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In silico prediction of high-resolution
Hi-C interaction matrices
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The three-dimensional (3D) organization of the genome plays an important role in gene

regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases

away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to

experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computa-

tional prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D

genome organization across multiple cellular contexts. Here we present HiC-Reg, an

approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg pre-

dictions identify topologically associating domains and significant interactions that are enri-

ched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from

complementary sources. CTCF and chromatin marks, especially repressive and elongation

marks, are most important for HiC-Reg’s predictive performance. Taken together, HiC-Reg

provides a powerful framework to generate high-resolution profiles of contact counts that can

be used to study individual locus level interactions and higher-order organizational units of

the genome.
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The three-dimensional (3D) organization of the genome has
emerged as an important component of the gene regulation
machinery that enables distal regulatory elements, such as

enhancers, to control the expression of genes hundreds of kilo-
bases away. These long-range interactions can have major roles in
tissue-specific expression1–3 and how regulatory sequence var-
iants impact complex phenotypes4,5, including diseases such as
cancer, diabetes, and obesity6,7. Chromosome conformation
capture (3C) technologies such as, 4C, 5C, ChIA-PET, Hi-C8, and
Capture-Hi-C9, used to measure 3D proximity of genomic loci
have rapidly matured over the past decade. However, there are
several challenges for identifying such interactions in diverse cell
types and contexts. First, the majority of these experimental
technologies have been applied to well-studied cell lines. Second,
very few Hi-C datasets are available at resolutions high enough
(e.g., 5 kbp) to identify enhancer-gene interactions due to the
tradeoff between measuring genome-wide chromosome organi-
zations while achieving higher resolutions. Third, long-range gene
regulation involves a complex interplay of transcription factors,
histone marks and architectural proteins10–13, making it impor-
tant to examine three-dimensional proximity in concert with
these components of the transcription machinery.

Recently, numerous computational approaches for predicting
long-range interactions have been developed4,14–17, which lever-
age the fact that regulatory regions that participate in long-range
regulatory interactions have characteristic one-dimensional
genomic signatures14,15,18. However, these methods have all
used a binary classification framework, which is not optimal
because the interaction prediction problem is a one-class problem
with no negative examples of interactions. In addition, these do
not exploit the genome-wide nature of high-throughput chro-
mosome capture datasets such as Hi-C as they focus on sig-
nificantly interacting pairs, which can be sensitive to the method
used to call significant interactions. Recent comparison of
methods for calling significant interactions show that there are
substantial differences in the interactions identified from different
methods19.

To overcome the limitations of a classification approach and
to maximally exploit the information in high-throughput assays
such Hi-C, we develop a Random Forests regression-based
approach, HiC-Reg. HiC-Reg integrates published Hi-C datasets
with one-dimensional regulatory genomic datasets such as
chromatin marks, architectural and transcription factor proteins,
and chromatin accessibility, to predict interaction counts
between two genomic loci in a cell line-specific manner. We
apply our approach to high-resolution Hi-C data from five cell
lines to predict interaction counts at 5 kb resolution and sys-
tematically evaluate its ability to predict interactions within the
same cell line (tested using cross-validation), across different
chromosomes as well as different cell lines. Our work shows that
a Random Forests-based regression framework can predict
genome-wide Hi-C interaction matrices within cell lines and can
generalize to new chromosomes and cell lines. Furthermore,
modeling the signal between regions as well as integrating data
from multiple cell lines is beneficial for improved predictive
power. Feature analysis of the predicted interactions suggests
that the CCCTC-binding factor (CTCF) and chromatin signals
are both important for high-quality predictions. HiC-Reg pre-
dictions agree well with ChIA-PET datasets, recapitulate well-
known examples of long-range interactions, exhibit bidirectional
CTCF loops, and can recover topologically associating domains.
Overall, HiC-Reg provides a computational approach for pre-
dicting the interaction counts discovered by Hi-C technology,
which can be used for examining long-range interactions for
individual loci as well as for global studies of chromosome
conformation organization.

Results
HiC-Reg for predicting contact count using Random Forests.
We developed a regression-based approach called HiC-Reg to
predict cell line-specific contact counts between pairs of 5 kb
genomic regions using cell line-specific one-dimensional reg-
ulatory signals, such as histone marks and transcription factor-
binding profiles (Fig. 1). Our regression framework treats contact
counts as outputs of a regression model from input one-
dimensional regulatory signals associated with a pair of geno-
mic regions. As cell line-specific training count data we used
high-resolution (5 kb) Hi-C datasets from five cell lines from Rao
et al.20. We used features from 14 cell line-specific regulatory
genomic datasets and genomic distance to represent a pair of
regions. These datasets include the architectural protein CTCF,
repressive marks (H3k27me3, H3k9me3), marks associated with
active gene bodies and elongation (H3k36me3, H4k20me1,
H3k79me2), enhancer-specific marks (H3k4me1, H3k27ac),
activating marks (H3k9ac, H3k4me2, H3k4me3), cohesin com-
ponent (RAD21), a general transcription factor (TBP) and DNase
I (open chromatin)14. HiC-Reg uses a Random Forests regression
model as its core predictive model. The Random Forests regres-
sion model significantly outperforms a linear regression model,
suggesting that there are non-linear dependencies that are
important to be captured to effectively solve the count prediction
problem (Supplementary Fig. 1).

A key consideration for chromosomal count prediction is how
to represent the genomic region pairs as examples for training a
regression model. To represent a pair in HiC-Reg, we considered
three main feature encodings in addition to genomic distance
between the two regions of interest: PAIR-CONCAT, WINDOW,
and MULTI-CELL (Fig. 1). PAIR-CONCAT simply concatenates
the features for each region into a single vector. The WINDOW
feature encoding additionally uses the average signal between two
regions and was proposed in TargetFinder, a classification-based
method15. MULTI-CELL incorporates signals from other cell
lines. We assessed the performance of these methods using
distance-stratified Pearson’s correlation computed on test set
pairs in a fivefold cross-validation setting (Methods). The
distance-stratified correlation measures the Pearson’s correlation
between predicted and true counts for genomic pairs at a
particular distance threshold. Distance stratification is important
due to the high dependence of contact count on genomic
distance21. As a baseline we compared the performance of these
models to a Random Forests regression model trained on distance
alone. The performance of HiC-Reg is much better than the
performance of distance alone, demonstrating that addition of
regulatory signals significantly improves performance (Fig. 2).
Between PAIR-CONCAT and WINDOW, WINDOW features
are significantly better and the performance of PAIR-CONCAT
often decreases as a function of distance especially for the first
250 kb (Fig. 2a). WINDOW and MULTI-CELL have similar
performance and are both better than PAIR-CONCAT.

To examine the generality of this behavior across all
chromosomes, we applied HiC-Reg in all chromosomes in a
fivefold cross-validation setting. To summarize the performance
captured in the distance-stratified correlation curve, we computed
the area under the distance-stratified correlation curve (AUC,
Methods). The AUC metric ranges from –1 to 1, with 1
representing the best performance. We find that across all cell
lines and chromosomes, both the WINDOW and the MULTI-
CELL features are significantly better than PAIR-CONCAT,
suggesting that incorporating the signal between two regions is
important for capturing these interaction counts at longer
distances (Fig. 2b). When examining the performance across
the five cell lines, the AUC for the Nhek cell line was lowest,
suggesting it is the hardest to predict. Owing to the superior
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performance of the WINDOW and MULTI-CELL features, we
excluded the PAIR-CONCAT feature from subsequent experi-
ments. Although WINDOW has more features, the number of
datasets needed are still comparable to PAIR-CONCAT.

To examine whether our approach can generalize to new
chromosomes, we trained HiC-Reg on one chromosome and used
it to predict counts in a different chromosome for the same cell
line. We considered five chromosomes, chr9, chr11, chr14, chr17,
and chr19, each as training and test chromosomes, in all five cell
lines. HiC-Reg predictions across chromosomes were slightly
worse than when training and testing on the same chromosome
in all but the Gm12878 cell line, where the cross chromosome
performance was much worse. Interestingly, while both feature

types, WINDOW and MULTI-CELL were comparable when
training and testing in the same chromosome setting (Fig. 2),
when comparing models across chromosomes, we found that the
MULTI-CELL feature was significantly better than the WIN-
DOW feature in the cell lines with low depth (Nhek, Hmec,
Huvec, t-test one-sided p-value < 0:05), and comparable in the
more deeply sequenced cell lines (Gm12878, K562, Fig. 3 and
Supplementary Figs. 2–6). In all cases, MULTI-CELL out-
performed WINDOW features more times than it was out-
performed (Fig. 3). Some chromosomes produced worse models
than other chromosomes. For example, chromosome 19 was a
poor predictor of other chromosomes in all cell lines, and
chromosome 14 was a poor predictor of all other chromosomes in
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Fig. 3 HiC-Reg cross-chromosome performance. a The distance-stratified Pearson’s correlation plot when training on one chromosome and testing on a
different chromosome from the same cell line. Shown are the distance-stratified correlations for models trained on chromosome 9 and 11 (row groups) and
tested on chromosome 9, 11, 14, 17, 19 (columns) at 5 kb resolution in different cell lines. Each pair of rows corresponds to a particular cell line and results
are shown for five cell lines: Gm12878, K562, Huvec, Hmec, Nhek. The blue line refers to training and testing on the same chromosome in cross-validation
mode. b Heatmap of AUC for all pairs of tested cross-chromosome experiments. Each off-diagonal entry in the heatmap denotes the AUC when trained on
the row chromosome and tested on the column chromosome. The more red an entry the better the performance in that chromosome pair combination.
The diagonal entries are the AUC values when training and testing on the same chromosome in cross-validation mode. Source data are provided as a
Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13423-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5449 | https://doi.org/10.1038/s41467-019-13423-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


K562. These performance differences are indicative of unique
chromosomal features that are shared or unique to specific cell
lines (chr14 in K562). Taken together, our analysis showed that
HiC-Reg is able to successfully predict interaction counts in
different cell lines using one-dimensional features and the
MULTI-CELL feature is especially useful for cell lines with low-
sequencing depth.

Identifying key determinants of contact count prediction. To
gain insight into the relative importance of different one-
dimensional regulatory signals, such as chromatin marks and
transcription factor-binding signals for predicting contact counts,
we conducted different types of feature analyses. We focused on
the MULTI-CELL features as they had the best performance. We
first ranked features using a standard feature importance score,
Out of Bag (OOB) error (Methods, Fig. 4a and Supplementary
Fig. 7). For a given cell line, the features from the cell line as well
as features from the other four cell lines were identified as
important (e.g., several Nhek, K562, Hmec, and Huvec features
were important for the Gm12878 cell lines, Fig. 4a). The feature
rankings across different chromosomes were similar (Spearman
correlation 0.59–0.78, Supplementary Fig. 7D). Based on this
ranking, the most important features included Distance, an
elongation chromatin mark H4K20me1, DNase I, repressive
marks H3k27me3 and H3K9me3, activating marks H3k9ac, and
enhancer-associated marks H3K4me1 and H3k27ac, typically on
one or both end point regions (R1 and R2) and rarely on the
Window regions (W). We next used a complementary strategy of
counting the number of times a feature was used for predicting
the count of a test pair (Fig. 4b and Supplementary Fig. 8). This
analysis also found Distance to be important but also other fac-
tors like CTCF, TBP, and other elongation marks (H3k36me3
and H3k79me2), and promoter activating marks (H3k4me3).
Here too the features from both the training cell line and other
four cell lines were important. Comparing across chromosomes,
the feature rankings were very similar (Spearman correlation
0.89–0.97, Supplementary Fig. 8D). The two feature analysis
methods agreed on the importance of elongation mark,
H4K20me1, repressive marks H3K27me3 and H3k9me3,
enhancer marks H3K4me1, DNase I, and CTCF, but there were
some differences. The OOB method identified histone mark
features in the region (R1 and R2) while the feature usage
counting importance implicated CTCF and TBP Window signals
to be the most important.

While the above approach identified the top features for all
pairs of regions, it does not tell us whether there are different
feature sets useful for different sets of pairs. In particular, some
interacting pairs could be driven largely by chromatin marks,
while another set of pairs could be driven by transcription factors.
Furthermore, it does not inform us about dependencies among
features that might be important for making these predictions.
Therefore, we developed a novel feature analysis method, based
on non-negative matrix factorization (NMF, Methods). Briefly,
we obtained region pairs with the lowest 5% test error and
counted the number of times a feature or a pair of features was
used on the tree path traversed for these region pairs. Restricting
to the pairs with the 5% lowest errors did not change individual
feature rankings and was computational more tractable (Supple-
mentary Figs. 9 and 10). We focused on chromosome 17 because
the feature importances were similar across chromosomes
(Supplementary Figs. 7 and 8). We created a region-pair by
feature-pair matrix, with each entry of the matrix denoting the
number of times the feature pair was used in the trees. We next
applied NMF on this matrix to obtain clusters of region pairs
associated with clusters of feature pairs (Fig. 4c). Such bi-clusters

are indicative of different classes of region pairs and the most
important features associated with them (Fig. 4c). For example,
for Gm12878, one cluster (Cluster 1) was associated with
H3K4me3 and H3k27ac, while another cluster (Cluster 2) was
associated with elongation marks (H4K20me1) and CTCF
together with other histone marks. A third cluster (Cluster 3)
was associated with H3k4me1 in Gm12878, CTCF from Hmec
and H3k27me3 from Huvec and Nhek. Cluster 4 was associated
with H3k79me2 and CTCF in Hmec and TBP in Nhek and finally
Cluster 5 was largely associated with TBP. We found similar
behavior in other cell lines as well (Supplementary Figs. 11–14).
While CTCF was important in all cell lines, some cell lines
exhibited other types of important features like H3k9me3 (Nhek),
DNase I (Huvec and Hmec) and H3k4me1 (Hmec). We applied
the same procedure to the matrix of region-pairs by individual
features (Supplementary Figs. 15 and 16), however, the groups
were essentially driven by the type of region (R1, R2, or W).
While this showed that NMF captures an important grouping
structure, it was not unexpected and only served as a sanity check.
Our feature analysis showed that there were largely CTCF-driven
and chromatin mark driven clusters of interactions. CTCF was a
key feature for predicting interactions and was associated with
other chromatin marks. Furthermore, we found that elongation
marks like H4K20me1 and H3K79me2 and repressive marks like
H3K27me3 were often important as feature hubs.

As all 14 genomic datasets might be expensive to measure in a
new context (e.g., a cell line or tissue), we next asked if we can
reduce the number of datasets needed for HiC-Reg without
substantial loss in performance. We used a two-step approach
(MTG-RF) to select a minimal feature set (Methods), similar to a
previous approach applied in a classification setting14. First, we
applied a multi-task regression framework, based on Multi-task
Group LASSO (MTG) to select a small number of features that
were important for all five cell lines. Datasets spanning these
features (e.g., from one or both regions) were used as input in the
second step, which we iteratively refined using Random Forests
(RF). We applied this approach on different subsamples of the
data and generated a ranking of datasets based on the number of
times it is selected as a contributor to an important feature. We
averaged the rankings from all five cell lines and selected top six
and eight datasets (Supplementary Fig. 17A). In addition to
Distance, the top six datasets included CTCF, DNase I,
H4K20me1, RAD21, TBP, and H3K9me3, while the top eight
datasets additionally included H3K4me1 and H3K79me2.

We next compared HiC-Reg trained on these reduced datasets
against HiC-Reg trained on all 14 datasets in a cross-validation
(Supplementary Fig. 17B, C) and cross chromosome setting
(Supplementary Fig. 18). In the cross-validation setting, models
trained on the top six and eight datasets have a slightly
diminished performance compared to using all 14 datasets
(Supplementary Fig. 17B, C), which is expected. In the cross-
chromosome experiments from Gm12878 (Supplementary
Fig. 18), a model using the top six datasets has a diminished
performance while a model using the top eight datasets is
comparable to the full 14 genomic datasets models. For other cell
lines, the top six and eight datasets models are able to perform
comparably as the full 14 datasets, with top eight being slightly
better than the top six datasets model.

Predictions show hallmarks of true loops and identify TADs.
We next assessed the quality of our predictions using several
additional metrics based on specific properties of true interac-
tions. One such property is the occurrence of bidirectional CTCF
motifs20. Briefly, a pair can have one of four configurations of the
CTCF motif, (+ +), (+ –), (– +), and (– –), where + corresponds
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to the motif on the forward strand and – corresponds to the motif
being on the reverse strand. The pairs with the (+ –) config-
uration are most likely the true loops. This property of looping
interactions was also used by Forcato et al.19 to compare different
Hi-C peak-calling programs. To assess the occurrence of CTCF
bidirectional motifs in HiC-Reg predictions, we identified sig-
nificant interactions in both true and predicted counts (Methods).
We used Fit-Hi-C to call significant interactions, however, there is

substantial overlap among interactions when using another
interaction caller (Supplementary Tables 1 and 2). Following
Forcato et al.19, we only focus on pairs with at least one CTCF
signed motif mapped to each pair of regions, but discarding a pair
if one of the regions has the motif in both orientations. We
quantified the tendency of CTCF bidirectional motifs to occur in
the significant pairs versus all pairs using fold enrichment. Across
all five cell lines, significant pairs called on both the true and
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predicted counts are enriched for the bidirectional motif (+ –)
configuration (Fig. 5a). The level of enrichment is comparable for
the interactions identified from the true and predicted counts and
is sometimes better in the predicted counts. The majority of
significant interactions identified using the predicted counts are
identified from the true counts, although the number of inter-
actions from true counts are higher (Supplementary Table 3).
This suggests that the predicted interactions have high precision
and are likely true positives. Furthermore, there is significant
overlap between the top 5% pairs when ranked based on Fit-Hi-C
q-values on the predicted or true counts (Supplementary Table 4).

As a second evaluation metric, we compared the significant
interactions identified by Fit-Hi-C on the predicted and true
counts with interactions identified using a complementary
experiment, ChIA-PET (Methods). We obtained ten published
datasets for different factors (RNA PolII, CTCF, and RAD21) and
histone marks in multiple cell lines22,23. We estimated fold
enrichment of the ChIA-PET interactions in the significant
interactions compared to background. Interactions from both
true counts and HiC-Reg predictions were enriched for ChIA-
PET interactions, and these enrichments were often better for
HiC-Reg predictions than those from the true counts (Fig. 5b).
The CTCF directionality and ChIA-PET enrichment suggest that
significant interactions from HiC-Reg predictions exhibit hall-
marks of true looping interactions.

One of the advantages of a regression versus a classification
framework is that the output counts can be examined with
topologically associating domains (TAD) finding algorithms19,24.
Hence, as a third validation metric, we asked to what extent the
HiC-Reg counts identify structural units of chromosomal
organization, such as TADs25. We applied the Directionality
Index (DI) Domain Caller method26 to HiC-Reg predicted counts
and true counts and compared the similarity of the identified
TADs using a metric derived from the Jaccard coefficient. The
Jaccard coefficient assesses the overlap between two sets of objects
(e.g., regions in one TAD versus regions in another TAD) and is a
number between 0 and 1, with 0 representing no overlap and 1
representing perfect overlap. We aggregated the Jaccard coeffi-
cient across all TADs identified on a chromosome into a single
average Jaccard coefficient (Methods). Across all cell lines and
chromosomes, the average Jaccard coefficient ranged between
0.79 and 0.83 indicating good agreement between TADs from
true and predicted counts (Fig. 5c). This high agreement is
visually shown for a selected region (2 Mb block of 5 kb regions
on chr17: 32,000,000–34,000,000) where the identified TADs
(cyan boxes) agree between the true and predicted count matrices
(Fig. 5d).

Overall, these validation results show that HiC-Reg predictions
can be used to study three-dimensional genome organization at
the level of individual loops, as well as the level of higher-order
structural units such as TADs.

HiC-Reg can predict contact counts in new cell lines. Our
analysis so far demonstrates the feasibility of using regression to
predict contact counts in cell lines with available Hi-C data for at
least some chromosomes. We next asked if we could apply this
approach to predict interactions in test cell lines different from
the training cell line. This would enable us to study the utility of
HiC-Reg in cell lines where Hi-C data are not yet available. We
applied HiC-Reg trained on one cell line to predict counts for
pairs from a different test cell line. We evaluated the quality of the
predictions in the test cell line using the distance-stratified
Pearson’s correlation (CrossCell, Fig. 6), the Area under the
distance-stratified Pearson’s correlation curve (AUC) and addi-
tional validation metrics (CTCF directionality, ChIA-PET and
TAD recovery, Fig. 7). These validation metrics were computed
on the test cell line and compared against different models: (i)
model trained on distance alone, (ii) model trained with cross-
validation (CV) on the test cell line (CV, Fig. 6), and (iii) a new
baseline model which simply transferred the count from the
training cell line to the test cell line (TransferCount, Fig. 6).

A model trained on a cell line different from the test cell line is
significantly better than a model trained on distance alone, but is
often worse than a model trained on the same cell line (Fig. 6).
For example, for chr17, the same cell line CV model has the best
performance (blue line Fig. 6a) compared to all versions of cross
cell line predictions. Here too we observe that the MULTI-CELL
features (Fig. 6a, red line) are better or at least as good as the
WINDOW features (Fig. 6a, cyan line). Compared to transferring
counts (TransferCount, green line Fig. 6a), both MULTI-CELL
and WINDOW have significant benefits at long distance
relationships (green line is usually below the red and cyan lines
after �250 kb). The AUC offers a concise summary of this
behavior (Fig. 6b), with models using MULTI-CELL features
being at least as good as TransferCount models in the majority of
training-test cell line combinations. Overall, the Gm12878 cell
line was the hardest to predict using a model from other cell lines.

When comparing the predictions in other chromosomes
(Supplementary Figs. 19 and 20), we observe a similar behavior.
Interestingly, the extent to which a cell line can be predicted from
a model in a different cell line depends greatly on the test cell line.
In particular, on Gm12878, which has the highest sequencing
depth for Hi-C data, none of the models were able to come up to
par with the model trained and tested on Gm12878 (Fig. 6a,
fourth row, Fig. 6b, fourth column). In contrast, for Huvec, the
K562 model is able to predict interactions nearly as well as the CV
model especially when using the MULTI-CELL features.
Similarly, for Hmec, Huvec-trained model was able to recapitu-
late the performance of the Hmec CV-trained model to a great
extent (Fig. 6b). Previously, we have shown that an ensemble
model of combining predictions from multiple models provided a
robust performance in a new cell line14. Therefore, we combined
the predictions from the models trained on each of the cell lines

Fig. 4 Analysis of features important for predicting Hi-C contact counts. a Shown are the top 20 MULTI-CELL features ranked based on Out of Bag (OOB)
feature importance on chromosome 17 in all five cell lines. Each horizontal bar corresponds to one feature. The feature name includes the name of the
histone mark, DNase I or TF, whether it is on one of the interaction regions (R1, R2) or in the intervening window (W), and the specific cell line from which
this feature is extracted. b Shown are top 20 features ranked based on counting the number of times a feature is used for test set predictions. Feature
rankings are for chromosome 17 for all five cell lines. c Non-negative matrix (NMF) factorization of region-pair by feature-pair matrix for Gm12878
chromosome 17. The U and V factors are the NMF factors to provide membership of region pairs or feature pairs in a cluster (white lines demarcate the
region pair and feature pair clusters). The factorized feature count matrix is shown below the V factors and to the right of the U factors. The heatmap on
the right are the features associated with each of the pairs, with rows corresponding to a pair of regions and columns corresponding to the feature values
grouped by the cell line from which they are obtained. Bottom are Cytoscape network representation of important pairs of features. The node size is
proportional to the number of times the specific feature co-occurs on a path in the regression tree. The thickness of the line is proportional to the number
of times the pair of features is used on the path from root to the leaf for a test example pair. Font size of the node label is proportional to its size.
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by taking the average of the predictions (Fig. 6, ENSEMBLE). We
find that the ensemble predictions are at least as good as the
predictions from the individual models (Fig. 6a orange line) and
the ensemble for the MULTI-CELL features is better than that for
the WINDOW features (Fig. 6b).

As additional validation we tested our predictions for enrich-
ment of ChIA-PET interactions, CTCF bidirectional loops and
TAD recovery (Fig. 7). We again applied Fit-Hi-C to the
predicted counts and found that the predicted interactions in
each of the cell lines tested were significantly enriched for

��

��

��

��

��

��

��

0.65

0.70

0.75

0.80

0.85

0.90

Gm12878 Hmec Huvec K562 Nhek

Ja
cc

a
rd

 c
o
e
ff
ic

ie
n
t

TAD similarity

a

c d

b

HiC True counts Gm12878 chr17

3
2
,2

5
0
,0

0
0

3
2
,5

0
0
,0

0
0

3
2
,7

5
0
,0

0
0

3
3
,0

0
0
,0

0
0

3
3
,2

5
0
,0

0
0

3
3
,5

0
0
,0

0
0

3
3
,7

5
0
,0

0
0

3
4
,0

0
0
,0

0
0

32,250,000

32,500,000

32,750,000

33,000,000

33,250,000

33,500,000

33,750,000

34,000,000 0
1
2
3
4
5
6
7
8
9
10

Predicted counts Gm12878 chr17

3
2
,2

5
0
,0

0
0

3
2
,5

0
0
,0

0
0

3
2
,7

5
0
,0

0
0

3
3
,0

0
0
,0

0
0

3
3
,2

5
0
,0

0
0

3
3
,5

0
0
,0

0
0

3
3
,7

5
0
,0

0
0

3
4
,0

0
0
,0

0
0

32,250,000

32,500,000

32,750,000

33,000,000

33,250,000

33,500,000

33,750,000

34,000,000

HiC True counts K562 chr17

2
,2

5
0
,0

0
0

2
,5

0
0
,0

0
0

2
,7

5
0
,0

0
0

3
,0

0
0
,0

0
0

3
,2

5
0
,0

0
0

3
,5

0
0
,0

0
0

3
,7

5
0
,0

0
0

4
,0

0
0
,0

0
0

2,250,000

2,500,000

2,750,000

3,000,000

3,250,000

3,500,000

3,750,000

4,000,000 0

1

2

3

4

5

6

7

Predicted counts K562 chr17

2
,2

5
0
,0

0
0

2
,5

0
0
,0

0
0

2
,7

5
0
,0

0
0

3
,0

0
0
,0

0
0

3
,2

5
0
,0

0
0

3
,5

0
0
,0

0
0

3
,7

5
0
,0

0
0

4
,0

0
0
,0

0
0

2,250,000

2,500,000

2,750,000

3,000,000

3,250,000

3,500,000

3,750,000

4,000,000 0

1

2

3

4

5

6

7

ChIA-PET enrichment

G
m

12878
K

562
H

uvec
H

m
ec

N
hek

G
M

12
87

8_
R

A
D

21

H
el

a_
R

N
A

P
II

K
56

2_
C

T
C

F

K
56

2_
H

4K
27

ac

K
56

2_
H

4K
4M

e1

K
56

2_
H

4K
4M

e2

K
56

2_
H

4K
4M

e3

K
56

2_
P

ol
II

K
56

2_
R

A
D

21

K
56

2_
R

N
A

P
II

0

50

100

150

0

20

40

0

10

20

30

0

1

2

3

0

5

10

15

F
ol

d 
en

ric
hm

en
t

Count True Predicted

Count True Predicted
G

m
12878

K
562

H
uvec

H
m

ec
N

hek

−− −+ +− ++

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

CTCF enrichment

F
ol

d 
en

ric
hm

en
t

Random

Random

10

9

8

7

6

5

4

3

2

1

0

Fig. 5 Assessing significant interactions and TADs from HiC-Reg predictions. a Fold enrichment of four configurations of CTCF motifs in significant
interactions identified using true and predicted counts. A fold enrichment >1 (red horizontal line) is considered as enriched. Fold enrichment in all five cell
lines is shown. b Fold enrichment of interactions identified using ChIA-PET experiments in significant interactions from HiC-Reg’s predictions and true
counts. A fold enrichment >1 (red horizontal line) is considered as enriched. c Distribution of TAD similarity identified from true and predicted counts for all
chromosomes. Each point in the box plot corresponds to the average Jaccard coefficient for a chromosome. The horizontal middle line of each plot is the
median. The bounds of the box are 0.25 quantile (Q1) and 0.75 quantile (Q3). The upper whisker is the minimum of the maximum value and Q3 þ 1:5 � IQR,
where IQR ¼ Q3 � Q1. The lower whisker is the maximum of the minimum value and Q1 � 1:5 � IQR. d TADs identified on true (left) and predicted (right)
HiC count matrices for selected regions. Top: Gm12878 cell line, chr17:32–34Mbp. Bottom: K562 cell line, chr17:2–4Mbp). Source data are provided as a
Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13423-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5449 | https://doi.org/10.1038/s41467-019-13423-8 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


b

CV:MULTI-CELL CrossCell:MULTI-CELL CrossCell:WINDOW Ensemble:MULTI-CELL

Transfer counts Distance

AUC

T
ra

in
in

g 
ce

ll

Feature MULTI−CELL WINDOW Transfer counts

Test cell

Huvec Hmec Nhek Gm12878 K562

H
uv

ec
H

m
ec

N
he

k
G

m
12

87
8

K
56

2

a

Distance (Mb) 

Training cell

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

0 0.5 1
–0.2

0

0.2

0.4

0.6

Huvec Hmec Nhek Gm12878 K562

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Huvec

Hmec

Nhek

Gm12878

K562

Ensemble

C
or

re
la

tio
n

C
or

re
la

tio
n

C
or

re
la

tio
n

C
or

re
la

tio
n

C
or

re
la

tio
n

Te
st

 c
el

l
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bidirectional motifs (Fig. 7a), and were significantly enriched for
ChIA-PET interactions (Fig. 7b). Furthermore, there was good
agreement between TADs identified from true and predicted
counts in each of these chromosomes based on the Jaccard
coefficient score (Fig. 7c).

We also compared the cross-cell line predictive performance of
a HiC-Reg model trained with the reduced set of datasets selected
by the MTG-RF approach relative to a model trained on all
datasets in a cross-cell line setting (Supplementary Fig. 21).
The HiC-Reg model trained on the top eight datasets is better
than the model using the top six datasets (Supplementary Fig. 21)
and at par with the model trained on the full 14 datasets. Thus,
for a new cell line, CTCF, DNase I, H3k9me3, H4k20me1,
RAD21, TBP, would be useful to obtain competitive but slightly
diminished performance, whereas additionally including
H3k4me1 and H3k79me2 can provide at par performance as
the full set of 14 datasets.

Overall, these results suggest that HiC-Reg can be used to
predict interactions in new cell lines and it performs better than
baseline approaches based on distance alone or simply transfer-
ring counts. There is a dependence on the training cell line and an
ensemble approach offers a robust way to combine predictions
from multiple training models.

HiC-Reg recovers high-confidence manually curated loops. To
gain deeper insight into the features that drive interactions
between two specific loci, we next focused on examples of well-
characterized long-range interactions. Distal regulation of the
HBA1 gene by a regulatory element 33–48 kb away27 has been

experimentally characterized using low-throughput27 and high-
throughput methods such as 5C28. We focused on significant
interactions associated with the 5 kb bins containing the HBA1
promoter and the 225 kb before and 1MB after these bins (HBA1
gene is located towards the beginning of chr16 and the full 1 MB
radius is not available). We first applied Fit-Hi-C on the true
counts from each of the cell lines and found that K562 had among
the largest number of significant interactions (Fig. 8c and Sup-
plementary Table 7). This is consistent with this gene being
specific to erythroid cells27. Next, we considered the predicted
interactions using the CV, as well as cross-cell line models. Across
all models, we found between 1 and 14 significantly interacting
pairs associated with the HBA1 promoter (minimum number of
significant interactions is 1 and maximum is 14), with 2 sig-
nificantly interacting pairs from the K562 CV model (Supple-
mentary Table 7). Both of the significantly interacting pairs from
the K562 CV model overlapped with 5C detected interactions
(Fig. 8b, green arcs, Fig. 8c) at 27 kb and 32 kb, similar to the true
counts. Similar number of significant interactions are called when
using a different interaction caller by Duan et al.29, which is based
on a binomial model, suggesting the identification of these
interactions is not specific to Fit-Hi-C (Supplementary Fig. 22B).
Visualization of the regulatory signals spanning the HBA1 gene
and its interacting regions in the WashU genome browser30,
showed chromatin marks, including H3K9me3, H4K20me1,
H3K36me3, H3K4me1, H3K4me2, H3K27ac as important fea-
tures and CTCF and DNase I as additional contributors to these
interactions (Fig. 8b). Examination of features based on their
usage count in the significant interactions showed that the top
features came primarily from the Window region of K562, Nhek,
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or Hmec (Supplementary Fig. 23A–C), and included features
such as CTCF, DNase I, TBP, and chromatin marks, such as
H3K4me1 and H3K27ac.

We next investigated the PAPPA gene locus, which is
implicated in the development of mammary glands and is of
interest in breast cancer studies31,32 and identified significant
interactions in the 1MB radius around the PAPPA gene using

true and predicted counts. The rat ortholog of PAPPA is regulated
by a 8.5 kb genomic region called the temporal control element
(TCE) in rat mammary epithelial cells32. The TCE resides within
the MCS5C genomic locus associated with breast cancer
susceptibility and is conserved in human and mouse32. When
analyzing true counts, we found the largest number of significant
interactions in the Hmec cell line (Supplementary Fig. 22C). Of
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these, 16 interactions overlapped the MCS5C region and 3
overlapped the TCE region. The Hmec cell line is a primary
mammary epithelial cell line, which indicates that these
interactions are relevant to the breast tissue. A number of
significant interactions were identified also in the true counts
from Huvec and Nhek (Supplementary Table 8), suggesting some
extent of shared interactions across cell lines. Based on the
predicted counts using the CV and cross-cell line models, we
found a greater number of significant interactions in models
associated with Hmec, which is consistent with the behavior on
the true counts (Supplementary Fig. 24 and Supplementary
Table 8). We found two significant interactions that connected
PAPPA to regions in the MCS5C locus when using the Hmec CV
predictions (Supplementary Fig. 24C, left), and between 1 and 37
interactions in cross-cell line predictions when using models
trained on the Hmec cell line (Supplementary Table 8). The CV
predictions in Hmec and cross cell predictions in Huvec using
models from Hmec also captured several of the finer TCE-PAPPA
interactions (Supplementary Fig. 24C). Visualization of the
signals (Supplementary Fig. 24B) and feature analysis on the
significant interactions indicated that CTCF, TBP, and H3K4me1
measured in the Hmec cell line are important for this interaction
(Supplementary Fig. 23D–F). In summary, HiC-Reg predictions
provide computational support for the long-range regulation of
the PAPPA gene in a relevant human cell line, which was
originally studied in the rat mammary cells.

Beyond these two well-characterized examples, we examined
other examples curated in the literature that were shown to have a
distal enhancer regulating a gene33. Several enhancer-gene
interactions have been studied in mouse embryonic stem (ES)
cells33, which showed that CRISPR deletion of the implicated
enhancer decreased the expression of the target gene. We
examined the predicted counts in the 1MB radius of ten such
enhancers that could be mapped to the human genome (hg19)
and identified significant interactions that overlapped genes. We
found significant interactions around three genes MACF1, MCL1,
and KIAA1217 in the Hmec cell line (Supplementary Fig. 25).
Moorthy et al.33 reported relatively lower decrease in expression
of these genes (18–40%) compared to other genes (e.g., Sall1,
Tet1), which suggests that these interactions may not be specific
to embryonic stem cells (ESC) and could be detected in other
contexts. We did not detect the interactions that reported 80–90%
decrease in expression, likely because they are specific to ESCs.

Taken together, our fine-grained analysis of these curated loci
known to be involved in long-range regulatory interactions
provide further support of our predictions, highlight potentially
important features that facilitate these interactions and serve as
case studies of how HiC-Reg could be used to characterize a

particular locus of interest. In many of these cases we found
additional loci that are predicted to interact with these genes,
which can be followed with future experiments.

Discussion
The three-dimensional organization of the genome can affect the
transcriptional status of a single gene locus, as well as larger
chromosomal domains, both of which can have significant
downstream consequences on complex phenotypes. Although
high-throughput chromosome capture conformation assays are
rapidly evolving, measuring cell line-specific interactions on a
genome-wide scale and at high resolution is a significant chal-
lenge. In this work, we described a novel computational approach,
HiC-Reg that can predict the contact count of two genomic
regions from their one-dimensional regulatory signals, which are
available for a large number of cell lines and experimentally more
tractable to generate than Hi-C datasets. As HiC-Reg directly
predicts counts, instead of classifying interactions from non-
interactions as has been commonly done14,15,18, the output from
HiC-Reg can be used to identify significant interactions using
peak-calling algorithms (e.g., Fit-Hi-C21), as well as examine
more large-scale organizational properties using domain finding
algorithms (e.g., DomainCaller26, TopDom34, HiCSeg35).

A key challenge we addressed using HiC-Reg was to generate
high-resolution interaction counts in a new chromosome or cell
line of interest. The former is relevant to predict interactions
among regions that might not have been experimentally assayed.
The latter is useful for cell types and developmental stages that
may not be amenable to large-scale high-throughput 3C experi-
ments and computational predictions could prioritize regions for
targeted experimental studies. Our cross-chromosome experi-
ments showed that the performance decreases when training on
one chromosome and testing on another. The features identified
as important across different chromosomes are very similar
(Supplementary Figs. 7 and 8), suggesting that the overall prop-
erties governing chromosomal contact are similar across chro-
mosomes, however, there may be fine-grained differences that are
not being captured by the Random Forests regression model.
Incorporation of additional measurements from transcription
factor binding could be beneficial for capturing these differences.
Our cross-cell line prediction shows that the performance can
vary from one training cell line to another, making the choice of
the training cell line non-trivial. Our ensemble approach that
aggregated predictions from multiple predictive models was
better or comparable to the best performance from a model
trained on any one cell line, however, more systematic approa-
ches to combine shared information across different cell lines

Fig. 8 Examining HiC-Reg predictions at the HBA1 locus. a Shown are the features, true and predicted counts and q-value for �225 kb before and 1MB after
the 5 kb bins spanning the HBA1 gene promoter. Note, no features were measured for bins within 0 to 55 kb. The white-red heatmaps show the true counts
for five cell lines and predicted counts, and the white-magenta heatmaps show q-value significance (0: q-value� 0.05 or 1: q-value < 0.05, q-values are
assigned only to pairs that have a measured count in the original Hi-C data). Predicted counts are from five CV models, 20 cross-cell line models, and five
Ensemble models. Test cell lines are mentioned above the red line, while the column names (vertical orientation) are for the training models. The white-
blue heatmaps show the ChIP-seq and motif feature signals while the green column is for distance (colorscale: 0: 0 kb and 200:1 MB). The asterisks denote
the 5 kb regions that interact with the 5 kb region spanning the HBA1 gene promoter from 5C. Only the bin with significant predicted interactions is shown.
b Visualization of feature signals using WashU Epigenome Browser for significant interactions obtained from a model trained in K562 and tested in K562.
Shown are also overlapping interactions with 5C pairs (magenta and green). Red vertical lines demarcate the 5 kb bin overlapping the HBA1 gene promoter
and the distal region that interacts with it, as supported by 5C. The green arcs on both tracks depict the interactions predicted by HiC-Reg and supported
by 5C. c Manhattan style plots of true and CV predicted counts around 1MB radius of HBA1 promoter in K562. Interactions associated with both bins
spanning HBA1 promoter are shown. The left part of each Manhattan plot is shortened because this region is towards the beginning of the chromosome.
Blue diamonds are significant interactions, red stars are significant interactions that overlap a 5C interaction and purple diamonds are pairs overlapping a
5C interaction but not significant. Yellow dots are predictions for pairs that are not measured in K562. Gray dots denote pairs that are measured but are not
significant. Source data for a and c are provided as a Source Data file.
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such as considering different weighting strategies will be an
important direction of future work.

A second issue we considered was determining the most
important genomic datasets for predicting contact counts. Our
predictive framework recapitulated known players of long-range
gene regulation such as CTCF and cohesin36, together with
additional components of the transcription machinery such as
chromatin marks and general transcription factors, several of
which have not been thoroughly characterized in the context of
long-range interactions. We examined the importance of these
features globally for all pairs, for sets of pairs, and for individual
pairs. Our analysis showed that in addition to CTCF, elongation
and repressive marks can also be important for predicting counts.
The importance of elongation marks such as H3K36me3 in
predicting contact count is consistent with existing work9,37,
which showed that H3K36me3 and elongation-related signals are
enriched in regions participating in long-range interactions9, and
higher-order genome organization37. The identification of
repressive marks such as H3K27me3 could be explained by their
association in large-scale transcriptional units such as compart-
ments11, TADs12 and intra-TAD loops38, and the specific pairs
with these repressive marks could be specifically transcriptionally
silenced or be in a poised state11. Finally, we determined that a
total of eight datasets, including cohesin, histone marks and
accessibility should be sufficient to predict interaction counts of
comparable performance as the full set of 14 datasets. These
results should be informative for feasibly generating models and
predictions in new cell lines and cell types.

A third important issue in the count prediction problem is
feature representation of a pair of genomic loci. We studied dif-
ferent ways of modeling pairwise information and found that
incorporating the signal between the interacting regions (WIN-
DOW) is important for generalization to new chromosomes and
cell lines. Our results are consistent with the finding of Whalen
et al.15, who showed that the WINDOW features were informa-
tive in the classification setting. Furthermore, integrating reg-
ulatory genomic datasets from other cell lines as features
(MULTI-CELL) can further improve performance in a cross-
chromosome or cell line setting, likely because it can capture
additional variation in the Hi-C interaction profile in new cell
lines. However, the MULTI-CELL features might be difficult to
generate due to unavailability of data in other cell lines and might
be more computationally intensive to train models. The WIN-
DOW features provide a good balance between performance and
computational resources needed to train a model.

We evaluated the predictions from HiC-Reg using different
validation metrics, globally using measurements from com-
plementary assays, as well as, at specific loci that have been stu-
died in the literature through high-quality, albeit low-throughput
experiments. We demonstrated the utility of HiC-Reg in studying
the long-range regulatory landscape of two loci, including the
well-studied HBA1 locus, as well as a relatively less studied locus,
PAPPA. Our analysis of the PAPPA locus provided support of
long-range regulation of PAPPA, originally identified in rat, in a
relevant human cell line. Compared to a classification-based
approach, our HiC-Reg predictions have greater sensitivity and
are able to rank interactions better (Supplementary Fig. 26).

HiC-Reg exploits the widely available chromatin mark signals
that are experimentally easier to measure compared to the Hi-C
experiment. HiC-Reg however relies on the availability of these
marks in new contexts, which may not always be available. Sev-
eral groups have started to explore imputation strategies of
chromatin marks39,40. An important direction of future work
would be to examine how HiC-Reg performs with imputed marks
as this would greatly increase the impact of a predictive modeling
framework such as HiC-Reg. Another direction of future work

would be to examine high-throughput contact counts from other
types of Hi-C experiments, for example, Capture-Hi-C9, and test
if integrating data from multiple platforms can improve the
performance of the regression model.

In summary, we have developed a regression-based framework
to predict interactions between pairs of regions across multiple
cell lines by integrating published Hi-C datasets with one-
dimensional regulatory genomic datasets. As additional chro-
matin mark signals and Hi-C data become available, our method
can take advantage of these datasets to learn better predictive
models. This can be helpful to systematically link genes to
enhancers, as well as to interpret regulatory variants across
diverse cell types and diseases.

Methods
Random Forests regression model in HiC-Reg. HiC-Reg is based on a regression
model to predict contact counts measured in a Hi-C experiment using features
derived from various regulatory genomic datasets (e.g., ChIP-seq datasets for
histone modifications, transcription factor occupancies, Fig. 1). HiC-Reg uses
Random Forests as its main predictive algorithm. Random Forests are a powerful
tree ensemble learning approach that have been shown to have very good gen-
eralization performance41, and have been applied to a variety of predictive pro-
blems in gene regulation42–44. The Random Forests model is learned using the
bagging algorithm with random feature selection from Brieman et al.41. Each tree
in our Random Forests is a regression tree, trained on a bootstrap sample of the
training set. To learn the tree, we start with all examples in the bootstrap sample at
the root node. Next, for each leaf node that can be split, we randomly selected one
third of the features and searched for the best split for each feature. We split a node
into two children nodes based on the feature and a threshold value for the feature.
The quality of the split is based on the difference in prediction error of training
examples before and after the split. We trained Random Forests on the different
feature encodings and Hi-C SQRTVC normalized contact counts downloaded from
Rao et al.20. However, HiC-Reg can be used on datasets generated using other
normalization schemes (see Section Testing HiC-Reg at multiple normalizations
and resolutions). We experimented with different number of trees (Supplementary
Fig. 1D) and found that beyond 20 trees there was no significant improvement in
performance. Hence we performed all subsequent experiments with 20 trees. We
compared the Random Forests regression model to a linear regression model using
the different feature encodings of a pair, namely, WINDOW, PAIR-CONCAT,
MULTI-CELL (See Feature extraction and representation). We found that the non-
linear regression model based on Random Forests performs significantly better
than a linear regression approach (Supplementary Fig. 1A–C). We next describe
the training and test generation and different feature representations of a pair of
regions.

Generation of training and test sets. To generate training and test datasets for
our regression models, we first binned each chromosome into 5 kb non-
overlapping regions. We randomized the regions and split them into five sets. Each
time, we select one of the five sets as the test set of regions and the remaining four
as training, repeating this for all five sets of regions. Within each training or test set
of regions we generate all pairs of interactions that are within a 1MB radius. As the
Hi-C matrix is symmetric, we need to only predict the upper triangle of the matrix
and hence our pairs are not redundant. In each pair, the region with the smaller
coordinate is referred to as the R1 region and the region with the larger coordinate
as the R2 region. We conducted three different types experiments to evaluate the
performance of HiC-Reg: (i) same cell line, same chromosome cross-validation
(CV), (ii) same cell line cross chromosome comparison, (iii) different cell line same
chromosome comparison.

For the same cell line same chromosome setting, HiC-Reg was trained and
tested using fivefold cross-validation using training and test pairs generated as
described above. In each fold, we trained Random Forests regression models on
four folds, and predict contact counts for the left-out fold. We concatenated
predictions from five folds and assessed performance using distance-stratified
Pearson’s correlation of true and predicted counts. As each training/test example is
a pair of regions, we need to consider two types of examples: those that share a
region with the training data (easy examples) and those that do not share a region
with the training data (hard examples). Our same cell line same chromosome
cross-validation results are generated using hard pairs only. The cross-validation
experiments were done in all autosomal chromosomes.

For the same cell line cross chromosome setting, we used the five Random
Forests regression models trained on each fold from the training chromosome to
predict contact counts for all pairs in a test chromosome. Each pair in the test
chromosome had five predictions and we took the average of these predictions as
the final predicted count. We note that in this setting, all test pairs are hard. Cross-
chromosome experiments were done on five chromosomes, 9, 11, 14, 17, and 19.

For different cell line same chromosome setting, we again used the Random
Forests regression models trained on the training data from each fold in one cell
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line and generated predictions for all pairs in the test cell line. Next, we took the
average of these predictions as the final predicted count. When using MULTI-
CELL features, we excluded the features derived from the regulatory signals
measured in the test cell line. In this setting as well, all test pairs are hard pairs. Our
ensemble approach took a further average of the predictions from all four training
cell lines as the predictions in a test cell line. We made cross-cell line predictions in
five chromosomes: 9, 16, 14, 17, and 19. Cross-cell predictions from chromosomes
14, 17, and 19 were examined using enrichment for ChIA-PET interactions and
TAD recovery. Cross-cell line predictions in chromosomes 9 and 16 were used for
analyzing the interaction profile for the PAPPA and HBA1 loci.

Feature extraction and representation. To extract features for HiC-Reg’s
regression framework, we used datasets from the ENCODE project for five cell
lines: K562, Gm12878, Huvec, Nhek, and Hmec45, learning a separate model for
each cell line. We selected 14 datasets that were measured in all five cell lines. These
14 datasets included ChIP-seq datasets for ten histone marks and CTCF, DNase I-
seq and DNase I-seq-derived motifs of RAD21 and TBP, which we had previously
found to be helpful for predicting enhancer-promoter interactions in a classifica-
tion setting14. A ChIP-seq signal is represented as the average read count aggre-
gated into a 5 kb non-overlapping bin. We obtained the raw fastq files from the
ENCODE consortium45, aligned reads to the human hg19 assembly using bow-
tie246, retrieved reads aligned to a locus using SAMtools47 and applied BEDTools48

to obtain a base pair level read count. We next aggregated the read counts of each
base pair in a 5 kb region. Next, we normalized aggregated signal by sequencing
depth and collapsed replicates by taking the median. As TBP and RAD21 ChIP-seq
data are not available in Huvec, Nhek and Hmec cell lines, we predicted the
binding sites using PIQ49 on the DNase I data and used the sum of purity scores for
all motifs mapped to the same 5 kb bin as the signal value. We performed a simple
depth normalization on the counts to enable comparison across cell lines. The
depth normalization does not affect the overall performance based on the Area
under Pearson’s correlation curve, but could affect evaluation metrics such as
distance-stratified mean-square error if they were used to compare different pre-
dictions. This could be particularly an issue for cross-cell line predictions that
simply transfers counts (one of our baseline models).

We represented features of a region as a 14-dimensional feature vector, each
dimension corresponding to one of the 14 genome-wide datasets (Fig. 1). To
generate a feature vector for a pair of regions, we used different strategies: PAIR-
CONCAT, WINDOW, and MULTI-CELL. In the PAIR-CONCAT case, we
concatenated the 14-dimensional feature vectors of the two regions to obtain a
feature vector of size 28. In the WINDOW case, we concatenated the 14-
dimensional feature vectors of the two regions together with the feature vectors of
the intervening region between the two regions to obtain a feature vector of size 42.
We call this the WINDOW feature following Whalen et al.15. The feature with the
intervening region is a mean signal value of the feature in the region. In the
MULTI-CELL case, we concatenated the 42-dimensional feature vectors of the two
regions from all five cell lines to obtain a merged feature vector of size 210. Finally,
for all these feature representations, we included genomic distance between the two
regions of a pair as an additional feature.

We benchmarked HiC-Reg on different datasets from different cell lines. The
runtime and memory usage of HiC-Reg greatly depends upon the number of
features and the depth of the data (Supplementary Data 1). For most practical
applications of HiC-Reg, we believe the WINDOW features are most relevant. On
average, HiC-Reg needs between 2 and 6 GB of memory and 2–6 min to train a tree
with �2–4 million pairs using the WINDOW features. The memory and run time
are higher for MUTLI-CELL features, which is expected as the number of features
are roughly five times more.

Identification of a minimal dataset for training HiC-Reg. We applied a two-step
approach to identify the fewest number of datasets needed to train HiC-Reg. Our
first step used Multi-task Group-LASSO (MTG-LASSO) on all five cell lines
simultaneously to select features predictive of contact counts in all five cell lines.
Our second step used a greedy approach, based on Random Forests (RF) to
iteratively refine the feature set selected by MTG-LASSO.

The MTG-LASSO approach is a regularized regression approach that is
applicable to a problem with multiple predictive tasks. In our problem setting, the
different tasks are different cell lines. The objective function for MTG-LASSO is
defined as:

min
W

1
2

XK
c¼1

jjXcWð:; cÞ � Ycjj
2
2 þ λjjWjjl1=l2 ð1Þ

Here, the first term is the sum of the least squares loss for cell line c added across all
cell lines. Wð:; cÞ is the column of regression weights for the cth cell line and W is
the n ´K matrix of regression weights across K cell lines. The second term is the
Group LASSO norm penalty, defined as jjWjjl1=l2 ¼

P
f jjWðf ; :Þjj2, where f

indexes different features. This enables the selection of a small number of groups
(according to the L1 norm) and encourages smoothness among the weights within
each group (according to the L2 norm). In our setting each group is one feature
corresponding to the row of W. The parameter λ controls the tradeoff between

the loss and the regularization term. MTG-LASSO selects or deselects an entire
group (rows), and hence selects the same feature for all cell lines. We used the
implementation of this regression framework in the Sparse Learning with Efficient
Projections package for MATLAB (SLEP v4.1, https://github.com/jiayuzhou/SLEP).

To perform feature selection with MTG-LASSO, we used the WINDOW feature
set for each of the five cell lines for chromosome 17. We considered a range of
regularization parameters from λ= 0.01 to λ= 1 and conducted fivefolds cross-
validation for each value of λ. Beyond λ ¼ 0:2 only Distance is selected as feature,
hence we set the upper limit to be λ ¼ 0:2. We computed the distance-stratified
Pearson’s correlation curve for the test set at each λ and the area under the curve
(AUC) to assess the overall predictive performance. The model at each λ included
features that were identified in all folds. Based on the AUC, we set λ ¼ 0:04, which
resulted in seven datasets (CTCF, Distance, Dnase, H3k9me3, H4k20me1, RAD21,
TBP) and the AUC did not improve substantially at a lower λ (more features). We
started with this feature set as the initial set that we next refined using our greedy
feature refinement approach.

The greedy feature refinement uses Random Forests as the regression model
and works as follows. Starting with an initial set of features and one of the folds for
training and testing, we train a Random Forests model on the training data and
generate predictions for the test dataset. For each subsequent iteration, we
randomly pick between adding or removing a feature, retrain the Random Forests
model on the training data considering every candidate feature for addition (or
removal) and select the best feature based on the change in prediction error on the
test set. We add (or remove) the feature if there is gain in test error performance
and do nothing if there is no feature with an improvement in test error. We repeat
this procedure until a max number of iterations have been executed or the error
does not change substantially. After convergence, we tabulate the features selected.
We repeat this entire procedure for all five folds. As this process is compute
intensive, we subsample 10% of the training data so that the pairs retain their
distance distribution and select a feature set. We repeat the training data
subsampling ten times for each fold resulting in a total of 50 feature sets. Finally,
we rank a feature based on the fraction of times (out of 50) it is selected
(Supplementary Fig. 17A). We repeat this for all five cell lines, rank the features
based on their average selection frequency and select the top six or top eight
datasets. The cross-validation performance for the full feature set and the top
features are shown in Supplementary Fig. 17B. However, because the test set is used
to do feature selection, these performance numbers are likely over-estimates. Hence
we further assess the performance of the different feature sets in cross-chromosome
(Supplementary Fig. 18) and cross-cell line settings (Supplementary Fig. 21).

Testing HiC-Reg at multiple normalizations and resolutions. To examine the
impact of different normalization methods on learning regression models for Hi-C
data, we trained HiC-Reg models using input counts from different normalization
methods: Knight-Ruiz matrix balancing (KR), Iterative Correction and Eigen
vector decomposition (ICE), and Square Root Vanilla Coverage (SQRTVC). The
normalized counts using the KR and SQRTVC methods are downloaded from the
Rao et al. paper20. The ICE normalization was performed on the raw Hi-C data
using the ICE algorithm implementation in the HiC-Pro package50. The perfor-
mance of HiC-Reg under different normalization methods is very similar for the
cross-validation experiments within the same chromosome for all five cells (Sup-
plementary Fig. 27). Next, we performed cross-chromosome experiments in two
cell lines: Gm12878 and K562. The performance of HiC-Reg using counts from KR
and ICE are very similar and slightly worse than using SQRTVC in Gm12878
(Supplementary Fig. 28) and slightly better for some chromosomes in K562
(Supplementary Fig. 29). Finally, we also compared performance in a cross cell line
setting and see that the AUC values of KR and ICE normalization are slightly better
than SQRTVC, but overall HiC-Reg performs comparably well when used with
different normalization methods (Supplementary Figs. 30 and 31). Thus, the usage
of different normalization methods does not impact the overall performance of our
Random Forests models.

In parallel, we examined HiC-Reg model training on data generated at different
resolutions: 5 kb, 10 kb, 25 kb, and 50 kb in selected cell lines of varying depth
(Gm12878, Huvec and Hmec), and different chromsomes (chromosome 14 and
17). As expected, the hardest task is to learn models at the highest resolution (5 kb),
and the CV performance gets better with decreasing resolution (Supplementary
Fig. 32A). We also asked if a model trained on a higher resolution can be used to
predict counts at a lower resolution (e.g., from 5 kb bins to 10 kb bins,
Supplementary Fig. 32B, C). Predictions between two regions of size 10 kb are
made by summing the predicted counts from the corresponding 2-by-2 matrix of
the constituent 5 kb regions. Similarly predictions at 25 kb are from the sum of the
predicted counts of a 5-by-5 matrix and predictions at 50 kb are the sum from a 10-
by-10 matrix of predicted Hi-C matrices of 5 kb regions. Interestingly, the
performance of aggregated counts from the 5 kb bins to lower resolution bins is
better than predictions using models trained at the lower resolution. This is
especially striking for the cross-chromosome performance (Supplementary
Fig. 32B, C), where we trained a model on one chromosome and tested
performance on a different chromosome. Hence a model trained at a high
resolution can predict counts at a lower resolution, however the converse is likely
not true.
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Calling significant interactions on HiC-Reg predictions. The output of HiC-Reg
can be analyzed using a peak-calling method such as Fit-Hi-C21. Fit-Hi-C uses
spline models to estimate expected contact probability at a given distance. The
input to Fit-Hi-C is a raw count interaction file and an optional bias file calculated
by the ICE method51. Fit-Hi-C estimates the statistical significance of interactions
using a Binomial distribution and corrects for multiple testing using the
Benjamini–Hochberg method and outputs the p-value and corrected q-value for
each pair of interactions. We adopted the two-phase spline fitting procedure and
used a q-value< 0.05 to define significant pairs. As our predictions are based on
normalized contact counts, we directly used our predicted counts as input for Fit-
Hi-C without a bias file. For the CV-based predictions for a cell line, we first
concatenated the predictions for measured pairs across all chromosomes and
conducted Fit-Hi-C analysis on these pairs. We applied the same procedure on true
counts to find significant pairs. When generating significant interactions in a cross-
cell line setting, we applied Fit-Hi-C in a per chromosome manner as we did not
have predictions for all chromosomes. As Fit-Hi-C is recommended to be applied
with ICE normalized matrices, and our predicted interactions produce the analog
of SQRTVC normalized counts, we compared Fit-Hi-C outputs to those when
applied to ICE normalized true matrices. We performed these comparisons both
using the significant interactions defined by a q-value threshold (q < 0:05, Sup-
plementary Table 5), as well as based on comparing the top 1, 5, and 10% inter-
actions (Supplementary Table 6). The significant interactions identified by Fit-Hi-C
on the SQRTVC and ICE normalized matrices have a significant overlap (Sup-
plementary Tables 5 and 6). Controlling for the number of interactions indicates a
good Jaccard index score (mean 0.44 ± 0.1 (standard deviation)) across different
cell lines and number of pairs considered (Supplementary Table 6).

We also verified if a different interaction caller would affect our results by
implementing the binomial test-based interaction caller from Duan et al.29

(Supplementary Tables 1 and 2). Briefly, all pairs of intra-chromosomal regions are
first stratified into different distance bins. A Binomial distribution-based p-value is
calculated for each distance bin i as follows. Let Mi denote the total number of
intra-chromosomal pairs measured at distance bin i, that is, have a non-zero count.
Assuming that the probability of observing any particular interaction at any given
distance is uniform, the probability of observing an interaction is mi ¼ 1

Mi
. Let ni

denote the total number of observed intra-chromosomal counts at distance bin i.
For any given pair of regions with read count k, the p-value is the probability of
observing k or more counts and is calculated as follows:

p-value ¼
Xni
j¼k

ni
j

� �
mj

ið1�miÞ
ni�j ð2Þ

We find significant overlap between interactions called by Fit-Hi-C and the Duan
et al. approach29, using q-value-based threshold (Supplementary Table 1), as well
as when comparing the top 1, 5, and 10% interactions (Supplementary Table 2).

Recovering high-confidence manually curated interactions. To test if HiC-Reg
can recover well-characterized long-range interactions, we focused on significant
interactions associated with several well-studied loci: (a) the HBA1 promoter, (2)
PAPPA promoter, (3) enhancers involved in enhancer-gene interactions validated
with CRISPR33. The HBA1 promoter spans two 5 kb bins on chromosome 16, the
PAPPA promoter spans two 5 kb bins on chromosome 9, while the enhancers span
between 2 and 9 bins. We generated predictions for all pairs spanning the 1MB
radius around the bins overlapping our locus of interest. For the HBA1, which is
situated at the beginning of chromosome 16, we had 225 kb on the left of the gene.
In parallel, we applied Fit-Hi-C to the true and predicted counts for each chro-
mosome to find significant interactions, where predicted counts were generated
from CV models, as well as models trained in the cross-cell line setting. To enable
comparison between true and predicted counts, we restricted Fit-Hi-C only to pairs
that had measured counts and therefore have q-values associated with only these
pairs. Next, we extracted significant interactions associated with the 5 kb bins
containing the locus of interest and the 1MB radius around the promoter. For
HBA1, we checked if these significant interactions overlap with interactions mea-
sured from 5C experiments28. For PAPPA, we checked if the significant interac-
tions overlap with the TCE or MCS5C genomic locus on one end, and the PAPPA
gene on the other end. For the enhancers from Moorthy et al.33, we extracted
significant interactions associated with the 5 kb bins containing the enhancer.
Finally, we checked to see if the other end of a significant interaction overlapped
the 5 kb bin containing the promoter of the target gene of interest.

Evaluation metrics. We used different metrics for assessing the quality of our
predictions for contact counts. The distance-stratified Pearson’s correlation was
used to directly measure the accuracy of the predicted counts. The other metrics
were used to assess the quality of results after further downstream analysis of HiC-
Reg predictions and compare them to similar results obtained from actual mea-
sured data. In particular, enrichment of CTCF bidirectional motifs and ChIA-PET
datasets enabled us to study the quality of significant interactions identified from
HiC-Reg predictions, while the TAD similarity enabled us to study the ability of
HiC-Reg predictions to capture structural units of organization.

Distance-stratified Pearson’s correlation: to assess the quality of predicted counts
from HiC-Reg, we used Pearson’s correlation of predicted contact counts and true

contact counts as a function of genomic distance. We grouped pairs of regions
based on their genomic distance and calculated the Pearson’s correlation of
predicted and true contact counts for pairs that fall into each distance bin. We
considered all pairs upto a distance of 1 MB in distance bin intervals of 5 kb. To
easily compare the performance between different methods, chromosomes and cell
lines, we summarized the distance-stratified Pearson’s correlation curve into the
area under the curve (AUC) using the MATLAB trapz function as trapzðfÞ,
where f is an n-dimensional vector, each entry fðiÞ specifying the Pearson’s
correlation between true and expected counts for distance bin i. This version of
trapz function uses the Trapezoidal rule with unit spacing between points to
calculate the area under the curve specified by f as follows:

AUC ¼ 1
n� 1

trapzðfÞ ¼ 1
2ðn� 1Þ

Xn�1

i¼1

ðfðiÞ þ fðiþ 1ÞÞ ð3Þ

Here, i indicates the distance bin and n is the number of distance bins. We divide
the output of trapz by the number of intervals across the distance bins, n� 1 to
get a number between –1 and 1. The higher the AUC, the better the performance.

Enrichment of bidirectional CTCF motifs: to obtain the coordinates and
orientation of the CTCF motifs, we applied the PIQ tool49 on cell line-specific
DNase I-seq fastq files from ENCODE (http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/). PIQ gives a score
from 0.5 to 1, which is proportional to the true occurrence of the motif. We
selected a threshold of 0.9 to identify high-confidence CTCF motifs. We use R1 to
denote the region with the smaller starting coordinate, and R2 to denote the region
with the larger starting coordinate. Following Rao et al.20, an interaction is labeled
as having a convergent CTCF orientation if R1 contains CTCF motifs on the
forward strand (+ orientation) and R2 contains CTCF motifs on the reverse strand
(– orientation). We only focus on pairs with at least one CTCF motif mapped to R1
and at least one CTCF motif mapped to R2. A pair can have one of the four
configurations: (i) (+ +) configuration where both R1 and R2 have the motifs in
the + orientation, (ii) (+ –) configuration where R1 has CTCF motifs in +
orientation and R2 has CTCF motifs in the – orientation, (iii) (– +) configuration,
where R1 has motifs in the – orientation and R2 has motifs in the + orientation,
(iv) (– –), where both R1 and R2 have motifs in the – orientation. We counted the
total number of pairs with each of these configurations and compared this with the
number of significant pairs called by Fit-Hi-C using the Hypergeometric test and
fold enrichment. Briefly, assume we are testing the enrichment for the (+ –)
configuration. Let the total number of possible pairs in the background be S. Let k
be the total number of significant interactions with any of the configurations of
CTCF motifs, let m to be the total number of interactions with the (+ –)
configuration of CTCF motifs and q be the number of significant interactions
with the (+ –) configuration of CTCF motifs. Using Hypergeometric test, we test
the probability of observing q or more interactions out of k interactions to have the
(+ –) configuration, given that there are m out of S total interactions that have the
(+ –) configuration. Fold enrichment is computed as q

k=
m
S and must be >1 to be

considered as significant enrichment over background.
Comparing HiC-Reg interactions with published ChIA-PET data: we

downloaded ten published ChIA-PET datasets: PolII in HeLa and K562, and CTCF
in the K562 cell line22, and seven ChIA-PET datasets from Heidari et al.23, which
included RNA PolII, CTCF, RAD21, and multiple chromatin marks in K562 and
Gm12878 cell lines. Our metric for evaluating these genome-wide maps is fold
enrichment, which assesses the fraction of significant interactions identified from
HiC-Reg that overlapped with experimentally detected measurements, compared to
the fraction of interactions expected by random chance. We mapped ChIA-PET
interactions onto the pairs of regions used in HiC-Reg by requiring one region of
an interaction from the ChIA-PET dataset to overlap with one region of a HiC-Reg
pair (e.g., R1), and the other ChIA-PET region to map to the second region (e.g.,

R2). Fold enrichment is defined as n1=n2
m1=m2

, where n1 is the number of significant

interactions from HiC-Reg that overlap with an interaction in the ChIA-PET
dataset, n2 is the total number of HiC-Reg significant interactions, m1 is the total
number of interactions in the ChIA-PET dataset that can be mapped to any of the
HiC-Reg pairs, and m2 is the total number of possible pairs in the universe. The
observed overlap fraction of interactions is n1=n2 and the expected overlap fraction
of interactions is m1=m2. A fold enrichment >1 is needed in order to be considered
significant.

Assessing TADs identified from true and predicted counts: to identify
topologically associating domains (TADs), we applied the directionality index (DI)
method described in Dixon et al.26. The method is based on Hidden Markov Model
(HMM) segmentation of the DI. The DI is a score for a genomic region to measure
the bias in the directionality of interactions for that region as measured in a Hi-C
dataset. It is determined by the difference in the number of reads between the
region and a genomic window (e.g., 2 MB) upstream of the region and the number
of reads between the region and a window downstream of the region. The window
is user-defined. The DI score is segmented into three states of upstream,
downstream or no bias. A TAD is then defined by a contiguous stretch of
downstream biased states.

We transformed our upper triangle predicted matrix at 5 kb resolution into a
symmetric interaction matrix and gave this to DI as input. We used the default
parameters of the package with a window size of 2Mb for defining the
Directionality Index. For comparison, we applied the same procedure to the true
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count matrices to identify TADs. We compared the similarity of TADs identified
from the HiC-Reg predicted counts and true counts for each chromosome using a
Jaccard coefficient-based score. The Jaccard coefficient measures the overlap
between two sets, A and B and is defined as the ratio of the size of the intersection

to the size of the union, jA\Bj
jA∪Bj. The Jaccard coefficient ranges from 0 to 1, with 1

denoting complete overlap. We matched a TAD found in the true count data to a
TAD found in the predicted counts based on the highest Jaccard coefficient. The
Jaccard coefficient for each match was averaged across all TADs from the true
counts. We repeated the matching procedure for each TAD from the predicted
counts to a TAD in the true counts and averaged the Jaccard coefficient across all
TADs from the predicted counts. The overall similarity between TADs from the
true and predicted counts was then the average of these two averages.

Feature analysis for single feature. To assess the importance of individual fea-
tures we used the Out of Bag (OOB) Variable Importance measure41, which
computes importance of a feature based on the change in error on Out of Bag
example pairs when the feature values are permuted. We used MATLAB’s
implementation of this measure. In addition we devised another importance
measure, feature usage count, which counted the number of times a particular
feature was used to predict the count for an example pair when it is part of the test
set. Briefly, for each test example i and each tree t in the ensemble, let ntiðf Þ denote
the number of times feature f is used on the path from the root to the leaf in tree t
for example i. The overall importance of feature f is

P
t2T

P
i2D ntiðf Þ, where T

stands for the ensemble of regression trees and D is the dataset of examples. We
computed these counts on all test example pairs, as well as examples with the top
5% lowest errors. The feature importances were very similar (Supplementary Figs. 9
and 10). A key difference between MATLAB’s OOB importance and our feature
usage count importance is that the OOB is computed on left out examples from the
training set, which includes the easy examples. The feature usage count is com-
puted only on the hard pairs, which do not share a region with the training pairs.

Feature analysis for pairwise feature. To assess the importance of pairs of fea-
tures, we considered all pairs of features that occur on the tree path from root to a
leaf for a test example (similar to above). This approach is similar to the Foresight
method52, which counts the number of times a pair of features co-occur on the
path from the root to the leaf. The main difference between our approach and that
of Foresight is that we estimate these counts on the test examples, while Foresight
estimates these on the examples in each leaf node in the tree identified during
training. By using the counts on the test examples, our approach is less prone to
overfitting. As the feature rankings of individual features are similar when using all
pairs and pairs with the top (smallest) 5% errors, we computed these counts only
for the top 5% error pairs.

NMF for identifying feature sets associated with pair sets. We developed a
novel feature analysis method to identify feature sets associated with sets of
region pairs based on NMF. The input to this approach is a n ´m matrix X with n
rows corresponding to test pairs and m columns corresponding to pairs of features
and each entry Xij denotes the number of times feature pair j is used to make a
prediction for pair i. NMF decomposes the matrix X into two lower rank non-
negative matrices U and V, where X ¼ UV, U is n ´ k, V is k ´m, and k is the
rank. The U and V matrices are chosen to minimize the squared error jjX � UVjj22
of the lower dimensional reconstruction. We use MATLAB’s non-negative matrix
factorization function nnmf, with k ¼ 5 factors to perform this factorization,
which uses the alternating least squares algorithm to estimate U and V. The U and
V matrices provide a low-dimensional representation of the interaction pairs and
feature pairs respectively. For ease of interpretation, we normalized the U matrix to
make each row sum to unity (denoted as U) and normalized the V matrix to make
each column sum to unity (denoted as V). To identify sets of features associated
with sets of examples, we used the rows and columns of the U and V matrices.
Specifically, we assigned example i to cluster c if c ¼ argmaxc0Uði; c0Þ. Similarly a
feature pair j is assigned to cluster c if c ¼ argmaxc0Vðc0; jÞ. The rows of U and
columns of V have one-to-one correspondence, thus providing a natural bi-
clustering output. We were able to successfully factor the matrix X showing there
are groups of pairs clearly associated with groups of feature pairs. To further
interpret these feature pairs, we visualized the pairwise interactions as networks in
Cytoscape53, with node size proportional to the number of feature pairs they are
associated with and edge weights corresponding to the strength of the association.
The NMF-based feature analysis enabled us to extract groups of examples asso-
ciated with sets of feature pairs.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Hi-C SQRTVC normalized contact counts were downloaded from Rao et al.20, Gene
Expression Omnibus dataset GSE63525. ChIP-seq datasets of histone marks in five cell
lines were downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeBroadHistone/. DNase I-seq datasets in five cell lines were
downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeOpenChromDnase/. The source data underlying Figs. 5a–c and 7a–c are
provided as a Source Data file. The source data underlying Figs. 2, 3, 6, 7, and 8a, c and
Supplementary Figs. 1–10, 19, 20, 22, 24–26 are provided at https://doi.org/10.5281/
zenodo.3525514 and additionally described in the Source Data File. Examples of trained
models and predictions for different experiments performed are provided in https://doi.
org/10.5281/zenodo.3525432 and https://doi.org/10.5281/zenodo.3525510.

Code availability
The HiC-Reg code and associated MATLAB and R scripts to compute various validation
metrics are available at https://github.com/Roy-lab/HiC-Reg.
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