ask2, 
Bjarke G. Poulsen1,2, Tage Ostersen2 and Bjarne Nielsen2 

Abstract 

Background:  In breeding programs, recording large-scale feed intake (FI) data routinely at the individual level 
is costly and difficult compared with other production traits. An alternative approach could be to record FI at the 
group level since animals such as pigs are normally housed in groups and fed by a shared feeder. However, to date 
there have been few investigations about the difference between group- and individual-level FI recorded in differ-
ent environments. We hypothesized that group- and individual-level FI are genetically correlated but different traits. 
This study, based on the experiment undertaken in purebred DanBred Landrace (L) boars, was set out to estimate the 
genetic variances and correlations between group- and individual-level FI using a bivariate random regression model, 
and to examine to what extent prediction accuracy can be improved by adding information of individual-level FI to 
group-level FI for animals recorded in groups. For both bivariate and univariate models, single-step genomic best 
linear unbiased prediction (ssGBLUP) and pedigree-based BLUP (PBLUP) were implemented and compared.

Results:  The variance components from group-level records and from individual-level records were similar. Heritabili-
ties estimated from group-level FI were lower than those from individual-level FI over the test period. The estimated 
genetic correlations between group- and individual-level FI based on each test day were on average equal to 0.32 
(SD = 0.07), and the estimated genetic correlation for the whole test period was equal to 0.23. Our results dem-
onstrate that by adding information from individual-level FI records to group-level FI records, prediction accuracy 
increased by 0.018 and 0.032 compared with using group-level FI records only (bivariate vs. univariate model) for 
PBLUP and ssGBLUP, respectively.

Conclusions:  Based on the current dataset, our findings support the hypothesis that group- and individual-level FI 
are different traits. Thus, the differences in FI traits under these two feeding systems need to be taken into considera-
tion in pig breeding programs. Overall, adding information from individual records can improve prediction accuracy 
for animals with group records.
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Background
In animal breeding programs, most traits are usu-
ally recorded at the individual level. In pigs, traits such 
as feed intake (FI) and feed efficiency, which have con-
siderable economic impact on commercial production 
and environmental sustainability, are costly to measure 
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routinely at the individual level. Moreover, a characteris-
tic of these traits is that they change with age and vary 
among animals of the same age but with different body 
weights. Thus, it is a continuing concern to obtain a suffi-
cient amount of data to predict accurate breeding values. 
Since breeding for feed efficiency can be limited by the 
difficulty of phenotyping on a large scale in commercial 
herds, a cost-efficient approach needs to be considered to 
overcome this limitation.

In pig breeding programs, individual daily FI data are 
traditionally recorded at central test stations, and pigs in 
production farms are normally fed by electronic feeders 
in groups/pens of 13 to 15 boars. The latter provides the 
capacity to record FI data at the group level. Thus, group-
level FI records might be collected on a large scale and 
used as an alternative or in addition to the individual-
level FI records from test stations. Previous studies have 
demonstrated the feasibility of using group records for 
genetic analyses in many species, such as egg production 
and body weight for groups of laying hens [1–3], total FI 
for pens of beef cattle [4], FI for cages of mink [5, 6], and 
FI for groups of rabbits [7].

Recently, based on the work by Olson et al. [8], much 
research has been conducted on modeling group-level 
records, estimating variance components, and predict-
ing genetic effects. Su et  al. [9] extended the approach 
by Olson et  al. [8] to a multifactored approach that 
takes non-genetic random effects, such as litter and pen 
effects, into account, along with the capacity of handling 
different group sizes. Ma et  al. [10] integrated genomic 
information into the model by Su et al. [9], and explored 
a bivariate model to use information on individual-level 
daily gain, which is genetically correlated with FI. In 
their simulation study, they found that the accuracy of 
genetic evaluations using group records was considerably 
improved by adding genomic information and a geneti-
cally correlated trait recorded at  the individual level for 
the same animals. Madsen et  al. [6] used a multivariate 
animal model to estimate genetic (co)variances for FI, 
body weight, and litter size in mink, for which FI data 
were measured at the group (cage) level and the other 
two traits were measured at the individual level. In that 
study, instead of directly using the repeated measure-
ments of daily FI, they defined FI as the sum of daily FI 
within each group.

The random regression model is commonly used for 
analyzing longitudinal records on individuals which are 
recorded along a continuous scale such as time [11, 12], 
and it can also be applied to longitudinal group records. 
This was recently demonstrated by Gao et  al. [13], who 
analyzed longitudinal group records rather than indi-
vidual-level records using a random regression model in 
which missing phenotypes from drop-out animals were 

considered over the test trajectory. Their results revealed 
that with group records when group composition is opti-
mized, it is possible to achieve an accuracy comparable 
to the accuracy in genetic evaluation using individual 
records.

Feeding behaviors of individually-fed pigs at a test sta-
tion may differ from feeding behaviors of pigs fed by 
electronic feeders in groups/pens on production farms, 
for example, pigs reared in groups/pens can experience 
competition while they are feeding, and thus may express 
indirect genetic effects which may be heritable. Thus, 
the corresponding genetic effects might differ between 
the two feeding systems. This implies that a possible 
genotype-by-environment interaction might exist for FI. 
In practice, the predicted breeding value for FI of breed-
ing candidates is generally obtained based on phenotypic 
information from individual records at the test station, 
but the breeding goal is to improve feed efficiency in pro-
duction farms where pigs are fed in groups. This might 
raise the concern of biased selection decisions due to dif-
ferent systems/environments.

In this study, we hypothesized that group- and indi-
vidual-level FI are genetically correlated but different 
traits due to various factors such as different feeding sys-
tems and feeding behaviors, etc., and different environ-
ments (commercial versus central test station). Under 
this hypothesis, the genetic correlation between group- 
and individual-level FI from data recorded in these two 
environments is an important parameter in a pig breed-
ing program. Thus, the aims of our study were: (1) to 
estimate genetic parameters and correlations between 
group- and individual-level FI; (2) to investigate to what 
extent the accuracy of prediction can be improved by 
adding information from individual-level FI to group-
level FI to group recorded animals; and (3) to assess to 
what extent the accuracy of prediction can be improved 
by using genomic information.

Methods
Group‑level FI data
To obtain phenotypic FI records at the group level, an 
experiment was conducted in a single nucleus herd 
(Eskegård, Haderslev, Denmark). The experiment 
included 6458 purebred DanBred Landrace (L) boars 
that were born and raised in the same nucleus herd. 
After weaning and growth in a weaning unit, the boars 
were transferred to the finishing section when their 
bodyweight reached about 25  kg. In the finishing sec-
tion, boars were housed in pens of 10 pigs. In order to 
minimize variation in body weight within pens, pigs 
were sorted into pens by body weight. Feed was pro-
vided through a single feeder shared by two pens as 
described below. Hence, a feeding group consisted 
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of two pens and a total of 323 feeding groups were 
recorded during the experimental period from August 
2015 to October 2018. At the start of the test period, 
individual body weight of all the pigs in the feed-
ing group was recorded. In the following experimen-
tal period, the total FI for each group was recorded at 
two time points: time point 1 and time point 2 when 
animals had been on test for approximately 30 and 
60  days, respectively. All groups were fed ad  libitum 
using a SpotMix feeding system (Schauer Agrotronic 
GmbH, Prambachkirchen, Austria). Pigs had free access 
to water from drinking nipples in the trough, and each 
feeder had a container that could hold up to 38  kg of 
feed; pigs in each group were continuously provided 
with feed. In each feeder, a sensor was mounted to 
avoid that the feeder ran out of feed. If the level of feed 
in a feeder reached the lower limit, the sensor auto-
matically called a central feeding mixer for refilling. 
Each refill consisted of 15 kg feed and was weighed on 
a single scale in the central feeding mixer. The amount 
of feed was transferred from the central feeding mixer 
to the feeder by tubes and air pressure. The starting 
body weight of each animal in each pen was recorded. 
To obtain the amount of feed intake of the pigs in each 
feeding group during each period between body weight 
records, the sum of feed delivered to the feeding group 
was adjusted by the amount of feed in the container of 
the feeder at the beginning and end of each given time 
period.

During the experiment, 99 boars were removed from 
the groups, which were referred as drop-out animals due 
to sickness or death. The average daily FI at the group 
level were used as the phenotype, which was calculated 
as the total FI of the group divided by the number of days 
during which animals ate in each group. A mid-point 

date in the test period was used as the testing date for the 
average daily FI. Figure  1 (left panel) shows the average 
daily group-level FI over days on test.

Individual‑level FI data
Data on individual daily FI that were recorded on pure-
bred DanBred Landrace boars at the central test sta-
tion (Bøgildgård, Kjellerup, Denmark) were supplied by 
SEGES, Pig Research Centre, Denmark. All tested boars 
were born in nucleus herds and were kept at the test sta-
tion while their body weight was between ~ 30 to 100 kg. 
Boars were housed in pens of 10 to 12    pigs and fed 
ad libitum by BIAS Schauer feeders (Schauer Agrotronic 
GmbH, Prambachkirchen, Austria) during the whole test 
period. The pigs could access the feeder continuously day 
and night, and thus the feeders were not overstretched 
during the experiment, which further minimized com-
petition between pigs while they were eating. During the 
test period and for each boar, individual FI was automati-
cally recorded each time it visited the electronic feeder, 
and the daily FI was calculated as the sum of all FI records 
during a day. The final daily FI records were retrieved for 
the period from August 2015 to February 2019.

In total, 271,001 daily feed intake observations from 
4526 boars were available for the analyses and Fig.  1 
(right panel) presents the individual daily FI over days on 
test.

Pedigree and genotype information
Animals for which either a group-level FI record or indi-
vidual-level FI records were available were traced back 
to year 1988, and the final pedigree included 19,734 ani-
mals. In total, 14,791 animals were genotyped using the 
50 K NEOGEN GeneSeek Genomic Profiler (GGP) Por-
cine BeadChip (GeneSeek, Lincoln, NE) and 10,054 of 
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Fig. 1  Daily feed intake (kg/d) over days on test at the group level (left) and individual level (right). The lines represent the trajectories of six 
randomly sampled groups/animals
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them had records (either group-level or individual-level). 
All the genotyped animals and animals with records 
were included in the pedigree. Table 1 presents an over-
view of the numbers of animals. In total, 37,621 SNPs 
across the 18 pig autosomes met the following require-
ments: (1) each SNP had a minor allele frequency (MAF) 
higher than 0.01, (2) had a call rate score greater than 0.9, 
(3) showed no strong deviation from Hardy–Weinberg 
equilibrium (P > 10−7 for a Chi square test), and (4) had a 
known position on the porcine Build 10.2 assembly [14]. 
Moreover, for each animal and SNP-genotype combina-
tion, if the GenCall score was less than 0.6, genotypes 
were defined as missing and animals for which the aver-
age call rate was less than 0.8 were excluded from the 
analysis. Genotypes were imputed with the FImpute v 2.2 
software [15].

Statistical models
A bivariate random regression model that treated group- 
and individual-level FI as different traits was used. In 
addition to this, a univariate model based only on group-
level FI data was applied to evaluate whether adding the 
extra information from individual-level FI could improve 
the predictive ability of the model.

Heterogeneity of residual variance was initially inves-
tigated for both group- and individual-level FI records 
based on univariate models. To account for heterogene-
ous residual variances, the phenotypes were allocated to 
different classes based on days on test, assuming homo-
geneity within classes and heterogeneity between classes. 
The group-level FI records were divided into two test 

classes, 1 and 2 (based on two recording time points), 
and the individual FI records were divided into eight test 
classes from 3 to 10 (< 10, 11–20, 21–30, 31–40, 41–50, 
51–60, 61–70, > 71 days on test).

Nested models (i.e., a model that assumes heterogene-
ous residual variance and a model that assumes homo-
geneous residual variance) were compared using the 
likelihood-ratio test [16, 17], which suggested that the 
use of homogeneous residual variance was appropriate 
for group-level FI records, whereas the use of heteroge-
neous residual variance was appropriate for individual-
level FI records (results not shown).

Bivariate model
The bivariate random regression model for joint analysis 
of individual-level and group-level FI was as follows:

yjltm = YMl +

1∑

k=0

−

wj βk(m) +

nf∑

k=0

∅(t)jkbk(j∗m)

+

njt∑

i=1

nr∑

k=0

∅(t)ijkaijk +

njt∑

i=1

np∑

k=0

∅(t)ijkpeijk + ejltm,

yiltm = YMl +

1∑

k=0

wiβk(m) +

nf∑

k=0

∅(t)ikbk

+

nr∑

k=0

∅(t)ikaik +

np∑

k=0

∅(t)ikpeik + eiltm,

(1)

(2)

Table 1  Number of genotyped animals with records, number of non-genotyped animals with records, number of records, mean and 
standard deviation (SD) of group- and individual-level feed intake (FI) over the test period and for different days on test (DOT) classes

a  For group-level FI, ~ 30 and ~ 60 represent two recording time points at which animals have been approximately on test during 30 and 60 days, respectively
b  Average group size = 19.6
c  Animals with group-level records were also considered

DOT classa Number of animals with recordsc Number of records Mean SD

Genotyped Non-genotyped

Group FIb 6047 348 646 47.77 9.782

 ~ 30 6047 348 323 38.92 3.483

 ~ 60 5960 336 323 56.63 4.710

Individual FI 3962 564 271,001 2.28 0.704

 ≤10 3962 564 49,472 1.52 0.327

 11–20 3962 563 44,971 1.86 0.352

 21–30 3944 556 44,713 2.16 0.397

 31–40 3929 551 44,341 2.43 0.468

 41–50 3881 530 42,695 2.73 0.537

 51–60 3423 458 32,669 3.04 0.583

 61–70 2255 315 11,651 3.25 0.659

 ≥ 71 86 11 489 3.43 0.674
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where in Eq. (1), yjltm is the daily FI of group j measured 
at time point t within year-month (YM) l and belong-
ing to test class m , m ∈ {1, 2} ; YM represents the fixed 
effect of the start year-month of the experiment for 
group j ; 

−

wj is the covariate of mean start body weight 
for animals in group j ; βk(m) denotes the k th regres-
sion coefficient nested within days on test class m ; bk 
is the k th fixed regression coefficient nested within 
the combination of group size of group j , group size 
∈ {14, 15, 16, 17, 18, 19, 20} and test class m , i.e., j∗m ; aijk 
and peijk are the k th random regression for the additive 
genetic and permanent environmental effects, respec-
tively, of animal i in group j ; ∅(t)ijk is the time covariate 
defined by the k th Legendre polynomial at time point t 
for animal i in group j , and the intercept of ∅(t)ijk (when 
k = 0 ) was standardized to 1; njt is the number of animals 
in group j at time point t ; ejltm is the random residual; 
and in Eq.  (2), yiltm is the individual daily FI of animal i 
measured at time t within year-month (YM) l ; YM is the 
fixed effect, representing the start year-month of animal 
i ; wi is the covariate of start body weight for animal i ; 
βk(m) denotes the k th regression coefficient nested within 
test class m , m ∈ {3, 4, 5, 6, 7, 8, 9, 10} ; bk is the k th fixed 
regression coefficient; aik and peik are the k th random 
regression of additive genetic and permanent environ-
mental effects for animal i , respectively; ∅(t)ik is the time 
covariate defined by the k th Legendre polynomial at time 
point t for animal i ; nf  , nr , and np are the orders of Leg-
endre polynomials fitted for the fixed regression, genetic, 
and permanent environmental effects, respectively, 
( nf ≥ max(nr, np) ); and eiltm is the residual.

Models with different orders of Legendre polynomials 
were applied and compared using the Akaike information 
criterion (AIC) [18] and Bayesian information criterion 
(BIC) [19] (results not shown). Based on this investiga-
tion, first order Legendre polynomials were fitted for group 
records, while second order Legendre polynomials were fit-
ted for individual records. Therefore, the distribution of the 
regression coefficients of the genetic effects was:

where superscripts denote the type of record (“g ” for 
group-level FI and “ i ” for individual-level FI) and indi-
ces 0 and 1 refer to intercept and slope, respectively; G 
is a 5 × 5 (co)variance matrix between these five additive 
genetic random coefficients; K is the genetic relationship 
matrix, referring to the numerator relationship matrix 
A for pedigree-based best linear unbiased prediction 
(PBLUP), or the combined relationship matrix H for sin-
gle-step genomic best linear unbiased prediction (ssGB-
LUP); ⨂ is the Kronecker product.

[
a
g
0 a

g
1 ai0 a

i
1 a

i
2

]′
∼ MVN (0,G⊗ K),

The distribution of coefficients for permanent environ-
mental effects was:

where P =

[
Ip ⊗ P1 0

0 Iq ⊗ P2

]
 , and P1 represents a 2 × 2 

(co)variance matrix between the two permanent environ-
mental random regression coefficients for animals with 
group records; Ip is an identity matrix of order p , corre-
sponding to the number of groups with phenotypes; P2 
represents a 3 × 3 (co)variance matrix between the three 
permanent environmental random regression coeffi-
cients for animals with individual records; Iq is an iden-
tity matrix of order q , corresponding to the number of 
individuals with phenotypes.

The residuals 
[
egei

]′
∼ MVN (0,R),

with 

where σ 2
e  is the residual variance for group FI records, Dn 

is a diagonal matrix for group records with n equal to the 
total number of group records and the diagonal elements 
equal to nt/nd , where nt is the number of animals in a 
group at the time point t , and nd is the length (in days) of 
the period; σ 2

e1 to σ 2
e8 are the residual variances for indi-

vidual-level FI, and I is the identity matrix. The subscripts 
n1 to n8 denote the numbers of phenotypic records in the 
eight classes of days on test.

Univariate model
The group-level FI data were also analyzed indepen-
dently with a univariate model. The univariate model is 
a sub-model of the bivariate model in Eq.  (1). The ran-
dom regression coefficients of the genetic and permanent 
environmental effects were assumed to be respectively:

and the residual effects follow N
(
0, Iσ 2

e

)
, where G is a 

2 × 2 (co)variance matrix between two additive genetic 
random regression coefficients; P is a 2 × 2 (co)variance 
matrix between two permanent environmental ran-
dom regression coefficients, K is the relationship matrix 
referring to A , the pedigree-based relationship matrix 
used in PBLUP, or to H,  the combined pedigree- and 

[
pe

g
0 pe

g
1 pe

i
0 pe

i
1 pe

i
2

]′
∼ MVN (0,P),

R =





Dnσ
2
e

In1σ
2
e1

. . .

0 In8σ
2
e8



,

[
a
g
0 a

g
1

]′
∼ MVN (0,K ⊗G),

[
pe

g
0 pe

g
1

]′
∼ MVN (0,P⊗ I),
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genomic-based relationship matrices used in ssGBLUP, 
and I is the identity matrix.

Estimates of variance component and heritability
Variance components were estimated by restricted maxi-
mum likelihood (REML) [20] using the average infor-
mation REML (AI-REML) algorithm [21–23]. Breeding 
values were predicted by both PBLUP and ssGBLUP [24]. 
All analyses were performed using the DMU package 
[25].

The genetic and permanent environmental variances 
were calculated using the (co)variance function in Eq. (3) 
for each day within the test period. Additive genetic vari-
ance σ 2

at for day t during the test period was calculated as 
follows:

where φt is a row vector of the time covariate defined 
by the Legendre polynomial on day t , G is (co)variance 
matrix between additive genetic random regression 
coefficients. The same calculation was conducted for 
the permanent environmental variance ( σ 2

pet ). The esti-
mates of phenotypic variance were defined as the sum of 
the estimates of genetic, permanent environmental, and 
residual variances for each day during the test period, i.e., 
σ 2
pt = σ 2

at + σ 2
pet + σ 2

et , where σ 2
et is the residual variance 

for day t . The estimates of heritability for each day during 
the test period was calculated as σ 2

at/σ
2
pt.

Estimation of the genetic correlation
The genetic correlation between group- and individual-level 
FI for each test day t was computed as follows: 
rt =

φt2G12φ
′

t1√
φt1G1φ

′

t1

√
φt2G2φ

′

t2

 , where φt1 and φt2 are the row vec-

tors of the time covariate defined by the Legendre polyno-
mial on day t for group and individual records, respectively; 
G12 , G1 and G2 are the sub-matrices of G ; and subscripts 1 
and 2 denote group- and individual-level FI. The genetic cor-
relation between group- and individual-level FI during the 
whole test period was computed as r = φ∗

2G12φ
∗
′

1√
φ∗

1G1φ
∗
′

1 )

√
φ∗

2G2φ
∗
′

2 )

 , 

where φ∗

1 (two elements) and φ∗

2 (three elements) are row 
vectors derived from φ1 and φ2 , respectively by summing the 
column-wise elements, i.e., φ∗

1 =
[∑n

i=1 φi1

∑n
i=1 φi2

]
 and 

φ∗

2 =
[∑n

i=1 φi1

∑n
i=1 φi2

∑n
i=1 φi3

]
 , where n is equal to 

the number of test days during the test period.

Validation of the models
A leave-one-group-out cross-validation strategy was used 
based on animals with group-level FI records, i.e., each 
group in the group-level FI dataset was left out in turn 
and the remaining dataset is referred to as the reduced 

(3)σ 2
at = φtGφ

′

t,

dataset. Accordingly, the original dataset without leaving 
out any group is referred to as the full dataset. Genetic 
prediction was conducted based on all the reduced data-
sets with pre-estimated variance components based 
on the corresponding full dataset using matrix A as the 
genetic covariance structure. The estimated breeding val-
ues were termed as EBV and GEBV when using PBLUP 
and ssGBLUP, respectively. The (G)EBV of a given animal 
i on a given test day t was calculated as (G)EBVit = φitai , 
where ai is a column vector of length 2, containing regres-
sion coefficients of the genetic effects for animal i , φit is 
a row vector of length 2, containing the time covariate 
defined by the Legendre polynomial on day t for animal 
i . The final (G)EBV used for validation were computed as 
the sum of the (G)EBV for each animal over the test days 
when group-level FI were recorded.

To validate and compare the quality of prediction 
between models, we used the four statistics as presented 
in Legarra and Reverter [26]: (1) the Pearson’s correla-
tion between (G)EBV based on full and reduced data 
( ρf ,r ); (2) the slope of the regression of (G)EBV obtained 
from full data on (G)EBV obtained from reduced data 
( bf ,r ); (3) the Pearson’s correlation between (G)EBV 
based on reduced data and corrected phenotypes ( ρyc ,r ); 
and (4) the slope of the regression of corrected pheno-
types on (G)EBV obtained from reduced data ( byc ,r ). For 
(1) and (2), the statistics were calculated separately for 
all the animals in the group-level FI dataset; the subset 
of genotyped animals in the group-level FI dataset; and 
the subset of non-genotyped animals in the group-level 
FI dataset. For (3) and (4), the corrected phenotypes ( yc ) 
were computed based on the full data of group-level FI 
by correcting the phenotype for fixed effects and non-
genetic random effects of all the animals in the group, i.e., 
yc =

∑n
i=1 (G)EBVi + ê , where n is the number of ani-

mals in the group.

Results
Variance components and heritability
Given that the group-level FI records were analyzed with 
the traditional linear mixed model but with appropriate 
modifications regarding incidence matrices and residu-
als, the estimated variance components from group 
records were on the same scale as those from individual 
records. Therefore, it should be noted that these variance 
components and heritabilities are comparable, and are 
expected to be close if group- and individual-level FI are 
the same trait [9, 13].

Figure  2 shows the estimated additive genetic vari-
ance, permanent environmental variance, and pheno-
typic variance as a function of days on test for group- and 
individual-level FI. The estimated genetic variances for 
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group-level FI were on average 0.17 (SD = 0.11), and 
the estimated genetic variances for individual-level FI 
were on average 0.10 (SD = 0.11). The estimated perma-
nent environmental variances for group-level FI were on 
average 0.08 (SD = 0.03), and the estimated permanent 
environmental variances for individual-level FI were on 
average 0.08 (SD = 0.11). The estimates of the pheno-
typic variance for group-level FI were on average 2.19 
(SD = 0.15), and the estimates of the phenotypic variance 
for individual-level FI were on average 0.36 (SD = 0.29). 
The much higher estimates of the phenotypic variance 
for group-level FI resulted from the higher estimated 
residual variance, i.e., 1.94, whereas the average esti-
mate of the residual variance for individual-level FI was 
0.17 (SD = 0.10). For both group- and individual-level FI, 
larger genetic variances were observed during the end 
of the test period. However, the curves of the estimated 
genetic variances for group-level FI showed a sharper 
increase from the middle to the end of the test period 
than those for individual-level FI. The curves of the phe-
notypic variance and genetic variances presented similar 
patterns.

Figure  3 shows the trajectories of the estimated her-
itabilities and their standard errors (SE) over days on 
test for group- and individual-level FI. The estimates of 
heritability ranged from 0.03 to 0.18 (average 0.07) for 
group-level FI, and from 0.15 to 0.36 (average 0.24) for 
individual-level FI over the test period. The SE of the 

heritability estimates were much larger for group-level 
FI than those for individual-level FI (Fig. 3). Heritabilities 
for both group- and individual-level FI were not constant 
throughout the days on test but tended towards higher 
values during the late stages of the test period, whereas a 
sharper upward trajectory was observed for group-level 
FI compared with individual-level FI.

Genetic correlations
Figure 4 displays the trajectory of the estimated genetic 
correlations between group- and individual-level FI over 
days on test. The estimated genetic correlations were on 
average 0.32 (SD = 0.07) over the test period. Overall, the 
curve remained stable although an initial increase can be 
observed during the very early stage of the test period. 
The SE were large especially at the beginning of the 
test period. A genetic correlation of 0.23 was estimated 
between FI summed over the test period for group-level 
and for individual-level FI.

Accuracy of prediction
Table  2 shows the Pearson’s correlations between (G)
EBV based on the full and reduced datasets ( ρf ,r ). Com-
pared to using only group-level FI records (bivariate vs. 
univariate model), adding information from individual-
level FI records to group-level FI records increased the 
correlation by 0.013 for both PBLUP and ssGBLUP. 
Furthermore, adding genomic information increased 
the correlation by 0.048 (ssGBLUP vs. PBLUP) for 
both univariate and bivariate models. The slopes of the 
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regression of (G)EBV obtained with the full dataset on 
(G)EBV obtained with the reduced dataset ( bf ,r ) were 
close to unity for genotyped animals, whereas a slight 
over-dispersion of the EBV from the reduced data 
compared to those from the full data was observed for 
non-genotyped animals when using ssGBLUP (Table 2). 
Additional file 1: Figure S1 provides a scatter plot of the 
Pearson’s correlations of (G)EBV based on the full and 
reduced datasets ( ρf ,r ) versus the absolute difference 

in (G)EBV between the full and reduced datasets ( df ,r ) 
for all 323 groups for the univariate PBLUP (panel A), 
bivariate PBLUP (panel B), univariate ssGBLUP (panel 
C), and bivariate ssGBLUP (panel D).

Table  3 presents the Pearson’s correlations between 
group (G)EBV calculated as the sum of (G)EBV for all 
animals in the group and the corrected phenotypes of 
group-level FI ( ρyc ,r ). This correlation can be used to 
evaluate the prediction accuracy. Adding information 
from individual-level FI records to group-level FI records, 
increased the prediction accuracy by 0.018 and 0.032 
compared to using group-level FI records (bivariate vs. 
univariate model) for PBLUP and ssGBLUP, respectively. 
Furthermore, adding genomic information increased the 
prediction accuracy by 0.019 and 0.033 (ssGBLUP vs. 
PBLUP) for the univariate and bivariate models, respec-
tively. A slight over-dispersion ( byc ,r ) was observed when 
using the ssGBLUP model (Table 3).

Discussion
In our study, we addressed the hypothesis that group- and 
individual-level FI are different traits for pigs recorded 
in groups at the nucleus herd versus pigs individually 
recorded at the test station. We used a bivariate random 
regression model to estimate variance components and 
genetic correlations. Through an appropriate modifica-
tion of the traditional linear mixed model, the variance 
components estimated from group-level FI were on the 
same scale as those estimated from individual-level FI. 
The results support the hypothesis that group- and indi-
vidual-level FI are genetically correlated but different 
traits.
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the pedigree-based bivariate model using the full dataset

Table 2  Pearson’s correlations of (genomic) estimated breeding values (G)EBV based on full and reduced datasets ( ρf ,r ), and slope 
(SE) of the regression of (G)EBV obtained from the full dataset on (G)EBV obtained from the reduced dataset ( bf ,r ) using univariate 
pedigree-based best linear unbiased prediction (PBLUP), univariate single-step genomic best linear unbiased prediction (ssGBLUP), the 
bivariate PBLUP, or bivariate ssGBLUP model

ρf ,r and bf ,r were calculated separately based on all animals in the group-level dataset, the subset of genotyped animals in the group-level data set, and the subset of 
non-genotyped animals in the group-level dataset
a  Univariate analyses were based on the group-level dataset only
b  Bivariate analyses were based on the combination of group- and individual-level datasets

All Genotyped Non-genotyped

ρf ,r bf ,r ρf ,r bf ,r ρf ,r bf ,r

Univariatea

 PBLUP 0.890 1.00 (0.006) 0.890 1.00 (0.007) 0.886 0.97 (0.027)

 ssGBLUP 0.938 0.99 (0.005) 0.939 0.99 (0.005) 0.904 0.95 (0.024)

Bivariateb

 PBLUP 0.903 1.00 (0.006) 0.903 1.00 (0.006) 0.908 0.99 (0.025)

 ssGBLUP 0.951 0.98 (0.004) 0.952 0.98 (0.004) 0.921 0.96 (0.022)
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Heritability of feed intake during the growth period
The trajectories in Fig.  3 show that the estimates of 
heritability for group-level FI were significantly lower 
than those for individual-level FI. This outcome contra-
dicts previously published studies that analyzed group 
records using univariate models. Biscarini et al. [3] ana-
lyzed cage records of early egg production based on real 
data in laying hens, and found that the estimated herit-
ability did not deviate from the heritability for individual 
records. Peeters et al. [1] showed that the estimated vari-
ance components from pooled records did not signifi-
cantly differ from the individual records when analyzing 
traits affected by social interactions in laying hens. In a 
simulation study, Su et  al. [9] mimicked the FI trait in 
pigs, and developed a model that could handle single-
group records by taking varying group sizes and extra 
non-genetic random effects (litter and pen effects) into 
account for the estimation of variance components and 
genetic prediction. Their results demonstrated that vari-
ances estimated from group records were consistent with 
those from individual records but with higher SE. More 
recently, Gao et  al. [13] further extended the approach 
of Su et al. [9], to analyze longitudinal group records of 
FI. Their results showed that, generally, the use of group 
records yielded similar estimates of variance components 
compared to that of individual records but with larger SE.

The large estimates of the residual variance from 
group-level FI that we observed here could be caused by 
the fact that the model ignores the random pen effect as 
reported by Su et  al. [9]. In their study, they found that 

the residual variance increased from 209 to 558 after 
removing the pen effect in the model when analyzing 
the group records, and that ignoring the pen effect has 
less influence on the estimated residual variance when 
using individual records. This indicates that a large part 
of the pen effects moved to the residuals. However, given 
that, in our study, the number of animals across pens was 
nearly constant, it was difficult to separate the pen effects 
from the residual effects since the covariance matrix of 
the pen effects cannot be distinguished from the residual 
covariance matrix when group size is (nearly) constant 
[9].

To further examine the pattern of the larger estimated 
residual variance that was obtained by analyzing the 
group-level FI data, a similar analysis was performed by 
converting the current individual-level data to the cor-
responding group-level structure. We constructed two 
test periods similar to those used for the group records, 
summed up the individual records of boars from the 
same pen over animals and days within the period, and 
applied to these group records the same univariate model 
as that used for group-level FI data. We found a much 
larger estimated residual variance than that obtained 
from the individual-level data. This test indicates that 
another reason for the large estimates of residual vari-
ance obtained from group-level FI could be that our cur-
rent model assumes that group-level records are summed 
up over both animals and days during each period 
instead of being summed only over animals. However, 
it is unlikely that all the residuals are uncorrelated, and 
in addition, our current model ignores this effect and 
assumes that residual effects are independent. Moreover, 
the total number of groups included in the analysis (323) 
was relatively small (also for the test above). Therefore, 
with such limited information available, the estimates of 
the variance component and heritability might be unpre-
cise for the group-level FI.

Estimates of heritability for individual-level FI in pigs 
have been well documented in previous studies. Schny-
der et  al. [27] reported heritabilities of 0.09 to 0.25 for 
daily FI using a random regression model with second-
order Legendre polynomial in French Landrace and 
Large White pigs. By using a model similar to Schnyder 
et  al. [27], Cai et  al. [28] found heritabilities of daily FI 
that ranged from 0.10 to 0.37 in Yorkshire boars. Shirali 
et al. [29] developed a horizontal model for a combined 
analysis of longitudinal FI and single recorded produc-
tion traits, and showed that the estimated heritabilities of 
FI ranged from 0.13 to 0.22 in Landrace pigs. Our esti-
mates of heritability for individual-level FI are generally 
in line with these findings.

Table 3  Pearson’s correlations between group (genomic) 
estimated breeding values ((G)EBV) calculated as the sum of (G)
EBV for animals in each group and the corrected phenotypes of 
group-level feed intake ( ρyc ,r ), and slope (SE) of the regression of 
corrected phenotypes of group-level feed intake on group (G)
EBV ( byc ,r ) calculated as the sum of (G)EBV for animals in each 
group from univariate pedigree-based best linear unbiased 
prediction (PBLUP) and single-step genomic best linear unbiased 
prediction (ssGBLUP), the bivariate PBLUP and ssGBLUP models

a  Univariate analyses were based on the group-level dataset only
b  Bivariate analyses were based on the combination of group- and individual-
level datasets

All 323 groups

ρyc ,r
byc ,r

Univariatea

 PBLUP 0.578 1.00 (0.079)

 ssGBLUP 0.597 0.91 (0.068)

Bivariateb

 PBLUP 0.596 1.00 (0.075)

 ssGBLUP 0.629 0.87 (0.060)
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Genetic correlation between group‑ and individual‑level FI
In practice, group-level FI data can be measured in the 
nucleus breeding herds, whereas individual-level FI 
data are usually measured at a central test station using 
a different feeding system that may result in different 
feeding behaviors of the pigs. In addition, the two envi-
ronments may have different management systems. It is 
somewhat surprising that very low genetic correlations 
between group and individual FI were observed (signifi-
cantly different from 1) over the whole test period in our 
study (Fig. 4). This indicates that considerable genotype-
by-environment interaction between these two envi-
ronments exists, and thus FI recorded under these two 
environments are clearly different traits.

Effect of the bivariate vs. univariate model on genetic/
genomic prediction
Accuracy of predicted breeding values ( ρf ,r ) and predic-
tion accuracy ( ρyc ,r ) were both improved when infor-
mation from individual-level FI records were added to 
group-level FI records via the bivariate model in compar-
ison to the univariate model with group-level FI records 
only. Ma et al. [10] reported similar results from a simu-
lation study in which two traits (e.g. feed intake and daily 
gain) with group records for trait one and individual 
records for trait two were simulated based on a genetic 
correlation of 0.8. Their result showed that the gain in 
prediction accuracy from the bivariate model for the 
group recorded trait (trait one) was 11 to 22 percentage 
points compared with the univariate model.

Other factors impacting prediction accuracy
Group size is known to be a crucial factor when using 
group records for prediction of breeding values. The use 
of records from large groups tends to reduce prediction 
accuracy compared to that from small groups [8–10]. In 
our study, the size of the group was relatively large, i.e., 
20, since one feeder was shared by two pens. Therefore, 
with a smaller group size and with close genetic rela-
tionships between group members, prediction accuracy 
might be further improved for group recorded animals.

In addition to the direct genetic effect (DGE), the indi-
rect genetic effect (IGE) is also a well-known heritable 
effect caused by group mates [30–32]. In pig breeding, 
traits such as FI and average daily gain (ADG) may be 
subject to competition among group members, and IGE 
may contribute substantially to the heritable variation in 
the trait [33, 34]. Thus, a genetic model to accommodate 
both DGE and IGE explicitly is warranted. In our study, 
the sub-model for individual-level FI records did not con-
sider IGE. However, the model for group-level FI records 
was not able to distinguish DGE and IGE, and hence, the 

additive genetic effect in the model of group records con-
tained both DGE and IGE.

It is important to note that the group-level FI in this 
study was recorded on boars in a single nucleus herd and 
the individual FI was recorded on boars at the test sta-
tion. Although in both cases, the pigs were group-housed 
under similar conditions and in pens of similar size, there 
are three differences between recording FI in the herd 
and at the test station. First, for the individual-level FI 
recorded at the test station, the experimental boars were 
selected across all DanBred nucleus herds and born in the 
same week; however, for the group-level FI recorded in 
the herd, the experimental boars were obtained only from 
boars born in the same herd. For the test station, one or 
two boars were selected among littermates from litters 
which had the highest range of selection index across all 
nucleus herds. Indeed, in our data, the start body weight 
of boars with individual-level FI was 30.5 kg (SD = 2.04 kg) 
while the start body weight of boars with group-level FI 
was 26.8  kg (SD = 2.50  kg) but the mean starting ages 
were similar, i.e., 78 days (SD = 4.6) and 78 days (SD = 5.9) 
for group- and individual-level boars, respectively. The 
use of different selection strategies for individual and 
group level recorded boars might reduce the genetic cor-
relations, and also the differences in start weight and age 
can cause differences in FI which also decrease the genetic 
correlations between individual and group FI. Second, 
individual-level FI were recorded at the test station each 
time the boars visited the feeder, and a previous non-
published study, which used criteria suggested by [35], 
showed that the individual feed records were very accu-
rate across the whole growth period without any signifi-
cant waste of feed. However, for the group-level FI in the 
herd, FI was recorded only twice during the experimental 
period and thus the group records could be affected by 
animals that drop out at the end of the testing interval. 
Furthermore, in group feeding the amount of wasted feed 
is unknown, and it can be hypothesized that wasted feed 
might increase the error variances and decrease the herit-
ability for group FI boars. And third, for the group-level FI 
in the herd, each feeder was shared by two pens, whereas 
for the individual-level FI at the test station, each pen had 
its own feeder, thus the feeding group for group-level FI 
was larger than the feeding groups for individual-level FI. 
Furthermore, as group size increases, social interactions 
and competition may also increase, resulting in a negative 
response to selection [31].

The differences between test station and herds are evident, 
and thus may lead to re-ranking of animals across these two 
environments for the FI trait. Therefore, ranking animals 
based on (G)EBV estimated in one environment may change 
selection decisions that are defined in another environment. 
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In particular, in the current Danbred breeding program, FI 
is generally evaluated based on data collected at the test sta-
tion, whereas the breeding goal is defined at the level of the 
nucleus herds. This implies that ranking based on individual-
level FI records may deviate from ranking based on group-
level FI records in the herds. As a consequence, the effect 
of genotype-by-environment interaction can lower the effi-
ciency of the breeding scheme if based on results from the 
test station environment [36]. Considering these differences, 
it may be necessary to consider the role and function of the 
test stations with caution.

The experiment in our study was set up to measure FI for 
pigs during their growth periods with bodyweight increasing 
from 30 to 100 kg. However, one issue with our study is that 
the group-level FI data were obtained only at two time points 
during the growth period. Thus, the final group-level FI data 
available for variance component estimation and genetic 
prediction were based on these two time points only, which 
may cause instability of the estimation of the residual vari-
ance. In addition, the estimated genetic correlations between 
group- and individual-level FI were relatively constant over 
time, but with large SE (Fig. 4), which can be attributed to the 
small size of the dataset used for group-level records. Thus, it 
might be worthwhile to collect more data across more time 
points to calculate group level FI, for further investigation.

Conclusions
Using a bivariate random regression model, we estimated 
the genetic correlations between group- and individual-
level FI and found low values that deviated significantly 
from 1 based on the current datasets. Our results sup-
port the hypothesis that group- and individual-level FI 
are two different traits, which indicates the presence of 
strong genotype-by-environment interaction between 
group- and individual-level FI. Gain in prediction accu-
racy for animals with group records was achieved by add-
ing information from individual records via the use of 
bivariate models but this gain was limited due to the low 
genetic correlation between these two environments. The 
insights gained from our study may help current genetic 
evaluation strategies for FI to properly account for the 
differences in FI across different systems.
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