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The antibiotic colistin (polymyxin E) is an amphipathic, non-ribosomally synthesized, cyclic

lipopeptide, which is selectively bactericidal for gram-negative aerobic bacilli, as it targets lipo-

polysaccharide (LPS) molecules in their outer membranes [1]. Colistin first acts by replacing

Ca2+ and Mg2+ cations that stabilize the outer membrane through electrostatic interactions

with the anionic phosphate groups of the lipid A moiety of LPS [2]. Colistin then inserts itself

into the outer membrane, negatively affecting the integrity of this barrier. However, destabili-

zation of the outer membrane by colistin may not be lethal to the bacterial cell [3]. Indeed, the

bactericidal activity of colistin appears to be primarily mediated by the permeabilization of the

inner membrane through interactions between colistin and the LPS molecules that are located

in the outer leaflet of the inner membrane after synthesis in the cytoplasm [4].

Because of the rapid increase in infections caused by multidrug-resistant strains of the fam-

ily Enterobacteriaceae, colistin is now increasingly used as an antibiotic of last resort, and its

use is increasing globally [5]. The increasing importance of colistin has drawn attention to

mechanisms of acquired colistin resistance in important multidrug-resistant opportunistic

pathogens, like Escherichia coli and Klebsiella pneumoniae [6]. While a variety of resistance

mechanisms have been described, the most commonly encountered are those that lead to

modifications of the lipid A moiety that reduce the affinity of colistin to lipid A or inhibit its

successful insertion into the outer membrane (Fig 1). These changes can be mediated by the

acquisition of mobilized colistin resistance (mcr) genes, of which 10 homologues have so far

been described [7,8], or the accumulation of mutations that lead to an increased expression of

chromosomal genes that mediate lipid A modifications [9]. Mutations in the two-component

regulatory system PmrAB (also termed BasRS in E. coli) appear to be one of the most promi-

nent causes for colistin resistance in clinical isolates of E. coli [10,11].

In this issue of PLOS Genetics, Knopp and colleagues describe an entirely novel mechanism

by which E. coli can acquire resistance to colistin [12]. The authors of this study generated a

library of E. coli clones that expressed more than 500 million random peptides of 10 to 50

amino acids in length. The clone libraries were then screened to identify peptides that con-

ferred resistance to colistin. A total of 6 peptides, without any sequence homology to each

other or to other proteins in public databases, were found to confer resistance to colistin to E.

coli. Importantly, all peptides act as activators of the PmrAB (BasRS) two-component system,

leading to the up-regulated production of enzymes that catalyze modifications of lipid A by

4-amino-4-deoxy-L-arabinose (by ArnT) and phosphoethanolamine (by EptA) (Fig 1). The

authors provide evidence that their peptides directly interact with the sensor protein kinase

PmrB, thus leading to constitutive activation of the regulatory system and increased expression

of EptA, ArnT, and other genes that are controlled by the response regulator PmrA. Auxiliary
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peptides that directly interact with sensor histidine kinases appear to be common and most

appear to suppress the activity of its cognate histidine kinase [13], but peptide activators, like

the small (65 amino acids) transmembrane protein SafA, which interacts directly with the sen-

sor histidine kinase PhoQ to activate the PhoPQ system, have also been described in E. coli
[14]. The findings from Knopp and colleagues thus further expand our view on the potential

for the evolution of novel auxiliary regulators of bacterial two-component regulatory systems.

It may be a matter of debate to what extent the findings of Knopp and colleagues [12] are

relevant to understand the emergence of colistin resistance in clinical settings. Only 6 peptides

were found among a library containing hundreds of millions of peptides. In addition, these

peptides were expressed under the control of a very strong promoter, which is unlikely to be

widespread in nature. In this respect, this work is in line with previous studies that showed

Fig 1. Colistin susceptibility and resistance in E. coli. Colistin initially targets LPS in the outer membrane of E. coli through electrostatic interactions with negatively

charged phosphate groups on the lipid A moiety of LPS. After destabilizing the outer membrane, colistin binds to LPS molecules that are located in the outer leaflet of

the cytoplasmic membrane while they await transport to the outer membrane. The resulting disruption of the inner membrane is proposed as the main cause of cell

death. Previous studies in E. coli have revealed that mutations in the sensor histidine kinase PmrB are an important mechanism of colistin resistance, leading to the

constitutive production of the enzymes ArnT and EptA that add a positive charge (4-amino-4-deoxy-L-arabinose and phosphoethanolamine, respectively) to the

phosphate groups of lipid A, thereby reducing the affinity of colistin to lipid A. An alternative pathway toward colistin resistance is provided by acquisition of mobile

genetic elements that carry mcr genes which also leads to the decoration of lipid A with phosphoethanolamine. Knopp and colleagues [12] show that novel auxiliary

peptides can also cause colistin resistance through direct interactions with PmrB, leading to the activation of the two-component system. LPS, lipopolysaccharide; mcr,
mobilized colistin resistance.

https://doi.org/10.1371/journal.pgen.1009262.g001
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that novel functions, including antibiotic resistance, can emerge from random sequence space,

but do so at a very low frequency [15,16].

It is, however, important to note that the increased use of colistin in clinical and veterinary

settings may be a powerful driving force that will strongly select for novel resistance determi-

nants in multidrug-resistant gram-negative bacteria [17]. Indeed, this has been compellingly

demonstrated by the emergence of the mcr-1 gene in gram-negative bacteria [18]. This gene

was first described in E. coli isolated in China in 2015 and encodes a membrane-associated

enzyme that catalyzes the modification of phosphate residues on lipid A by phosphoethanola-

mine, thereby reducing the negative charge and reducing electrostatic interactions between

lipid A and colistin [18]. Remarkably, mcr-1 appears to have been mobilized only once in the

mid-2000s and then rapidly expanded globally, with colistin use in agricultural settings proba-

bly being the main driver for its spread [19]. Similar selective pressures may drive the wide dis-

semination of peptides that activate PmrB. Notably, the fitness costs of the colistin resistance

peptides identified by Knopp and colleagues were low [12], which could suggest that function-

ally similar peptides have the potential to spread as efficiently among gram-negative bacteria

as mcr-1. Indeed, it is tempting to speculate that colistin-resistant clinical E. coli isolates in

which no resistance mechanism could be identified [10,11] may already be carrying function-

ally similar peptides. There is thus a need for further functional studies into E. coli and other

gram-negative bacteria with acquired colistin resistance with the aim to uncover novel mecha-

nisms by which resistance to this last-resort antibiotic can emerge. The relative ease by which

colistin resistance can be acquired by E. coli, either through mutation or horizontal gene trans-

fer, is a cause for concern and should inform strict antimicrobial stewardship policies in

human and veterinary medicine, to safeguard this increasingly important antibiotic for future

use.
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