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Abstract

Transcript fusions as a result of chromosomal rearrangements have been a focus of attention in 

cancer as they provide attractive therapeutic targets. To identify novel fusion transcripts with the 

potential to be exploited therapeutically, we analyzed RNA sequencing, DNA copy number and 

gene mutation data from 4,366 primary tumor samples. To avoid false positives, we implemented 

stringent quality criteria that included filtering of fusions detected in RNAseq data from 364 

normal tissue samples. Our analysis identified 7,887 high confidence fusion transcripts across 13 

tumor types. Our fusion prediction was validated by evidence of a genomic rearrangement for 78 

of 79 fusions in 48 glioma samples where whole genome sequencing data was available. Cancers 

with higher levels of genomic instability showed a corresponding increase in fusion transcript 

frequency, whereas tumor samples harboring fusions contained statistically significantly fewer 

driver gene mutations, suggesting an important role for tumorigenesis. We identified at least one 

in-frame protein kinase fusion in 324 of 4,366 samples (7.4%). Potentially druggable kinase 

fusions involving ALK, ROS, RET, NTRK, and FGFR gene families were detected in bladder 

carcinoma (3.3%), glioblastoma (4.4%), head and neck cancer (1.0%), low grade glioma (1.5%), 

lung adenocarcinoma (1.6%), lung squamous cell carcinoma (2.3%), and thyroid carcinoma 

(8.7%), suggesting a potential for application of kinase inhibitors across tumor types. In-frame 

fusion transcripts involving histone methyltransferase or histone demethylase genes were detected 

in 111 samples (2.5%) and may additionally be considered as therapeutic targets. In summary, we 

described the landscape of transcript fusions detected across a large number of tumor samples and 
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revealed fusion events with clinical relevance that have not been previously recognized. Our 

results support the concept of basket clinical trials where patients are matched with experimental 

therapies based on their genomic profile rather than the tissue where the tumor originated.
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Introduction

Transcript fusions resulting from chromosomal rearrangements are an important class of 

cancer-contributing somatic alteration1. Examples such as BCR-ABL1, first reported in 

chronic myeloid leukemias2, have led to novel first line therapies with ABL inhibitors such 

as dasatinib3. Similarly, EML4-ALK fusions were detected in subset of non-small cell lung 

cancer4 and ALK inhibitors were reported to improve outcome for patients with EML4-ALK 

positive tumors5. Recent advances in sequencing technology have enabled the 

comprehensive detection of rearrangements in the cancer genome and transcriptome6, 7. For 

example, transcriptome sequencing has identified FGFR3-TACC3 fusions in glioblastoma8, 

bladder cancer9 and head and neck, lung squamous cell carcinoma10, and cell lines 

expression FGFR3 chimeras were found to be sensitive to the FGFR inhibitors. In addition, 

recent studies have revealed highly frequent oncogenic fusions in rare tumor types, such as 

C11orf95-RELA fusion in supratentorial ependymoma11 and DNAJB1-PRKACA fusion in 

fibrolamellar hepatocellular carcinoma12. Tumor specific fusion gene landscapes of different 

cancers have been described using genomic and transcriptomic data13–16.

To comprehensively identify fusion transcripts with the potential to be exploited 

therapeutically across many cancers, we analyzed RNA sequencing and DNA copy number 

data from 4,366 primary tumor samples and 364 normal samples spanning 13 tumor types. 

We assessed the significance of fusions per cancer type and evaluated their potential as 

molecular therapeutic targets by integrating mRNA exon/gene expression, somatic 

mutations, copy number gains and losses, and protein kinase annotation. Our fusion gene list 

of TCGA samples is available through a web portal via http://www.tumorfusions.org.

Results

Detection of fusion transcripts

An overview of this study is shown in Supplementary Figure 1. We compiled a mRNA 

sequencing data set consisting of 4,366 primary tumor samples and 369 normal samples 

from 13 tissue types (Table 1). Data was generated by The Cancer Genome Atlas and made 

available through the Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu/). Using 

supervised hierarchical clustering analysis, we identified five normal samples with a high 

likelihood of tumor cell contamination and these were excluded from further study (See 

Supplementary Figure 2 and Methods). We used the Pipeline for RNA sequencing Data 

Analysis (PRADA)17 to detect 26,995 fusion transcripts supported by at least two discordant 

read pairs plus one perfect-match junction spanning read, with the other end of the read pair 
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mapping to either of the fusion gene partners. To reduce the number of false positive 

predictions, we filtered fusion transcripts according to gene homology, transcript allele 

fraction, and partner gene variety. We used BLASTn to determine homology between 

partner genes and removed 6,138 fusion pairs consisting of two genes with high similarity. 

Next, to consider the influence of transcript expression level in the process of fusion 

detection, we calculated the transcript allele fraction, which is the ratio of junction spanning 

reads to the total number of reads crossing the junction points in the reference transcripts, 

and removed fusion candidates with a transcript allele fraction of less than 0.01. Finally, we 

calculated partner gene variety for each gene and excluded non-specific fusions involving 

genes showing a large diversity amongst partner genes. After filtering, 9,047 and 192 fusion 

pairs were identified in 4,366 primary tumor and 364 normal tissue samples, respectively. 

After removing fusion pairs overlapping between tumor and normal samples, 8,695 tumor 

specific fusion pairs were identified (Supplementary Table 1). We further classified the final 

fusion transcript list into four tiers based on level of evidence. Fusions designated as tier 1 

were detected through at least three discordant read pairs, two perfect-match junction 

spanning reads, and gene partner uniqueness within a sample. Tier 2 fusions required at least 

two discordant read pairs, one perfect-match junction spanning read, plus breakpoints 

detected in the DNA profile, within 100Kb from predicted junction point. Tier 3 was 

categorized as fusions with at least two discordant read pairs, one perfect-match junction 

spanning read, high consistency of predicted junction, and gene partner uniqueness within a 

sample. The remainder of fusions was directed to tier 4. In total, 6,219 and 1,668 fusion 

pairs were annotated as tier 1 or tier 2, respectively.

Validation of fusion transcript predictions

To verify the reliability of our fusion transcript predictions, we performed BreakDancer18 on 

whole genome sequencing data from 48 glioma samples and low pass whole genome 

sequencing from 15 melanoma tumors. A minimum of five supporting read pairs were 

required for detection of structural variants in whole genome sequencing data and three 

supporting read pairs in low-pass whole genome sequencing data. Next, we correlated the 

presence of genomic structural variants with fusion gene predictions from RNA. Structural 

DNA variants involving both fusion gene partners were considered as high confidence 

validation, and events involving one of the gene partners were interpreted as medium 

confidence. As a result, high or medium confidence structural variants were found to support 

78 of 79 fusion transcripts detected in 48 glioma samples within 1Mb from the predicted 

junction points (Supplementary Table 2). As expected, the rate of validation was reduced in 

low pass sequencing data, where we found support for 31 of 48 fusion transcripts detected in 

15 melanoma samples. The validation rate of tier 1 and 2 events in low pass sequencing data 

was higher compared to tier 3 and 4, and we limited further analysis to 7,887 tier 1 and 2 

fusion transcripts.

Diversity of fusion transcripts across 13 tumor types

Determining how fusion transcripts promote cancer in various tumor types is an important 

goal. We categorized fusion transcripts into eight categories based on (i) distance between 

the two fusion gene partners and (ii) the presence of copy number alterations in proximity to 

the fusion junction, and examined the distribution of each category for each tumor type. We 
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observed substantial diversity in the frequency of gene fusions, with thyroid carcinoma, 

clear cell renal cell carcinoma, and acute myeloid leukemia representing the lower end of the 

spectrum (Figure 1A). A corresponding relative reduction in the frequency of DNA 

segments was found in these cancer types (Figure 1B). In nine of ten remaining tumor types, 

the exception being prostate adenocarcinoma, more than 80% of fusion transcripts were 

associated with DNA amplification or deletion events (Supplementary Figure 3). Acute 

myeloid leukemia and thyroid carcinoma demonstrated a relatively high frequency of copy-

neutral interchromosomal fusions (Figure 1C), suggesting the frequent occurrence of 

balanced genomic rearrangements1. Fusion transcripts originating from genes within 1 

Megabase of each other were dominant in ovarian cancer, which might be related to the high 

frequency of copy number alteration in ovarian cancer19. Overall, these findings suggest that 

fusion transcripts resulting from copy number balanced translocations are relatively rare and 

instead are preferentially derived through genomic instability20, 21.

Next, we generated a summary of recurrent fusion transcripts across 13 tumor types 

(Supplementary Table 3) which included 263 fusions occurring at least twice. Of these, 24 

recurrent fusions have been previously reported22, 23. Furthermore, we focused on fusions 

with the same gene fused to multiple different partners (Figure 2 and Supplementary Table 

4). Perhaps the most prominent and novel recurrent gene was the estrogen receptor 1 

(ESR1). We identified 16 ESR1 associated fusions in breast cancer, which represents 1.5%) 

of the entire breast cancer cohort. Only one of these was predicted to be in frame and these 

fusions may thus be disruptive events rather than activating (Supplementary Figure 4). On 

the basis of this result, we extracted 221 fusions involving a tumor suppressor gene (TSG) 

that have a potential to result in loss of function (Supplementary Table 5). All samples 

harboring TSG fusions were called wild type except one low grade glioma sample.

Approximately 36% of detected fusion transcripts were predicted to be in-frame and thus 

may result in a functional protein, with acute myeloid leukemia and thyroid carcinoma 

showing relatively high fractions of in-frame fusions (78.5% and 70.3%) compared to other 

tumor types (Supplementary Figure 5A). When we re-evaluated the distribution of eight 

fusion categories only using 2,811 in-frame fusions, the distribution of eight categories for 

each tumor type was generally similar with those based on 7,887 fusion transcripts 

(Supplementary Figure 5B, Supplementary Table 6).

In total, 80 of 2,811 in-frame fusion transcripts were detected in at least two samples across 

the entire cohort (Supplementary Table 7), including well known fusions such as TMPRSS2-

ERG24, PML-RARA25, FGFR3-TACC38, EGFR-SEPT1426, 27. Interestingly, we observed 

reduced frequencies of significant gene mutation in samples with recurrent in frame fusion 

transcripts compared to those without recurrent in frame fusion transcripts. The difference 

was statistically significant in bladder carcinoma, breast cancer, head and neck squamous 

cell carcinoma, clear cell renal cell carcinoma, acute myeloid leukemia, and thyroid cancer 

(Welch’s t-test, P = 0.0067, 0.022, 0.030, 0.063, 4.8-e15, and 8.3e–88, respectively), 

suggesting that fusions in these cancer types could be functioning as incidental cancer 

driving events (Supplementary Figure 6).
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Protein kinase fusions across 13 tumor types

Fusion genes with oncogenic kinase activation have been identified in many cancers1, 2, 4 

and cancer cells harboring these types of fusions are frequently highly susceptible to kinase 

inhibitors28. To discover fusion candidates with therapeutic potential, we focused on fusion 

transcripts involving a protein kinase gene. An in-frame protein kinase fusion was detected 

in 324 (7.4%) of 4,366 samples (minimum, 0.8% in clear cell renal cell carcinoma; 

maximum, 11.6% in bladder carcinoma) (Supplementary Table 8). The majority of in frame 

kinase fusions belonged to the tyrosine kinase family (36.1%), the AGC serine/threonine 

protein kinases (14.8%) and the tyrosine kinase-like serine/threonine protein kinase group 

(10.1%) (Supplementary Table 9).

The fraction of protein kinase fusions was significantly higher in thyroid carcinoma 

compared to other tumor types, involving genes such as RET (n=24), NTRK3 (n=9) and 

BRAF (n=16) (Fisher’s exact test, P = 2.2e–16) (Figure 3A). BRAF fusions were also 

detected in two prostate adenocarcinoma, two melanoma and one low grade glioma samples 

(Supplementary Table 10). BRAF fusions are notable because of mutually exclusivity with 

BRAF mutation (Figure 4) as well as the life-prolonging effects of RAF and MEK inhibitors 

for patients with melanoma harboring BRAF V600E mutations29. RET is frequently 

activated by mutations in medullary thyroid cancer and inhibitors of multiple tyrosine 

kinases including RET has been approved for medullary thyroid cancer by the Food and 

Drug Administration (FDA), while treatment of NTRK1 fusion positive lung cancer cells 

with a kinase inhibitor led to suppression of cell growth30. Our findings suggest that kinase 

inhibition may have broad applicability for treatment of thyroid cancers31, 32.

Amongst 357 kinase fusions, the ALK-ROS1-RET lineage, FGFR, and NTRK family kinase 

fusions have previously been considered as druggable28 and were commonly detected in 

tumor types including bladder carcinoma (3.3%), glioblastoma (4.4%), head and neck cancer 

(1.0%), low grade glioma (1.5%), lung adenocarcinoma (1.6%), lung squamous cell 

carcinoma (2.3%), prostate adenocarcinoma (1.7%), and thyroid carcinoma (8.7%)(Figure 

3B and Supplementary Table 10), suggesting a potential for application of kinase inhibitors 

across tumor types (Figure 3C and Supplementary Table 11). ALK fusions can be targeted 

by ALK inhibitors and have been reported in non-small cell lung cancer as well as breast, 

colorectal, esophageal, renal cell, and renal medullary cancers33. We detected ALK fusions 

in lung adenocarcinoma (0.8%), bladder (0.8%), melanoma (1,3%), and thyroid cancer 

(0.6%), suggesting that ALK fusions are rare but occur across different tumor lineages.

Chromatin modifier fusions across 13 tumor types

Recent studies demonstrated that genes associated with chromatin modification are 

frequently mutated and drive many types of cancers, leading to developing new drugs for 

epigenetic protein families. Inhibitors of DNA methylation and histone deacetylates 

(HDAC) show antitumor activity34, 35, and have been approved for the treatment of 

myelodysplastic syndrome36 and cutaneous T cell lymphoma37 by the FDA. In-frame gene 

fusions involving a chromatin modifier gene were detected in 115 (2.6%) of 4,366 samples 

(Supplementary Table 12 and 13) and were mutually exclusive with protein kinase fusions 

(Fisher’s exact test, P = 0.031). The fraction of chromatin modifier fusions in acute myeloid 
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leukemia was higher than other tumor types (Figure 5A), and included four samples with 

MLL fusions (5.8%) which may be druggable by DOT1L inhibitors38. Although there were 

only seven recurrent chromatin modifier fusions across 13 tumor types (Figure 5B), fusions 

related to histone methyltransferases and demethylase families with potential as a target for 

anticancer therapy were detected in 48 (1.1%) of 4,366 samples (Figure 5C)35. For example, 

an association of the lysine-specific demethylase 5A gene (KDM5A/JARID1A/RBP2) 

overexpression with tumorigenesis or metastasis has been previously reported in lung 

cancer39. The KDM5A JmjC domain plays an important role in demethylating lysine 4 of 

histone 3 and upregulated of this domain was observed in three of four samples harboring 

KDM5A fusions (Supplementary Figure 7).

A resource of fusion transcripts from The Cancer Genome Atlas

To allow integration of structural transcript variations with other types of molecular data 

generated by The Cancer Genome Atlas, we developed a user-friendly fusion gene database 

which is accessible at http://54.84.12.177/PanCanFusV2/. Through a user-friendly web 

interface, this portal enables users to search fusion transcripts by gene, by fusion, by TCGA 

patient ID and tumor type.

Discussion

This study presents a bona-fide catalog of fusion transcripts through analysis of 4,730 

paired-end RNA sequencing data sets. We comprehensively identified the diversity of fusion 

transcripts across 13 tumor types, including the association of fusion transcripts with 

somatic mutation and DNA double strand breaks.

Although the frequency of recurrent fusion transcripts is generally substantially less 

compared to somatic mutation events40 such as TP53, PIK3CA, or PTEN, the detection of 

specific events such as the EML4-ALK protein kinase fusion in non-small cell lung cancer 

has led to development of treatment effectively targeted this lesion28. Importantly, we 

showed that in-frame and potentially activating NTRK1, and ALK rearrangements are not 

limited to breast, thyroid, and lung cancer respectively28, 41, but can be detected across 

cancer at low frequency. Similarly, FGFR related fusions with therapeutic potential have 

been reported across tumor types10, which was confirmed by our study. Similar to kinase 

fusions, our cross-sectional fusion list suggests that there may be opportunity for sporadic 

application of DNA methylation and histone deacetylase inhibitors, such as have been 

approved for clinical use in hematological malignant tumors35, 42. For instance, Cadot et al. 

have reported that suppressing HDAC4 causes chromosome segregation defects in p53-

deficient tumor cells43 and one lung adenocarcinoma sample harboring HDAC4-SNX18 

fusion showed HDAC4 mRNA overexpression and TP53 somatic mutation, suggesting a 

possible beneficial effect of HDAC inhibitors. We observed a significant anti-correlation 

between the presence of a transcript fusion and significant gene mutations in most tumor 

types, which suggested that driver genome and transcriptome rearrangements may occur 

infrequently but with high relevance to the tumor in which they are detected. Out findings 

provide a strong rationale for unbiased clinical testing of targetable fusion events. Basket 

clinical trials in which patients are treated on the basis of gene abnormalities, instead of 
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tumor type tissue of origin, have the potential to overcome the infrequency of druggable 

events and may particularly evaluated in the context of transcript fusions

Our fusion database (http://54.84.12.177/PanCanFusV2/) would be a largest database of 

fusion transcripts obtained from pair-end RNA sequencing data based on unified criteria, 

demonstrating that druggable fusions are not so frequent but relevant across many tumor 

types. A comprehensive understanding of fusion transcripts across tumor types could 

facilitate development of new therapeutic strategies for various tumor types based on fusion 

events.

Methods

Data preparation

TCGA RNA sequencing data were downloaded from Cancer Genome Hub (CGHub, https://

cghub.ucsc.edu). In this study, we used RNA sequencing data obtained from 4,730 TCGA 

samples (4,366 primary tumor and 364 normal tissues) consisting of 13 tumor types (Table 

1). To exclude the possibility of tumor cell contamination in normal tissue, we compared 

gene expression profiles between primary tumor and normal samples by using SAM 

algorithm44 (Fold change >2 and p < 0.0001) and performed supervised hierarchical 

clustering using differentially expressed genes for each tumor type. Of 369 normal samples, 

five samples (one clear cell renal cell cancer, one lung adenocarcinoma, and three thyroid 

carcinoma) belonging to tumor cluster were excluded in this study (Supplementary Figure 

2).

Identification of fusion transcripts

We used the pipeline for RNA sequencing Data Analysis (PRADA, http://

bioinformatics.mdanderson.org/Software/PRADA/)17. Briefly, PRADA extracts all best 

alignments per read from the dual (genome and transcriptome) reference file using BWA45. 

After initial mapping, the alignments of reads that map to both genome and transcriptome 

are collapsed into single genome coordinates. Once mapped, reads are filtered out if their 

best placements are not mapped to multiple genomic coordinates. Quality scores are 

recalibrated using the Genome Analysis Toolkit (GATK)46. Index files are generated using 

Samtools47 and duplicate reads are flagged using Picard (http://picard.sourceforge.net). The 

PRADA fusion module detects fusion transcripts through identification of discordant read 

pairs and junction spanning reads. Discordant read pairs are paired read ends that map 

uniquely to different protein-coding genes with orientation consistent with formation of a 

sense-sense chimera. Junction spanning reads are detected by the construction of a sequence 

database that holds all possible exon-exon junctions that match the 3’ end of one gene fused 

to 5’ end of a second gene. Unmapped reads aligned to the database of all hypothetical exon 

junctions created by using the Ensembl transcriptome reference. Only reads of which the 

mate pair maps to either of the two fusion partner genes are considered as fusion transcripts. 

In this study, we extracted fusions (1) with at least two discordant read pairs, (2) at least one 

junction spanning reads, and (3) without high gene homology between each fusion gene 

partner (E-value > 0.001). Next, we applied the concept of mutation allele fraction to RNA 

sequencing data, and calculated the ratio of junction spanning reads to the total number of 
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reads crossing over the junction point in the reference transcript (Supplementary Figure 8). 

We used the transcript allele fraction (TAF) to exclude artifacts depending on highly 

expressed transcripts. We included fusion transcripts showing more than 0.01 in TAF of 

both genes in our fusion list. In addition, we assessed a variety of partner genes for each 

gene. The partner genes variety was defined as the kinds of chromosome arms in which 

partner genes were located (Supplementary Figure 9). We calculated random distribution of 

partner gene variety (permutation: 100,000 times) per number of fusions comprising one 

specific gene with consideration of gene frequency for each chromosomal arm, and excluded 

fusions in which partner genes were randomly distributed to various chromosome arms (p < 

0.00001).

Next we utilized TCGA level 3 copy number data to scan the existence of breakpoints 

within 100 Kb from predicted junction point26. We set copy number threshold value as 0.3. 

We applied fusion transcripts to a four-tier system as follow; Tier 1: fusions harboring at 

least three discordant read pairs, at least two junction spanning reads, and gene partner 

uniqueness within a sample48. Tier 2: fusions having at least two discordant read pairs and at 

least one junction spanning reads, plus breakpoints within 100Kb from predicted junction 

point. Tier 3: fusions showing high consistency of predicted junction and gene partner 

uniqueness within a sample as well as having at least two discordant reads pairs and at least 

one junction spanning reads. Tier 4: other than tier 1 to 3. We used total 7,415 tier 1 and tier 

2 fusion transcripts in this study. Fusions that have never been reported were annotated as 

“novel” based on Mitelman Database of Chromosome Aberrations and Gene Fusions in 

Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman), Cancer genome project (http://

www.sanger.ac.uk/research/projects/cancergenome/) and ChimerDB 2.0 (http://

biome.ewha.ac.kr:8080/FusionGene/). We included genes overlapping between TSGene: 

Tumor Suppressor Gene Database (http://bioinfo.mc.vanderbilt.edu/TSGene/)49 and Cancer 

Gene census (http://cancer.sanger.ac.uk/cancergenome/projects/census/)50 in a list of tumor 

suppressor gene.

Validation of fusion transcripts

We obtained TCGA whole genome sequence data on 28 glioblastoma, 20 low-grade glioma, 

18 melanoma (low pass), and matched normal samples from CGHub. We applied 

BreakDancer (version 1.12)18 to whole genome sequencing data and identified somatic 

rearrangements that had 5 or more supporting reads in whole genome sequencing data, or 3 

or more supporting reads in low-pass whole genome sequencing data, and were not in 

matched normal samples. To validate fusion transcripts by using whole genome sequencing 

data, we set two confidence level (high and medium) and two window size (100Kb and 

1Mb). When Break Dancer predicts structural variant involving connecting both gene 

partners of fusion transcripts or involving one of the gene partners, we defined “high 

confidence” and “medium confidence”, respectively (Supplementary Figure 9).

Exon expression analysis

TCGA level 3 RNA sequence exon level expression data was obtained from TCGA Data 

Portal (https://tcga-data.nci.nih.gov/tcga/). The Generic Annotation files (GAF) including 

annotations for all exon was downloaded from https://tcga-data.nci.nih.gov/tcgafiles/
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ftp_auth/distro_ftpusers/anonymous/other/GAF/GAF_bundle/outputs/

TCGA.Sept2010.09202010.gaf. We used exon quantification text file to perform Z-

normalization for each exon expression in each tumor type. To examine the association of 

fusion events with gene expression, we performed Welch’s t-test score between exons 

before and after junction point for each gene.

Copy number alteration analysis

TCGA level 3 copy number data based on Affymetrix SNP 6.0 array was obtained from 

TCGA Data Portal. We calculated DNA segments per sample as a measure of genome 

instability. To detect high frequent region of copy number alterations and copy number 

status for each gene for each tumor type, we used the genome identification of significant 

targets in cancer (GISTIC) algorithm (version 2)51. Copy number levels were categorized 

into five levels (high and low-level amplification, high and low-level deletion, and no 

alteration).

Mutation data analysis

We downloaded somatic mutation data (syn1710680) from Synapse (https://

www.synapse.org/#) and determined significant mutated genes per tumor type by 

MutSigCV40. Of 13 tumor types, melanoma samples with recurrent fusion had no mutation 

data. For each tumor type, we extracted overlapped samples between fusion and mutation 

data sets to compare mutation rate and significant mutation frequency between samples with 

and without recurrent fusions. Low grade glioma, prostate adenocarcinoma and melanoma 

data sets in which no sample with recurrent fusions was detected in the overlapped data set 

were excluded in this analysis.

Protein expression data analysis

We downloaded reverse phase protein array (RPPA) data in TCGA breast cancer from The 

Cancer Protein Atlas (TCPA) website (http://app1.bioinformatics.mdanderson.org/tcpa/

_design/basic/index.html)52. We focused on ER alpha protein expression in ESR1 fusion 

positive breast cancer samples and compared ER alpha and phosphorylated ER alpha 

expression between samples with ESR1 fusion positive and negative breast cancer samples.

Statistical analysis

We conduced all computations with R 3.0.153 and used standard statistical tests as 

appropriate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The distribution of fusion transcripts across twelve tumor types
(A) Bar plots show the fraction of samples in which at least a single fusion transcript was 

detected per tumor type (green). The dot plots illustrates the number of detected fusion 

transcripts per megabase per sample normalized by the sequencing coverage. Tumor types 

were sorted according to the fraction of samples with fusions. (B) Box-Whisker plots 

showing the number of DNA segments per sample as a relative measure of genome 

instability across 13 tumor types. (C) Barplots representing the fraction of different types of 
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fusions classified based on the distance between the genes constituting the fusion and the 

presence or absence of a DNA copy number alteration within 100Kb of the junction point.
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Figure 2. The chromosomal location of recurrent fusion genes for each tumor types
Line plots representing the frequency of fusion gene A and B across the genome (green), the 

negative log (q-value) of DNA amplifications (red) and deletions (blue) per tumor type.

DNA copy number alterations with q-value less than 0.05 as determined by GISTIC are 

shown.
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Figure 3. An overview of protein kinase fusions across 13 tumor types
(A) Bar plots show the fraction of in-frame protein kinase fusions relative to the total 

number of in frame fusions per tumor type. (B) Recurrent in-frame protein kinase fusion 

across 13 tumor types (n≥2). Color represents tumor type. (C) The landscape of protein 

kinase fusions across cancer. The horizontal and vertical axes represent tumor samples and 

kinase genes, respectively. Genes were ordered based on kinase family annotation. Color bar 

depicts tumor type.
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Figure 4. Significance of RAF family fusions in thyroid cancer
(A) The top panel indicates frequencies of somatic mutations (lightblue) and significant 

mutations (pink). To compare the frequency between samples with and without recurrent 

fusions (n≥2), a Welch’ s t-test was performed. The bottom panel shows a heatmap of 

fusions and significant gene mutations in 312 thyroid cancers. (B) Position of each domain 

in BRAF gene and junction points of BRAF fusions. (C) Exon expression plots 

demonstrated Z-normalized exon expression for each exon in thyroid cancers. Red and blue 

represent relatively high and low exon expression.
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Figure 5. A survey of chromatin modifier fusions across 13 tumor types
(A) Bar plots show the fraction of in-frame chromatin modifier fusions relative to the total 

number of in frame fusions per tumor type. (B) Recurrent in-frame chromatin modifier 

fusions across 13 tumor types (n≥2). Color represents tumor type. (C) The landscape of 

chromatin modifier fusions across cancer. The horizontal and vertical axes represent tumor 

samples and chromatin modifier genes, respectively. Genes were ordered based on 

chromatin modifier class. Color bar depicts tumor type.
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Table 1

A list of The Cancer Genome Atlas RNAseq data sets

Tumor type Tumor* Normal

Bladder urothelial carcinoma 121 16

Breast cancer 1,019 110

Glioblastoma multiforme 158 -

Head and neck squamous cell carcinoma 300 37

Clear cell renal cell carcinoma 474 71

Acute myeloid leukemia 171 -

Low grade glioma 266 -

Lung adenocarcinoma 487 57

Lung squamous cell carcinoma 220 17

Ovarian serous cystadenocarcinoma 400 -

Prostate adenocarcinoma 178 -

Skin cutaneous melanoma 78 -

Thyroid carcinoma 494 56

Total 4,366 364

*
Primary tumor samples with both RNAseq and Affymetrix SNP6 array data were analyzed.
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