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Abstract: The implications of the microbiome on Coronavirus disease 2019 (COVID-19) prognosis has
not been thoroughly studied. In this study we aimed to characterize the lung and blood microbiome
and their implication on COVID-19 prognosis through analysis of peripheral blood mononuclear
cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage fluid (BALF) samples. In
all three tissue types, we found panels of microbes differentially abundant between COVID-19 and
normal samples correlated to immune dysregulation and upregulation of inflammatory pathways,
including key cytokine pathways such as interleukin (IL)-2, 3, 5-10 and 23 signaling pathways and
downregulation of anti-inflammatory pathways including IL-4 signaling. In the PBMC samples,
six microbes were correlated with worse COVID-19 severity, and one microbe was correlated with
improved COVID-19 severity. Collectively, our findings contribute to the understanding of the human
microbiome and suggest interplay between our identified microbes and key inflammatory pathways
which may be leveraged in the development of immune therapies for treating COVID-19 patients.

Keywords: microbiome; lung microbiota; blood microbiota; SARS-CoV-2; COVID-19; coronavirus; in-
flammation

1. Introduction

As of 19 March 2021, 122,044,376 people have been infected and 2,695,014 have
died from coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. Symptoms and severity of COVID-19 vary
drastically. The most common symptoms are fever, cough, fatigue, headache, myalgias,
and diarrhea. The severity of COVID-19 symptoms can range from very mild to severe [2,3].
Around one in six infected individuals present with no symptoms at all [4]. Approximately
10% of people infected with COVID-19 experience symptoms’ that persist beyond three
weeks in what is known as “long haul COVID-19” [5]. The cause of the large variance
in COVID-19 severity and length is not fully understood, and research into this topic is
of great importance to learn how to prevent long haul COVID-19 [6,7]. In more severe
cases of COVID-19, the innate immune system fails to stop viral replication of SARS-CoV-2,
leading to a substantial immune response from immune effector cells which has previously
been characterized by a large amount of cytokines in the body. This hyperinflammatory
condition manifested as a ‘cytokine storm’ is called COVID-19 ARDS, and this is one of the
most dangerous and potentially life-threatening events related to COVID-19 [8].
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The gut microbiome and lung microbiome have both been found previously to be
altered in COVID-19 patients, in addition to likely playing a role in explaining the variation
in critical COVID-19 response [9–11]. The lung microbiome has been shown to play
an important role in maintaining lung homeostasis and plays a role in prompting an
adequate immune response to pathogens, preventing a hyper-inflammatory response
via crosstalk between microbes and receptors on immune cells within the lungs, while
some microbes/microbiota compositions appear to prompt more inflammatory responses
to pathogens [11–14]. Previous study has found that severity of COVID-19 disease is
correlated with the predominance of opportunistic pathogens in the gut [10]. Building upon
this prior research, we wished to investigate the microbiome further by correlating microbe
abundance, both fungi and bacteria, to COVID-19 severity, immune cell abundances, and
inflammatory and immune-associated gene pathways, and investigate, in addition to the
lung microbiome, the effect the blood microbiome may have in modulating the immune
response to COVID-19. Thus, in this study we aimed to characterize the lung and blood
microbiome and their implication on COVID-19 prognosis through analysis of peripheral
blood mononuclear cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage
fluid (BALF) samples.

2. Materials and Methods

An overview of our methods is presented in Figure 1.

2.1. Data Acquisition

RNA-seq data of 17 PBMC normal samples and 17 PBMC COVID-19 samples were
downloaded from GEO (accession code GSE152418 https://www.ncbi.nlm.nih.gov/geo/
accessed 15 July 2020), 8 lung biopsy normal samples and 8 lung biopsy COVID-19 sam-
ples were downloaded from GEO (accession code GSE147507 https://www.ncbi.nlm.nih.
gov/geo/ accessed 15 July 2020), and 20 BALF normal samples and 8 BALF COVID-19
samples were downloaded from GSA (accession code HRA000143 https://bigd.big.ac.
cn/gsa-human/ accessed 15 July 2020) and 4 additional BALF COVID-19 samples were
downloaded from GSA (accession code CRA002390 https://bigd.big.ac.cn/gsa-human/
accessed 15 July 2020). Arunachalam et al. determined disease severity for PBMC samples
and classified patients as convalescent, moderate, severe, or ICU [15]. The dataset included
1 convalescent sample, 4 moderate samples, 8 severe samples, and 4 ICU samples.

2.2. Extraction of Microbial Reads

Pathoscope 2.0 (Boston University School of Medicine, Boston, MA, USA) was used to
separate the microbe-specific reads incorporated in the human reads of high-throughput
RNA-seq and align it to the reads in a target library, producing levels of microbe abundance
and individual taxonomic lineage [16]. This was done two times, once with a target library
containing reads of bacteria and once with a target library containing reads of fungus.
Microbes with total abundance less than the number of COVID-19 patients per tissue
type were excluded from analysis. The batch correction method ComBat was used to
adjust for batch effects when combining BALF data from the HRA000143 and CRA002390
datasets [17].

2.3. Differential Microbial Abundance between COVID19 and Normal Patients

The Kruskal-Wallis statistical test was used to determine differential abundance be-
tween COVID-19 samples and normal samples and correlations between microbe abundance
and disease severity (p < 0.05). For correlation between microbe abundance and disease
severity, ICU and Severe patients were grouped together into one group called Severe.

2.4. Correlation between Microbial Abundance and IA Gene Expression

All RNA-seq samples were aligned to human genome version GRCh38.p13 and its an-
notation from NCBI using STAR (Spliced Transcript Alignment to a Reference) (Cold Spring
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Harbor Laboratory, Cold Spring Harbor, New York, NY, USA) version 2.7.4 with sjdbOver-
hang set to optimize value of 99. Other parameters were left to default values [18]. We
used feature counts function from package Rsubread v2.0.1 (Subread Sequence Alignment
and Counting for R) (Olivia Newton-John Cancer Research Institute, Melbourne, Australia)
to obtain raw read count and the result was subsequently passed to EdgeR v3.28.1 (Walter
and Eliza Hall Institute of Medical Research, Parkville, Australia) for normalization using
TMM metrics. TMM normalization enables us to compare gene expression across samples.
The Kruskal-Wallis statistical test was used to correlate gene expression with COVID-19
status and to correlate microbe abundance to dysregulated immune associated (IA) genes.

2.5. Correlation between Microbial Abundance and Immune Cell Abundances

The CIBERSORTx software (Stanford University, Stanford, CA, USA) was used to de-
convolute RNA-sequencing data to estimate the infiltration levels of 22 immune cell types.
These immune cell types include the following: CD8 T-cells, CD4 naïve T-cells, CD4 mem-
ory resting T-cells, CD4 memory activated T-cells, follicular helper T-cells, regulatory T-cells,
gamma-delta T-cells, naïve B-cells, memory B-cells, plasma cells, M0-M2 macrophages,
resting dendritic cells, activated dendritic cells, resting NK cells, activated NK cells, mono-
cytes, resting mast cells, activated mast cells, eosinophils, and neutrophils [19]. We then
correlated microbe abundance with expression levels of the different immune cells using
the Kruskal-Wallis statistical test. (p < 0.05). Patients with lower or higher microbial read
counts than the median microbial read count of a particular microbe across all patients
were defined as “LOW” or “HIGH,” respectively.

2.6. GSEA (Correlation of Microbial Abundance and Covid Status to Canonical Pathways and
Immune-Associated Signatures)

We used Gene Set Enrichment Analysis (GSEA) version 4.1.0 (UCSD and Broad
Institute, San Diego and Cambridge, United States) to find gene enrichment related to
microbe abundance and covid status. Final best hit read numbers, scores that are used
by Pathoscope to represent numbers of microbe reads in RNA-seq numbers, are used
as numerical phenotype input. In separate runs, covid status was used as categorical
phenotype input. We manually selected immune related pathways from CP (canonical
pathways) and pooled the gene sets with C7 (immunologic signature gene sets) for gene set
input. We set the number of permutations to be 1000 and no collapse gene symbols. Metric
for ranking genes was set to Pearson. Everything else was left with default parameters.
Significantly enriched signatures were identified by a nominal p-value < 0.05 and ranked by
normalized enrichment score [20]. Genes involved in the three immunological signatures
correlated to the greatest number of differentially abundant microbes were input into
Cytoscape Reactome FIViz software version 3.7.2 to visualize the gene networks [21].

2.7. Contamination Correction Using Spearman’s Correlation

The abundance of individual microbes in each patient were plotted against total
microbe reads in the same patient separated by tissue type to determine if any microbe is a
likely contaminant. Best hit results from Pathoscope were used. If a scatterplot shows a
positive slope, it suggests that the microbe was biologically relevant. If there is a vertical
or near vertical slope and the counts of all the microbes are substantially above zero, then
the microbe is likely a contaminant. If there is a slope close to zero or less than zero, the
test is inconclusive. This reasoning follows from the assumption that similar amounts of
microbes will be present regardless of how many microbes are present in the tissue sample
if the microbe is an environmental contaminant.
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Figure 1. Schematic of analysis and workflow.

3. Results
3.1. Differential Microbial Abundance in COVID-19 Tissue and Normal Tissue

Using Pathoscope 2.0, we found 91 bacteria and 14 fungus differentially abundant in
lung biopsy samples, 13 bacteria and 9 fungus differentially abundant in PBMC samples,
and 12 bacteria and 57 fungus differentially abundant in BALF samples (Figure 2A–C).
Bacteroides fragilis, Thermoanaerobacterium thermosaccharolyticum DSM 571, and Escherichia
(E.) coli were the only bacteria and Tremella fuciformis and Aspergillus oryzae were the only
fungus found differentially abundant between COVID-19 samples and normal samples in
both BALF and PBMC tissues. There was no overlap in microbes found to be differentially
abundant in lung biopsy samples and BALF or PBMC samples.
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Figure 2. Differential abundance summary. Heatmaps showing normalized microbe abundance for COVID-19 samples vs.
normal samples for (A) PBMC, (B) BALF, and (C) lung biopsy.
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3.2. Immune Landscape of COVID-19 Patients

Most immunologic gene signatures correlated to COVID-19 status are of cells in
both the innate and adaptive immune systems such as macrophages, dendritic cells, mast
cells, T-cells, B-cells, and monocytes. Other results of significance include the following:
across PBMC samples, T cell receptor (TCR) signaling was downregulated in COVID-19
patients, immunological signatures characteristic of increased levels of pro-inflammatory
interleukins, such as IL-6, IL-8, and IL-12 were upregulated in COVID-19 patients and
anti-inflammatory interleukins, including IL-4 and IL-10, were downregulated in COVID-
19 patients (Figure 3C). We found plasma cells and memory B cells to be significantly
increased in COVID-19 patients and naive B cells, resting memory CD4 T cells, resting
natural killer (NK) cells, and Eosinophils significantly decreased in COVID-19 patients
(Figure 3E).

Across BALF samples, retinoic acid-inducible gene-I (RIG-I)-like receptor signal-
ing, transforming growth factor (TGF) β signaling, and TCR signaling were upregulated.
Similar interleukin dysregulation found in PBMC samples was found in BALF samples
(Figure 3A). We found activated mast cells, M1 macrophages, eosinophils, neutrophils
abundances were significantly increased in COVID-19 patients and T regulatory cells
(Tregs) M0 macrophages and activated dendritic cells abundance was significantly de-
creased in COVID-19 patients (Figure 3D).

Across lung biopsy samples, IL-4 and IL-10 signaling, TCR signaling, and the comple-
ment system pathway of the innate immune system were down regulated (Figure 3B). We
found follicular helper T cells, gamma delta T cells, naive CD4 T cells, activated NK cells,
and memory B cells significantly increased in COVID-19 patients and resting NK cells,
plasma cells, M0, M1, and M2 macrophages, memory CD4 T cells, CD8 T cells, naive B cells,
activated dendritic cells, and eosinophils significantly decreased in COVID-19 patients
(Figure 3D).

3.3. Microbes in Blood Are Correlated to Disease Severity

E. coli abundance, Bacillus sp. PL-12 abundance, Campylobacter hominis ATCC BAA-381
abundance, Pseudomonas sp. I-09 abundance, Thermoanaerobacter pseudethanolicus ATCC
33223 abundance, Thermoanaerobacterium thermosaccharolyticum DSM 571 abundance, and
Staphylococcus epidermis abundance were correlated with COVID-19 severity. Bacillus
subtilis subsp. subtilis str. 168 abundance was inversely correlated with COVID-19 severity
(Figure 4). Staphylococcus capitis abundance correlation to COVID-19 severity was not
significant. No significant correlation to age was found with these microbes.
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Genes up-regulated in CD8 T cells: ID3 [GeneID=3399] knockout versus wildtype
Genes down-regulated in B lymphocytes treated by anti IgM for 3h: wildtype versus MAP3K7 [GeneID=6885] knockout

Genes down-regulated in bone marrow-derived macrophages treated with IL4 [GeneID=3565]: wildtype versus PPARG [GeneID=5468] knockout
Genes down-regulated in bone marrow-derived macrophages with STAT6 [GeneID=6778] knockout treated with rosiglitazone [PubChem=77999]: control versus IL4 [GeneID=3565]

Genes up-regulated in comparison of dendritic cells (DC) stimulated with CpG DNA (TLR9 agonist) at 0.5 h versus those stimulated with CpG DNA (TLR9 agonist) at 24 h
Genes up-regulated in comparison of unstimulated CD8 T cells at 72 h versus CD8 T cells at 72 h after stimulation with IL12
Genes down-regulated in comparison of dendritic cells (DC) exposed to L. donovani versus DCs exposed to M. tuberculosis

Genes up-regulated in macrophages di�erentiated for 5 days in the presence of: IL4 [GeneID=3565] versus IL4 [GeneID=3565] and dexamethasone [PubChem=5743]
Genes down-regulated in comparison of polysome bound (translated) mRNA before and 16 h after LPS (TLR4 agonist) stimulation

Genes down-regulated in comparison of unstimulated macrophage cells versus macrophage cells stimulated with LPS (TLR4 agonist) for 240 min
Genes up-regulated in comparison of adult DN2 thymocytes versus fetal DN2 thymocytes

Genes down-regulated in the immature neuron cell line: control versus infected with western equine encephalitis viruss
KEGG RIG-I-like receptor signaling pathway

REACTOME In�uenza Infection
Genes up-regulated in the activated CD4 [GeneID=920] T cells (48h): control versus IL-12

Genes down-regulated in B lymphocytes: naïve versus B1
REACTOME MAPK6/MAPK4 signaling
Genes down-regulated in untreated double positive thymocytes: wildtype versus ELK1 and ELK4 [GeneID=2002;2005] knockout
Genes up-regulated in thymic: dendritic cells versus macrophages
Genes down-regulated in thymocytes: cortical versus medullary sources
KEGG TGF-beta signaling pathway
Genes down-regulated in macrophages with IL10 [GeneID=3586] knockout treated by LPS and IL10 [GeneID=3586]: 10 min versus 30 min
Genes down-regulated in the activated CD4 [GeneID=920] T cells (48h): IL-12 versus interferon alpha
Genes down-regulated in comparison of control dendritic cells (DC) at 24 h versus those stimulated with Gardiquimod (TLR7 agonist) at 24 h
Genes up-regulated in comparison of IgD+ B cells versus IgD- B cells

BIOCARTA T Cell Receptor Signaling Pathway
Genes up-regulated in macrophages di�erentiated for 5 days in the presence of: IL4 [GeneID=3565] versus IL4 [GeneID=3565] and dexamethasone [PubChem=5743]
Genes down-regulated in comparison of memory CD8 T cells versus e�ector CD8 T cells KLRG1 intermediate [GeneID=10219]
enes up-regulated in comparison of dendritic cells (DC) versus DCs exposed to M.tuberculosis
Genes up-regulated in comparison of dendritic cells (DC) stimulated with poly(I:C) (TLR3 agonist) at 16 h versus DC cells stimulated with Gardiquimod (TLR7 agonist) at 16 h
Genes up-regulated in B lymphocytes: B2 versus B1
Genes down-regulated in comparison of control dendritic cells (DC) at 0 h versus those stimulated with Gardiquimod (TLR7 agonist) at 0.5 h
Genes down-regulated in B lymphocytes treated by anti IgM for 24h: wildtype versus MAP3K7 [GeneID=6885] knockout
Genes up-regulated in CD4 [GeneID=920] T helper cells Th0: 10h versus 60h
Genes down-regulated in comparison of unstimulated NK cells versus those stimulated with IL2 [GeneID=3558] at 16 h
Genes down-regulated in comparison of neutrophils versus e�ector memory CD4 [GeneID=920] T cells
Genes down-regulated in comparison of naive B cell versus pre-germinal tonsil B cells
KEGG Systemic lupus erythematosus
Genes up-regulated in comparison of dendritic cells (DC) versus monocytes
Genes down-regulated in IKZF1 [GeneID=10320] knockout: lymphoid-primed multipotent progenitors versus granulo-monocyte progenitors
Genes up-regulated in comparison of Ig isotype switched memory B cells versus plasma cells
Genes down-regulated in cortical thymic epithelial cells (cTEC) versus thymic macrophages
Genes down-regulated in comparison of monocytes treated with anti-TREM1 [GeneID=54210] and 5000 ng/ml LPS (TLR4 agonist) versus untreated monocytes
PID IL2-mediated signaling events
Genes up-regulated in CD4 [GeneID=920]: naïve versus FOXP3+ [GeneID=50943] T reg
Genes up-regulated in comparison of Th2 cells versus Th17 cells
Genes down-regulated in monocytes (3h): untreated versus M. tuberculosis 19 kDa lipopeptide
Genes down-regulated in mature neuron cell line: control versus interferon alpha (6h)
Genes up-regulated in dendritic cells: CIITA [GeneID=4261] knockout versus I ab-/- mice
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Figure 3. Immune landscape background. Bar plots showing nominal enrichment score for GSEA pathways significantly
correlated to COVID-19 status for (A) BALF, (B) lung biopsy, and (C) PBMC samples. Stacked bar plots showing relative
immune cell abundances for (D) BALF, lung biopsy, and (E) PBMC samples.
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Figure 4. Correlation to disease severity. Boxplots of microbes significantly correlated to disease severity in PBMC samples.
All boxplots were produced using the Kruskal-Wallis test.
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3.4. Microbes from PBMC Samples Correlate to Immune Infiltration and to Dysregulation of
Immunological Signatures and Canonical Pathways

Across PBMC samples, all microbes correlated to disease severity also correlated to
immune dysregulation and pathways involved in inflammation. Bacillus subtilis subsp.
subtilis str. 168 was correlated to upregulation of TCR signaling, the ERK pathway, and
the antigen dependent B cell activation pathway; Bacillus sp. PL-12, Campylobacter hominis
ATCC BAA-381, Thermoanaerobacterium thermosaccharolyticum DSM 571, and Thermoaner-
obacter pseudethanolicus ATCC 33223 all correlated to upregulation of pathways involved
in increasing inflammation. Campylobacter hominis ATCC BAA-381 and Thermoanaerobac-
terium thermosaccharolyticum DSM 571 both correlated to upregulation of retinol metabolism
and retinoic acid biosynthesis, which both play key roles in regulating antiviral immune
response [22,23]. Staphylococcus epidermis correlated to dysregulation of various immuno-
logical signatures but interestingly not to any interleukin signaling pathways nor any
immune cell abundances. Gene pathways for immunological signatures each correlated to
the greatest number of dysregulated microbes in PBMC samples are visualized (Figure 5).
Bacillus sp. PL-12 and Thermoanerobacter pseudethanolicus ATCC 33223 both correlated to
upregulation of the aurora A pathway and Thermoanerobacter pseudethanolicus ATCC 33223
correlated to upregulation of the KEGG Asthma pathway (Figure 6A,B).

3.5. Microbes from BALF Samples Correlate to Immune Infiltration and to Dysregulation of
Immunological Signatures and Canonical Pathways

Across BALF samples, panels of GSEA and immune cell abundance correlated mi-
crobes were discovered. The most notable results include that Saccharomyces cerevisiae
YJM1444, Syncephalastrum monosporum var. Pluriproliferum, Candida parapsilosis, and Histo-
plasma capsulatum correlated to upregulation of TCR signaling, inflammatory interleukin
signaling, TGFβ signaling, interferon IFN α and IFNβ signaling, RIG-I-like receptor signal-
ing, and to dysregulation of immunological signatures (Figure 6A,B).

3.6. Microbes from Lung Biopsy Samples Correlate to Immune Infiltration and to Dysregulation of
Immunological Signatures and Canonical Pathways

Across lung biopsy samples, panels of GSEA and immune cell abundance correlated
microbes were identified. The most notable results include that Campylobacter ureolyticus,
fungal sp. JF54, Ochrobactrum anthropi, and uncultured beta proteobacterium correlated to up-
regulation of TCR activation, IFNα signaling, activation of the complement system, tumor
necrosis factor signaling, the P38MAPK pathway, the Toll like receptor (TLR) TLR1:TLR2
cascade, and to upregulation of inflammatory interleukin signaling pathways. Addition-
ally, Ochrobactrum anthropi and uncultured beta proteobacterium were both found inversely
correlated to gamma-delta T-cell abundance. Streptococcus sanguinis SK1 = NCTC 7863 also
correlated to upregulation of inflammatory interleukin signaling, T cell receptor signaling,
and TLR signaling, and it correlated down regulation of IL-4 signaling. Other Streptococcus
species did not correlate to interleukin signaling or inflammatory pathways (Figure 6A,B).

3.7. Negligible Contaminants Found in Differentially Abundant Microbes

Scatter plots using Spearman’s correlation to correlate individual microbe abundance
to total microbe reads in each patient. Normal and COVID-19 samples were correlated
separately. Scatter plots that display a vertical or near vertical regression line deemed the
microbe a contaminant, and no GSEA and immune cell correlated microbes were found
to be contaminants (Figure 7). Scatter plots for BALF COVID-19 samples (Figure S1A),
BALF normal samples (Figure S1B), lung biopsy COVID-19 samples (Figure S1C), and lung
biopsy normal samples (Figure S1D).



Cells 2021, 10, 1452 10 of 18
Cells 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. Select gene networks. Gene networks of GSEA pathways each correlated to three microbes with boxplots of 
microbe abundance vs. IA gene expression for microbes significantly correlated to IA gene expression for genes found to 
be enriched within the respective gene network. The gene networks were produced using the Cytoscape Reactome FI 

Figure 5. Select gene networks. Gene networks of GSEA pathways each correlated to three microbes with box-
plots of microbe abundance vs. IA gene expression for microbes significantly correlated to IA gene expression
for genes found to be enriched within the respective gene network. The gene networks were produced using the
Cytoscape Reactome FI software. All boxplots were produced using the Kruskal-Wallis test. The networks are
for the immunological signatures (A) GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_72H_CD4_TCELL_DN, (B)
GSE4590_SMALL_VS_LARGE_PRE_BCELL_UP, and (C) GSE3565_DUSP1_VS_WT_SPLENOCYTES_UP.
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GSEA pathways with the most significant pathways indicated and of (B) microbe abundance correlated to immune cell
abundances with the most significant microbe immune cell pairs indicated. Labeled data points correspond to those with
cyan outlines.
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Figure 7. Contamination correction. Spearman’s correlation for select disease severity associated microbes. Scatterplots
showing microbe abundance vs. total microbial reads for the most significantly differentially abundant microbes from (A)
PBMC COVID-19 samples and (B) PBMC normal samples.

4. Discussion

Few studies have investigated the lung microbiome in COVID-19 patients, and no
studies to date have investigated the blood microbiome in COVID-19 patients. In this
study, we identified individual bacterial and fungal sequences via high-throughput RNA
sequencing differentially abundant between COVID-19 and normal patients. Despite no
explicit contamination correction for all microbes identified, we are confident that our
findings of immune cell abundance and GSEA pathway correlated dysregulated microbes
are authentic due to no contaminants found through our Spearman’s Correlation results.

We identified 91 bacteria and 14 fungus differentially abundant in lung biopsy, 13 bac-
teria and 9 fungus differentially abundant in PBMC, and 12 bacteria and 57 fungus differen-
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tially abundant in BALF. We demonstrate significant associations between many bacterial
and fungal species from the lungs and blood and COVID-19, suggesting that the lung and
blood microbiota could play a role in modulating host immune response and potentially
influence disease severity and outcomes. Specifically, the depletion or enrichment of above
listed key bacterial and fungal species in COVID-19 patient samples were associated with
downregulation of the anti-inflammatory IL-4 signaling and associated with upregula-
tion of IL-2, IL-3, IL-5, IL-6, IL-7, IL-10, IL-20, IL-22 and IL-23 signaling, IFNα signaling
pathways, TGFβ signaling pathways, inflammatory pathways, and immune dysregulation.
As shown in a previous study, “shifts in cytokine profiles mediated by changes in the
microbiota may also promote epithelial injury and fibrotic outcomes” in chronic lung
disease and in COVID-19, and similar associations were observed in our study [24,25].

Across lung biopsy samples, Campylobacter ureolyticus, fungal sp. JF54, Ochrobactrum
anthropi, and uncultured beta proteobacterium correlated to upregulation of TCR activation,
IFNα signaling, activation of the complement system, tumor necrosis factor signaling, and
several inflammatory interleukin signaling pathways. Burgos-Portugal et al. demonstrated
that IFNα causes cells to produce significantly greater amounts of IL-8 and thus inflamma-
tion, and cells infected with Campylobacter ureolyticus produced even higher levels of IL-8
and thus more inflammation [26]. Ochrobactrum anthropi is emerging as an opportunistic
pathogen that causes infections in severely ill or immunocompromised patients [27] and
has been reported as the cause of diverse inflammatory ailments including infective endo-
carditis [28,29], endophthalmitis [30], meningitis [31], and osteomyelitis [32]. This previous
research lends support to our findings that these microbes may be implicated in modulating
the immune response to COVID-19 producing a pro-inflammatory environment and thus
worse outcomes for COVID-19 patients. Fungal sp. JF54 and uncultured beta proteobacterium,
while not thoroughly studied before, had similar associations as Ochrobactrum anthropi
and Campylobacter ureolyticus. Ochrobactrum anthropi and uncultured beta proteobacterium
additionally correlated to decreased gamma delta T cell abundance. Gamma delta T cells
play an important role in immunosurveillance in mucosal and epithelial barriers in the
lungs and have been demonstrated to play a critical protective role in response to both
SARS-CoV-1 and SARS-CoV-2 [33]. This may be another potential mechanism by which op-
portunistically pathogenic microbiota modulate the response to COVID-19, by disrupting
the balance between a sufficient antiviral and hyper-inflammatory response by decreasing
the appropriate antiviral function of gamma delta T cells. Furthermore, Streptococcus san-
guinis has previously been found to be opportunistically pathogenic when the host already
suffers certain inflammatory ailments [34]. This lends support to our findings that Strepto-
coccus sanguinis SK1 = NCTC 7863 may influence the immune response to COVID-19 by
upregulating inflammatory IL-6 signaling and downregulating IL-4 signaling. Interestingly,
all other differentially abundant Streptococcus species did not have significant correlations
to inflammatory pathways, which does not support the findings of other studies that have
demonstrated Streptococcus species correlating to COVID-19 severity [35].

Across BALF samples, Saccharomyces cerevisiae YJM1444, Syncephalastrum monosporum
var. Pluriproliferum, Candida parapsilosis, and Histoplasma capsulatum were correlated to up-
regulation of TGFβ signaling pathways and inflammatory interleukin signaling pathways.
These four microbes also correlated to increased M1 macrophage abundance. Inciden-
tally, other microbes had similar associations but have been previously shown to be only
pathogenic to plants. It has previously been shown that in severe COVID-19, SARS-CoV-2
triggers a chronic immune reaction instructed by TGFβ, which contributes to chronic up-
regulation of IL-6 signaling and B cell activation leading to worse COVID-19 outcomes [36].
By modulating inflammatory interleukin pathways and TGFβ signaling pathways, the
above microbes may promote a pro-inflammatory response to COVID-19 worsening patient
outcomes. Syncephalastrum monosporum var. Pluriproliferum also correlated to the local
acute inflammatory response pathway. These particular species of Syncephalastrum and
Saccharomyces have not been thoroughly studied, other species have been found implicated
in other pulmonary ailments and inflammation in immunocompromised patients and are
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emerging as opportunistic pathogens. Histoplasma capsulatum and Candida parapsilosis are
also emerging as opportunistic pathogens, as demonstrated in past studies [37–40]. The
above four microbes in addition to Tremella mesenterica DSM 1558 correlated to upregula-
tion of RIG-I-like receptors, and RIG-I-like receptors detect viral RNA and mediate the
host antiviral response by inducing IFN 1 transcription [41]. Additionally, these microbes
may contribute to a hyperinflammatory response by overactivation of the inflammatory
M1 macrophages and fewer macrophages differentiating to the anti-inflammatory M2
macrophage mediated by upregulation of inflammatory cytokine signaling and downregu-
lation of IL-4 signaling, as excessive M1-polarized immune responses has been shown to
lead to tissue damage in inflammatory diseases [42]. Interestingly, Fungal sp. 57 was found
inversely correlated with local acute inflammatory pathways and inflammatory interleukin
signaling and may play a beneficial role in immunomodulation in COVID-19. Previous
study has found that SARS-CoV-2 allows anaerobic bacteria to colonize the lungs and
consequently disrupt lung homeostasis [43]. We found four Haemophilus influenzae species,
two Bacteroides species, and Chlorobium phaeobacteroides BS1, all being anaerobic bacteria,
to have greater abundance in COVID-19 samples in BALF tissue; however, the majority
of our data does not corroborate the previous finding that anaerobic bacteria colonize the
COVID-19 effected lung, as we found that the majority of bacterial abundance in both
lung biopsy tissues and BALF tissues are facultative anaerobic bacteria in both normal
samples and COVID-19 samples, and the anaerobic species Veillonella parvula DSM 2008
and Haemophilus parainfluenzae T3T1 abundance was greater in normal samples in lung
biopsy tissue. Other studies characterizing the COVID-19 respiratory tract microbiomes
have found that Streptococcus and Veillonella dominate the upper respiratory tract and
Streptococcus and Haemophilus abundance are the most important features for segregating
COVID-19 clinical outcomes [35,44]. Our findings do not corroborate that Streptococcus
and Haemophilus are most associated with COVID-19 severity nor do Streptococcus or
Haemophilus dominate the lung microbiome in our study. This may provide evidence of
some difference between the upper respiratory tract microbiome and the lung microbiome
or that the particular identity of commensal microbes populating the lung microbiome may
be less important than the severity of differential abundance of commensal microbes. This
conclusion may be supported by other studies finding decreased microbiota alpha-diversity
in the lung of COVID-19 patients [45]. Our study does corroborate the finding of dysbiosis
of commensal microbes and increased abundance of opportunistic pathogens.

Across PBMC samples, Campylobacter hominis ATCC BAA-381 and Thermoanaerobac-
terium thermosaccharolyticum DSM 571 both correlated to upregulation of retinol metabolism
and retinoic acid biosynthesis, which both play key roles in regulating antiviral immune
response [22,23]. Dysregulation in metabolism and transport of retinol may contribute to
inflammatory responses to infection. Furthermore, this dysregulation of retinol metabolism
and retinoic acid biosynthesis may play a role in the upregulation of RIG-I-like receptors
that was observed in the BALF samples, as retinoids induce RIG-I expression in concert
with IFN signaling to lead to the secretion of various pro-inflammatory cytokines [46].
Bacillus sp. PL-12 abundance correlated to decreased plasma cell abundance and correlated
to upregulation of IFNα signaling, inflammatory interleukin signaling, and TGFβ signal-
ing, whereas Bacillus subtilis subsp. subtilis str. 168 inversely correlated to IFNα signaling
and inflammatory interleukin signaling, which may explain their correlations to disease
severity. Additionally, Bacillus subtilis subsp. subtilis str. 168 correlated to increased plasma
cell abundance and memory B cell abundance and microbes correlated with COVID-19
severity, namely E. coli, Pseudomonas sp. I-09, and Bacillus sp. PL-12 correlated to decreased
plasma cell abundance and memory B cell abundance. Previous study has found an associ-
ation between plasma cells in the blood in patients with severe COVID-19 and improved
survival [47]. In corroboration with all of our methods and correlations involving Bacillus
subtilis subsp. subtilis str. 168, in addition to the strength and linearity of correlation in our
Spearman’s Correlation results make us believe future study of this microbe in particular
may potentially be useful in immunotherapy for treating COVID-19. Campylobacter hominis
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ATCC BAA-381 and Pseudomonas sp. I-09 have not been previously thoroughly studied;
however other species of Campylobacter hominis and other Pseudomonas have been found
to induce inflammation in other diseases such as gastroenteritis lending support to our
findings that they may modulate the host immune response to COVID-19 [48–51]. How-
ever, it remains unknown if the above inflammatory-associated lung and blood bacterial
and fungal species enriched in COVID-19 do in fact play an active role in the prognosis of
COVID-19 or simply flourish opportunistically due to a depletion of other lung and blood
microbes, but our correlations to immune dysregulation suggest they do in fact play a role
in the prognosis of COVID-19.

Our study has several limitations. First, our study used a fairly small sample size
for each sample type with 17 PBMC COVID-19 samples and 17 PBMC normal samples,
12 BALF COVID-19 samples and 20 BALF normal samples, and 8 lung biopsy COVID-19
samples and 8 lung normal samples. While enough samples were used to identify nu-
merous dysregulated microbes, further studies with greater sample sizes could be used to
increase statistical power and confirm our results. Secondly, metadata of age and disease
severity were only available for the PBMC samples used. Further studies correlating mi-
crobe abundance to COVID-19 severity using BALF samples and/or lung biopsy samples
to identify microbes of the lung microbiome directly correlated with COVID-19 severity
should be performed. Thirdly, our study used samples sourced from three different hospi-
tals, and as the human microbiome is highly impacted by geography, our findings may
not necessarily reflect the lung and blood microbiome of COVID-19 patients from different
geographies. Regardless of these limitations, our study demonstrating associations be-
tween microbes found in the lung and blood to immune dysregulation pathways and our
associations between microbes in the blood to COVID-19 severity suggests that the lung
and blood microbiome are likely implicated in modulating host inflammatory responses to
COVID-19 and thus COVID-19 severity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10061452/s1, Figure S1: The non-contaminant microbes’ plots in lung biopsy and BALF
samples. Scatterplots showing microbe abundance vs. total microbial reads for GSEA and immune
cell abundance correlated microbes from (A) BALF COVID-19 samples, (B) BALF normal samples,
(C) lung biopsy COVID-19 samples, and (D) lung biopsy normal samples.
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