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Abstract: The host microbiome plays an important role in regulating physiology through microbiota-
derived metabolites during host-microbiome interactions. However, molecular mechanism underly
host-microbiome interactions remains to be explored. In this study, we used Drosophila as the model to
investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host
transcriptome and metabolome. We established both a sterile Drosophila model and a conventional
Drosophila model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found
that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile
Drosophila model and the conventional Drosophila model. The analysis of gut microbial using 16S
rRNA sequencing showed sodium butyrate treatment also influenced Drosophila bacterial structures.
In addition, Drosophila metabolites identified by ultra-high performance liquid chromatography-
MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed
components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data
identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results
reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome
and metabolome, and our work provides a better understanding of host-microbiome interactions at
the molecular level with multi-omics data.

Keywords: Drosophila; microbiome; transcriptome; metabolome

1. Introduction

The host microbiome plays an important role in digesting complex diets, synthe-
sizing nutrients, and maintenance of the immune system to facilitate the survival of the
host [1,2]. The number of microbial populations inhabiting the intestines is large and
diverse depending on the host species. Intestinal microbes can communicate with the host
through metabolites, mainly including short-chain fatty acids (e.g., acetate, propionate,
and sodium butyrate). Short-chain fatty acids are the most abundant metabolites produced
by the fermentation of undigested dietary fiber by intestinal microorganisms and provide
the main energy source for the host intestinal cells [3]. Of all the short-chain fatty acids,
sodium butyrate has received special attention because it is a key regulator that mediates
the metabolic control of the microbiota [4]. In fruit fly Drosophila melanogaster, it has been
reported that adding sodium butyrate to the diet can effectively reduce the susceptibility or
short-term mortality risk during aging [5]. Thus, sodium butyrate plays a non-negligible
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role in the dynamic relationship between diet, gut microbiome composition, and metabolic
health for all animals [6,7].

Drosophila has been used as a model organism for the study of host-microbiome in-
teractions in the gut. Increasing evidence has shown that the gut microbiome can affect
Drosophila’s physiological functions such as nutrition, metabolism and immunity [8,9].
However, the molecular mechanism underlying host-microbiome interactions in the
Drosophila model remains to be explored. In the present study, we used D. melanogaster as
the model to investigate the influence of microbiome and microbiota-derived metabolite
sodium butyrate on host transcriptome and metabolome. We examined the impact of
sodium butyrate on the host in both sterile Drosophila (also referred to as axenic Drosophila
in the literature) and conventional Drosophila. In order to further investigate the effects
of sodium butyrate on Drosophila at the molecular level, we detected the abundance and
composition of gut microbial colonies using 16S rRNA sequencing analysis and analyzed
the overall structure and metabolic activities of host transcriptional networks by integrating
transcriptome and metabolome data. Finally, we carried out an integrative analysis of the
transcriptome, the microbiome, and the metabolome data regulated by sodium butyrate
to figure out the correlations. Our results demonstrate the impact of the microbiome- and
microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work
provides new insights into the mechanism of host-microbiome interactions at the molecular
level with multi-omics data.

2. Results
2.1. Drosophila Microbiome and Metabolites Regulate Host Gene Expression under Sterile Condition

To examine the influence of the microbiome on Drosophila gene expression, we first
established a sterile Drosophila model from the embryonic stage to remove the intestinal
microbes, and in parallel, we bred conventional Drosophila with normal intestinal microbes.
To understand the potential role of sodium butyrate in Drosophila, we further treated the
sterile Drosophila with or without sodium butyrate. RNA samples from conventional
Drosophila, sterile Drosophila, and sterile Drosophila treated with sodium butyrate were
extracted for RNA sequencing and data analysis.

Principal component analysis of RNA sequencing data showed that three biological
replicates from different groups were well clustered, and samples from conventional
Drosophila and sterile Drosophila were clearly grouped (Figure 1A), suggesting that the
sterile Drosophila model was successfully established. The Pearson correlation analysis
showed gene expression patterns from conventional Drosophila and sterile Drosophila were
clearly different (Figure 1B). As an important microbiota-derived metabolite, sodium
butyrate treatment in the sterile Drosophila model caused a linear compensation effect
between conventional Drosophila and sterile Drosophila (Figure 1B). A total of 4737 genes
were found to be differentially expressed between sterile Drosophila and sterile Drosophila
treated with sodium butyrate. We further analyzed functional pathways with differentially
expressed genes; many key pathways in Drosophila were affected, such as biosynthetic
process, metabolic process, immune response, and development process (Figure 1C). We
performed quantitative RT-PCR validation of differentially expressed genes (Figure 2),
and the results were generally consistent with RNA sequencing data. Specifically, genes
involved in metabolic and immune pathways (both downregulated and upregulated) were
differentially expressed between conventional Drosophila and sterile Drosophila (Figure 2).
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Figure 1. RNA sequencing analysis of conventional Drosophila (C), sterile Drosophila (S) and sterile Drosophila treated with
sodium butyrate (SSB). (A) Principal component analysis of RNA sequencing data from three groups, n = 3. (B) Pearson
correlation heat map of RNA sequencing data from three groups, white to blue, indicates an increase in correlation. (C)
Gene ontology enrichment of RNA sequencing data from sterile Drosophila compared to sterile Drosophila treated with
sodium butyrate. The x-axis represents gene numbers upregulated or downregulated, and the y-axis represents different
pathways in biological process.

Figure 2. Quantitative RT-PCR validation of genes from sterile Drosophila (S) and sterile Drosophila
treated with sodium butyrate (SSB). (A) Relative expression of downregulated transcripts (SSB
compared to S) in the transcriptome data. (B) Relative expression of upregulated transcripts (SSB
compared to S) in the transcriptome data. Significant differences are determined by the unpaired
Student’s t-test. * p < 0.05, ** p < 0.01.

2.2. Drosophila Microbiome and Metabolites Regulate Host Gene Expression under
Conventional Condition

Based on our findings in sterile Drosophila, microbiome and microbiota-derived
sodium butyrate showed an obvious influence on Drosophila gene expression pattern



Metabolites 2021, 11, 298 4 of 13

when intestinal microbes were completely removed. We wondered if the effect could
be observed when Drosophila were grown under conventional conditions, and we were
encouraged to explore potential mechanisms underlying the host-microbiome interactions
at the molecular level. We treated conventional Drosophila with or without sodium butyrate,
and we first collected Drosophila midgut components for bacterial analysis.

For gut microbiome analysis, 16S rDNA sequencing was used to analyze the bacterial
structure upon sodium butyrate treatment compared to conventional Drosophila. Prin-
cipal component analysis showed three biological replicates from two groups could be
well clustered (Figure 3A), indicating a visible effect of sodium butyrate on Drosophila
microbiome components. At the phylum level, the dominant effect of sodium butyrate
was shown to promote Firmicutes and suppress Proteobacteria (Figure 3B). The bacterial
structure was also analyzed at the class, order, family, genus, and species level, respectively
(Supplementary Figure S1). Functional prediction of bacterial structure showed that the
relative abundance of Gram-positive bacteria was increased and Gram-negative bacteria
was decreased by sodium butyrate treatment (Figure 3C), which was consistent with bac-
terial structure at the phylum level (Figure 3B). In addition, sodium butyrate treatment
increased the abundance of aerobic bacteria and decreased the abundance of anaerobic
bacteria. Microbiome phenotypes predictions results showed that those changed bacteria
species might be involved in many phenotypes with metabolism as the dominant function
(Figure 3D).

Figure 3. Gut microbiome analysis of 16S rDNA sequencing data from conventional Drosophila (C) and sodium butyrate-
treated Drosophila (SB). (A) Principal component analysis of samples from two groups, n = 3. (B) Microbiome analysis shown
at phylum level. (C) Organism level microbiome phenotypes predicted with Bugbase. (D) Functional prediction heat map
with PICRUSt.

After we confirmed the effect of sodium butyrate on Drosophila intestinal microbes,
we further performed RNA sequencing of Drosophila treated with or without sodium bu-
tyrate. Principal component analysis of RNA sequencing data showed that gene expression
patterns from different groups could be well clustered (Figure 4A). Volcano plot analysis
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showed sodium butyrate treatment under conventional conditions could also regulate
Drosophila gene expression in both up- and downregulation patterns (Figure 4B). The most
significant upregulated genes coding for these transcripts were Met75Ca, CG42866, and the
most significant downregulated genes were CG30025, CG33502, Cpr49Ah, and CG17298.
Gene ontology analysis showed that most differentially expressed genes regulated by
sodium butyrate were enriched in key biological processes (Figure 4C). Overall, sodium
butyrate treatment showed an inhibitive effect on host gene expression under both con-
ventional conditions (Figure 4C) and sterile conditions (Figure 1C). We also performed
quantitative RT-PCR validation of differentially expressed genes, and genes with different
functions were selected for validation experiments (Figure 5 and Supplementary Figure S2).
The results were similar with RNA sequencing data, suggesting that sodium butyrate treat-
ment for conventional Drosophila could affect gene expression, especially genes encoding
metabolic enzymes (Figure 5A) and lysozyme family proteins (Figure 5B).

Figure 4. RNA sequencing analysis of conventional Drosophila (C) and sodium butyrate-treated Drosophila (SB). (A) Principal
component analysis of samples from two groups, n = 2. (B) Volcano plot showing transcriptional regulation of genes.
(C) Gene ontology enrichment of RNA sequencing data from conventional Drosophila compared to sodium butyrate-treated
Drosophila. The x-axis represents gene numbers upregulated or downregulated, and the y-axis represents different pathways
in the biological process.
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Figure 5. Quantitative RT-PCR validation of genes from conventional Drosophila (C) and sodium
butyrate-treated Drosophila (SB). (A) Relative expression of transcripts encoding metabolic enzymes
in qRT-PCR experiments. (B) Relative expression of transcripts encoding lysozyme family proteins
in qRT-PCR experiments. Significant differences are determined by the unpaired Student’s t-test.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Our gut microbiome data and transcriptome data suggested the dominant role of
sodium butyrate in metabolism. Next, we performed non-target analysis using UPLC-
MS/MS and obtained the metabolome data of Drosophila treated with or without sodium
butyrate. Orthogonal partial least squares discriminant analysis showed five biological
replicates could be clustered and samples from two groups could be separated (Figure 6A).
Pie chart analysis of the proportion of different metabolites components showed lipids
were the main components of different metabolites between conventional Drosophila and
sodium butyrate-treated Drosophila (Figure 6B). Heat map analysis of metabolites with
different abundance also indicated the clustering of biological replicates between two
groups. The results showed that sodium butyrate treatment indeed could influence the
abundance of metabolites, with lipids as the dominant change (Figure 6C).

To understand the relationship among the transcriptome, the microbiome, and the
metabolome with the impact of sodium butyrate, we first carried out a correlation analysis
between transcriptome and microbiome with metabolic immunity-related transcripts and
the most abundant bacteria in the microbiome analysis results selected in the correlation
analysis (Figure 7A). At genus level, the most enriched bacteria affecting the transcriptome
pattern were Acetobacter and Lactobacillus. They were positively correlated with the upregu-
lated genes and negatively correlated with the downregulated genes, while Serratia and
Enterococcus were shown to have the contrary role. Among the upregulated genes, Gba1a
was involved in lipid metabolism and glycan biosynthesis, while Mal-A1, Mal-A2, Mal-
A3, Mal-A4, and Mal-A8 were involved in carbohydrate metabolism and were positively
correlated with Acetobacter and Lactobacillus (Figure 7A). We also performed correlation
analysis between transcriptome and metabolome (Figure 7B). The majority of changed
metabolites upon sodium butyrate treatment were lipids, such as Phosphatidylcholine
(PC), Phosphatidylethanolamine (PE), and lysophosphatidylcholine (LPC). The representa-
tive differential metabolites LPC 18:3, PC (16:2e/2:0), PC (16:2e/16:1), and PE (15:0/15:1)
were screened out by Cytoscap, and it was obvious that PE (15:0/15:1) was negatively
correlated with metabolism-related genes Mal-A1, Mal-A2, Mal-A4, and Mal-A8, while the
antimicrobial peptide gene DptA was positively correlated. Meanwhile, PC (16:2E/2:0), PC
(16:2E/16:1), and LPC 18:3 were positively correlated with PGRP-SC2, a gene that could
promote intestinal immune homeostasis (Figure 7B).
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Figure 6. Non-target analysis of metabolites from conventional Drosophila (C) and sodium butyrate-treated Drosophila
(SB). (A) Orthogonal partial least squares discriminant analysis of two groups samples, n = 5. (B) Pie chart showing the
proportion of different metabolites components. (C) Heat map analysis of metabolites from two groups in both positive and
negative electrospray ionization modes. Blue to red indicates an increase in metabolite abundance.

Figure 7. Integrative analysis of the transcriptome, the microbiome, and the metabolome data from conventional Drosophila
(C) and sodium butyrate-treated Drosophila (SB). (A) Correlation analysis between the transcriptome and the microbiome
data in upregulated and downregulated manner, respectively. (B) Correlation analysis between the transcriptome and
the metabolome data in an upregulated and downregulated manner, respectively. Upregulated and downregulated
transcripts were selected to analyze the correlation with the microbiome and the metabolome data. The correlation analysis
was performed using igraph (version 1.1.1) in R package and networks with significant correlations were drawn using
Cytoscape software. Red indicates the transcripts with log2(fold change) < 0, and blue indicates the transcripts with
log2(fold change) > 0, an increase of color indicated the extend of fold change. The solid line and dashed line indicated
positive correlation and negative correlation, respectively.
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3. Discussion

Host microbiome has been increasingly recognized to play an important role in
shaping the health of animals, and the conception that intestinal bacteria communities can
affect host physiology has been largely acknowledged [10,11]. Recent advances indicate
that the microbiota is involved in the energy balance and metabolic homeostasis of host
animals. In mammals, the connection between gut microbiota and energy metabolism is
well established to be an area of intense research [12]. However, our current understanding
of the impact of gut microbiota on host is generally descriptive, due to technical difficulties
associated with integrated analysis of both the microbes and the host [8]. Most research
on the impact of the microbiome on animals is designed to identify the effects of single
microbial taxa and single metabolite of microbial origin, while the networks of host-
microbiome interactions at different layers in nature are much more complicated than
we thought [13]. A comprehensive understanding of host-microbiome interactions that
integrates multi-omics data information is currently expected in the field.

Recently, there has been growing interest in using Drosophila melanogaster to elucidate
the mechanisms underlying the complex relationships between the host and its micro-
biota [14,15], and increasing evidence using Drosophila showed that the microbiome can
influence many aspects of the host, including the metabolism, the immune system and the
behavior [16,17]. In principle, the relative simplicity of the Drosophila microbiota makes it a
useful model to study host-microbiota interactions. In this context, the fruit fly Drosophila is
considered a key model for understanding microbiota’s influence on animal health. In the
present study, we used Drosophila as the model to investigate the impact of microbiome and
microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome.
Using multi-omics analysis, we found that microbiome and sodium butyrate could impact
host gene expression patterns in both sterile Drosophila model (Figure 1) and conventional
Drosophila model (Figure 4). At the molecular level, sodium butyrate is likely to affect
host lipid metabolism through gene expression regulation. Our results demonstrated that
the microbiome and sodium butyrate of Drosophila can significantly alter gene expression,
bacterial structure, and metabolites composition of the host.

Among the short-chain fatty acids from microbiota, sodium butyrate received specific
attention because it has been proven to directly activate specific G protein-coupled recep-
tors on enteroendocrine cells and stimulate the synthesis of intestinal endocrine peptides
to regulate lipid and carbohydrate metabolism [18,19]. In addition, sodium butyrate was
also confirmed as an effective histone deacetylases inhibitor to subsequently regulate the
expression of a variety of homeostasis-related genes [20,21]. More importantly, sodium
butyrate has been used in aging-related disease therapy since it can improve the memory
function in animal models [22]. In our study, we supplemented the Drosophila food with
sodium butyrate under sterile conditions and conventional conditions. The gene expres-
sion patterns of two conditions collectively suggest the effect of sodium butyrate on the
host transcriptome with the effect more pronounced in the sterile condition where the
background level of sodium butyrate was depleted. Under conventional conditions where
Drosophila has normal microbiota, sodium butyrate treatment still leads to hundreds of
differentially expressed genes and dozens of differential metabolites. Specifically, the most
significant upregulated genes are Met75Ca, CG42866, and the most downregulated genes
are CG30025, CG33502, Cpr49Ah, CG17298. The microbiome analysis showed that the rela-
tive abundance of Gram-positive bacteria was increased and that of Gram-negative bacteria
was decreased by sodium butyrate treatment (Figure 3). The results are consistent with
the literature in which Gram-positive firmicutes are the main sodium butyrate-producing
bacteria [23,24]. In our study, Acetobacter and Lactobacillus showed a dominant role in the
intestinal flora of Drosophila treated by sodium butyrate, and the metabolites from these
bacteria could be used to maintain an acidic environment in the intestinal tract, thereby
inhibiting the growth of harmful bacteria. The negative correlation between these two
types of bacteria and antimicrobial peptide genes IM2, IM3, and DptA (Figure 7A) could
also support the effect of sodium butyrate on Acetobacter and Lactobacillus. The metabolites
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composition in our study showed that sodium butyrate supplement can dramatically cause
lipid accumulation (Figure 6); this is also consistent with the previous report that sodium
butyrate can regulate lipid metabolism [25,26]. Our work can serve as launching points
for future work, and additional investigations are warranted to understand the effects
of sodium butyrate on host metabolism, including the specific functions of differentially
expressed genes in Drosophila.

In this study, we took advantage of Drosophila as the model to study host-microbiome
interactions and carried out experiments including RNA sequencing, 16S rRNA sequencing,
and metabolites profiling. Our integrative analysis of the transcriptome, the microbiome
and the metabolome data suggested several candidate transcripts that are coregulated
by sodium butyrate. The results from this study provide molecular evidence for host-
microbiome interactions with multi-omics data. Our work also validated Drosophila as
a valuable model for microbiome research, especially as it was very simple to establish
the sterile Drosophila model with low cost and short time. In our study, we used the
entire organism of Drosophila for our transcriptome and metabolome. We appreciate that
the entire organism may be complex. However, we used the entire organism for both
experimental Drosophila and control Drosophila; thus, the influence of the complexity of
different cell types has been minimized. Overall, we believe that the Drosophila model
will offer a valuable alternative to mammalian models for the fundamental discovery of
microbiome functions as indicated in the literature [27–29]. Although there are differences
between the Drosophila and the mammalian model—for example, Drosophila lacks an
adaptive immune system [30]—the overall immune metabolic pathways that maintain
intestinal homeostasis, function, and integrity are still highly conserved [31,32]. Moreover,
the host-microbiota interactions are most likely conserved across the animal kingdom and
are important for all animal health [31]. The long application record as a successful model
for discovering fundamental biological mechanisms has proved Drosophila as a valuable
system for understanding host-microbiome interactions, and we will continue to carry out
systematical investigation on Drosophila-microbiome interactions in our future study.

4. Materials and Methods
4.1. Conventional Drosophila and Sterile Drosophila

For conventional Drosophila, Drosophila melanogaster w1118 was reared at 25 ◦C under 12
h light/12 h dark cycles on yeast-glucose medium (1 L water, 100 g yeast, 100 g glucose, 1.2%
agar, 0.1% potassium sorbate) [33,34]. Sodium butyrate (molecular formula: C4H7NaO2,
Sigma, 100 mM dissolved in water) -supplemented food was prepared in yeast-glucose
basis medium. Grape juice agar plates were made by microwaving the mixture (100 mL
water, 10 g yeast, 10 g glucose, and 1 g of agar), the diet was boiled three times, and grape
juice was added to increase the visibility of eggs on the agar plate when we collected
eggs [29]. The agar was cooled down and poured into clean Petri dishes, and the yeast
was spread on the agar surface. The eggs were collected from the plastic cage by rinsing
the agar plate with distilled water and gently poured into the cell strainer. To establish
the sterile Drosophila model, fresh eggs were dechorionated in 2.7% sodium hypochlorite
followed by twice with washes with 70% ethanol for 2 min in the biosafety cabinet. After
washing the surface of the eggs with sterile water, a sterilized paintbrush was used to
transfer the eggs to a pre-sterilized tube containing food. Sodium butyrate was included
in the sterilized food for the treatment group. The protocol for animal experiment was
reviewed and approved by the Institutional Animal Care and Use Committee of South
China Normal University at Guangzhou, China (protocol code SCNU-SLS-2021-015).

4.2. Gut Microbiome Analysis

After 3–4 days of eclosion, Drosophila adults were anesthetized with CO2 gas followed
by surface disinfected with 70% ethanol, washed three times with sterile PBS, and dissected
to collect midguts. Equal numbers of males and females were used to ensure no gender
differences in the bacterial content (40 flies per replicate). The bacterial DNA was purified
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using TIANamp Bacteria DNA kit (Tiangen Biotech Inc., Beijing, China), following the
manufacturer’s protocols. A region encompassing the V3–V4 hypervariable regions of the
16S rRNA gene was amplified using the primers 341F (CCTACGGGNGGCWGCAG) and
806R (GGACTACHVGGGTATCTAAT). The 16S amplicon sequencing was performed on
the Illumina Hiseq2500 platform by Guangzhou Genedenovo Biotechnology.

For microbiome data analysis, raw data containing adapters or low-quality reads were
further filtered using FASTP (https://github.com/OpenGene/fastp, accessed on 7 January
2021), and paired-end clean reads were merged as raw tags using FLSAH [35], with a
minimum overlap of 10bp and mismatch error rates of 2%. Clean tags were searched against
the reference database to perform reference-based chimera checking using the UCHIME
algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html, accessed on 8
January 2021). All chimeric tags were removed, and finally, obtained effective tags were
used for further analysis. The effective tags were clustered into operational taxonomic
units (OTUs) of ≥ 97% similarity using UPARSE [36]. The tag sequence with the highest
abundance was selected as the representative sequence within each cluster. Between-
groups Venn analysis was performed in R project (version 3.4.1) to identify unique and
common OTUs. The representative sequences were classified into organisms by a naive
Bayesian model using RDP [37] based on SILVA database (https://www.arb-silva.de/,
accessed on 8 January 2021). Chao1, Simpson, and all other alpha diversity indexes were
calculated in QIIME. OTU rarefaction curve and rank abundance curves were plotted in
QIIME. Multivariate statistical techniques were calculated and plotted in R project. The
KEGG pathway analysis of the OTUs was inferred using PICRUSt [38] and Tax4Fun [39].
Microbiome phenotypes were classified using BugBase.

4.3. RNA Sequencing and Data Analysis

After total RNA was extracted, the enriched mRNA by Oligo(dT) beads were frag-
mented using fragmentation buffer and reverse transcripted into cDNA with random
primers using the NEBNext® Ultra™ RNA library prep kit for Illumina following manufac-
turer’s instructions. For first-strand cDNA synthesis, the fragmented and primed mRNA
was reversed into cDNA using ProtoScript IIReverse Transcriptase in a 20 µL reaction with
the procedure of 10 min at 25 ◦C and 15 min at 42 ◦C followed by 15 min at 70 ◦C. For
second-strand cDNA synthesis, the Second Strand Synthesis Enzyme Mix was added to
the First-Strand Synthesis reaction to react at 16 ◦C for 1 h in an 80 µL reaction. Then,
the cDNA fragments were purified with QiaQuick PCR extraction kit (Qiagen, Germany),
end-repaired, poly(A) added, and ligated to Illumina sequencing adapters. The ligation
products were size selected by agarose gel electrophoresis, PCR-amplified, and sequenced
using Illumina HiSeq2500 by Genedenovo Biotechnology Co, Ltd (Guangzhou, China). For
RNA sequencing of Drosophila samples under sterile conditions, libraries were sequenced
on Illumina HiSeq Xten platform.

For data processing, quality control of sequencing data was assessed with fastqc (www.
bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 12 January 2021). Adaptor
sequences were trimmed by cutadapt [40] with at least 30 nt remaining length, and clean
reads were mapped to the dm6 reference genome using HISAT2 [41]. FeatureCounts [42]
was used to count the number of reads that mapped to a gene. Gene expression level was
calculated by R package DESeq2 [43]. Hierarchical clustering and principal component
analysis were used to visualize the effect of different groups. Differentially expressed genes
between two groups were identified by the false discovery rate corrected p-value < 0.05
and log2|fold change| > 1. In order to obtain the biological annotation of differentially
expressed genes, gene ontology analysis was performed by clusterProfiler [44]. The p-
value < 0.05 and q-value < 0.01 were considered a significant enrichment, and GO (Gene
Ontology) terms redundancy were removed by REVIGO [45].

https://github.com/OpenGene/fastp
http://www.drive5.com/usearch/manual/uchime_algo.html
https://www.arb-silva.de/
www.bioinformatics.babraham.ac.uk/projects/fastqc/
www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.4. Metabolites Extraction, UHPLC-MS/MS and Metabolome Analysis

Drosophila samples three days after feathering were ground separately with liquid
nitrogen and homogenized with 80% methanol and 0.1% formic acid precooled resus-
pended in the vortex well, incubated on ice for 5 min at 4 ◦C, and centrifuged for 20 min.
The supernatant portion was diluted with LC-MS grade water to a final concentration
of 53% methanol. The samples were transferred to tubes and centrifuged at 5000× g at
4 ◦C for 20 min. Finally, the supernatant was injected into the LC-MS/MS system for
analysis. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) was
performed using the Vanquish UHPLC system (ThermoFisher Scientific, Waltham, MA,
USA) and Orbitrap Q ExactiveTM HF-X mass spectrometer (ThermoFisher) in Genedenovo
Biotechnology Co., Ltd.

The raw data files generated by UHPLC-MS/MS were processed using the Compound
Discoverer 3.1 (ThermoFisher) to perform peak alignment, peak picking, and quantita-
tion for each metabolite. Peak intensities were normalized to the total spectral intensity.
The normalized data were used to predict the molecular formula based on additive ions,
molecular ion peaks, and fragment ions; then, the peaks were matched with the mz-
Cloud (https://www.mzcloud.org/, accessed on 20 January 2021) to obtain the accurate
qualitative and relative quantitative results. Statistical analyses were performed using the
statistical software R, Python and CentOS.

4.5. RNA Preparation and RT-qPCR Analysis

According to the manufacturer’s instructions, Drosophila adults were homogenized
in 1 mL TRIzol (Accurate Biotechnology, Hunan, China) with sterilized steel balls. The
RNA samples were dissolved in an appropriate amount of DEPC water. NanoDrop 2000
spectrophotometer (ThermoFisher) was used to quantify the concentration and purity of
total RNA in each sample at a wavelength of 260 nm. The HiFiScript gDNA Removal cDNA
Synthesis Kit (CWBIO, Jiangsu, China) was used to synthesize cDNA. Three biological
replicates were used for quantitative reverse transcription PCR analysis using MagicSYBR
Mixture (CWBIO). The relative mRNA level of gene expression was measured with Rp49 as
internal control by calculating the values of ∆CtGene/∆CtRp49 and analyzed by the 2−∆∆Ct

method. Primers used in this study are listed in Supplementary Table S1.

5. Conclusions

This study investigated the role of the microbiome and microbiota-derived metabolite
sodium butyrate in regulating host transcriptome and metabolome. To validate our hypoth-
esis, we established both the sterile Drosophila model and the conventional Drosophila model
treated with or without sodium butyrate. Our transcriptome data and qRT-PCR validation
results showed that microbiome and sodium butyrate can impact host gene expression
patterns in both sterile Drosophila model and conventional Drosophila model. By 16S rRNA
sequencing analysis, we showed that sodium butyrate treatment can affect bacterial struc-
ture with the dominant effect on Firmicutes and suppress Proteobacteria. Functional
prediction of bacterial structure showed that the relative abundance of Gram-positive bacte-
ria was increased and Gram-negative bacteria was decreased by sodium butyrate treatment,
respectively. We also identified Drosophila metabolites by ultra-high performance liquid
chromatography-MS/MS; the results showed sodium butyrate influenced the composition
of host metabolites with lipids as the dominant changed components. Our integrative
analysis of the transcriptome, the microbiome, and the metabolome data in this study
identified candidate transcripts that are coregulated by sodium butyrate. Taken together,
our work reveals the impact of microbiome and microbiota-derived sodium butyrate on
host transcriptome and metabolome and provides evidence for a better understanding of
host-microbiome interactions with multi-omics data.

https://www.mzcloud.org/
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050298/s1, Supplementary Table S1. Primer sequences used for RT-qPCR analysis
in this study. Supplementary Figure S1. Gut microbiome analysis of bacterial structure at the class,
order, family, genus, species level, respectively. 16S rDNA sequencing data from conventional
Drosophila (C) and sodium butyrate-treated Drosophila (SB) were used, n=3. Supplementary Figure S2.
Quantitative RT-PCR validation of genes from conventional Drosophila (C) and sodium butyrate-
treated Drosophila (SB). (A) Relative expression of up-regulated transcripts in the transcriptome
data. (B) Relative expression of down-regulated transcripts in the transcriptome data. Significant
differences are determined by the unpaired Student’s t-test. * p < 0.05, ** p < 0.01.
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