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Introduction
ChIP-seq technique combines chromatin immunoprecipitation (ChIP) assays with mas-
sively parallel sequencing (Seq) and delivers genome-wide profiling of DNA sites bound 
by a specific protein [1, 2]. DNA-associated proteins mainly include transcription factors 
(TFs) and histone modification proteins (HMs) and they have diverse functional roles 
in the epigenome. Master TFs [3] bind at specific DNA locations and most have strong 
ChIP-seq signal enrichment [4]. Partner TFs and most  HMs bind at more diverse loci 
and some of them have weak ChIP-seq signal enrichment at long DNA segments [5–7]. 
All generate mechanistically important regulatory actions on nearby gene transcription. 

Abstract 

Background:  ChIP-seq combines chromatin immunoprecipitation assays with 
sequencing and identifies genome-wide binding sites for DNA binding proteins. While 
many binding sites have strong ChIP-seq ‘peak’ observations and are well captured, 
there are still regions bound by proteins weakly, with a relatively low ChIP-seq signal 
enrichment. These weak binding sites, especially those at promoters and enhancers, 
are functionally important because they also regulate nearby gene expression. Yet, it 
remains a challenge to accurately identify weak binding sites in ChIP-seq data due to 
the ambiguity in differentiating these weak binding sites from the amplified back‑
ground DNAs.

Results:  ChIP-BIT2 (http://​sourc​eforge.​net/​proje​cts/​chipb​itc/) is a software package for 
ChIP-seq peak detection. ChIP-BIT2 employs a mixture model integrating protein and 
control ChIP-seq data and predicts strong or weak protein binding sites at promoters, 
enhancers, or other genomic locations. For binding sites at gene promoters, ChIP-BIT2 
simultaneously predicts their target genes. ChIP-BIT2 has been validated on benchmark 
regions and tested using large-scale ENCODE ChIP-seq data, demonstrating its high 
accuracy and wide applicability.

Conclusion:  ChIP-BIT2 is an efficient ChIP-seq peak caller. It provides a better lens to 
examine weak binding sites and can refine or extend the existing binding site collec‑
tion, providing additional regulatory regions for decoding the mechanism of gene 
expression regulation.
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Yet, accurately identifying the weak binding sites is challenging because their relatively 
low signals in the ChIP-seq experiment can be easily obscured by the noise signals pro-
duced by the amplified background DNAs.

The ChIP-BIT algorithm (Bayesian inference of target genes using ChIP-seq data) was 
developed by Chen et al. and was originally applied to detecting the narrow TF bind-
ing sites (TFBSs) near to the gene transcription starting sites (TSSs) and predicting tar-
get genes [8]. Using a multi-component mixture distribution to jointly model ChIP-seq 
read intensities in the sample (protein) and the input ChIP-seq experiments, ChIP-BIT 
can better capture weak peaks and predict their target genes. Recent research on dis-
tal regulatory regions like enhancers has demonstrated the functional importance of 
protein binding sites at these regions on distal gene regulation [9]. Proteins like EP300, 
H3K27ac, and H3K4me1 bind to enhancers more frequently than at promoters [10–12]. 
For ChIP-seq data of such proteins, the peak detection capability of ChIP-BIT is very 
limited. Moreover, many HMs are having very wide peaks crossing thousands of base 
pairs [13]. Compared to the narrow and sharp ChIP-seq peaks, ChIP-seq signals of wide 
peaks are not central to the peak summits but spreading along  wide genome segments. 
These wide peaks are also out of the peak width scope that ChIP-BIT can detect. To 
enable weak peak detection for all these proteins, it is important and necessary to extend 
the ChIP-BIT algorithm and make it generally applicable to most ChIP-seq data.

Here we present ChIP-BIT2, an extended software package featuring the ChIP-BIT 
algorithm and being able to detect weak peaks across the whole genome for diverse 
DNA-associated proteins. ChIP-BIT2 is a C/C++ implementation and runs 40% faster 
than the original ChIP-BIT. We benchmarked ChIP-BIT2 on selected ChIP-seq data 
with experts labeled peak/nonpeak regions [14] and demonstrated that ChIP-BIT2 had 
a lower error rate than existing peak callers like MACS2. We have also applied ChIP-
BIT2 to multiple ChIP-seq datasets downloaded from the ENCODE data portal [15] and 
detected binding sites of 50 proteins in the breast cancer MCF-7 cells. Results revealed 
that these DNA-binding proteins indeed had a different tendency to bind at promoters, 
enhancers, or other genomic locations, demonstrating the necessity to properly model 
ChIP-seq signals within a specific category of regions to better capture peaks, especially 
weak ones. We finally compared ChIP-BIT2 results with peaks previously  identified  
by the ENCODE pipeline, for the same set of proteins including both TFs and HMs. At 
active regulatory regions in MCF-7 cells, ChIP-BIT2 recalled 92% of ENCODE peaks 
and in the meanwhile, it reported additional 11,813 peaks, providing more candidates 
for studying gene regulation in breast cancer cells [16].

Methods
ChIP‑BIT algorithm

The challenge in weak peak detection of ChIP-seq data lies in the ambiguity in differentiat-
ing weak signals of protein binding sites from noise signals produced by the background 
regions. In ChIP-seq data, signals from the amplified background DNAs can be as strong as 
true binding signals. ChIP-BIT2 shrinks the distance in read intensity distributions between 
strong and weak peaks using one global distribution and amplifies the difference between 
weak peaks and background regions using multiple local distributions. In this way, it brings 
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more power for detecting protein binding sites with different strengths of ChIP-seq read 
enrichment (Fig. 1a).

To enable flexible detection for narrow or wide peaks, a sliding window is used for peak 
screening. The window size is adjustable to meet different resolution needs. For example, 
most TFs have narrow and sharp ChIP-seq peaks. A narrow window size like 50 base pairs 
(bps) can help identify high-resolution peak boundaries. For HMs, their peaks can be as 
wide as several thousand bps. A wide window size like 500 bps  can effectively smooth sig-
nal fluctuation in the wide genomic region of a whole peak.

Given a ChIP-seq profile for a specific protein, assuming there were N  candidate genomic 
regions overlapping with at least two ChIP-seq reads at each, we partitioned the n th region 
into fixed-length windows and calculated read intensity sn,w for the window w . In the mean-
while, we calculated another read intensity rn,w using data from the matched input ChIP-
seq profile. The relative distance of the window w to the nearest gene TSS or enhancer 
center was denoted by dn,w . ChIP-BIT2 estimated a probability for protein binding occur-
rence in the window w of the region n as [8]:

Depending on the binding or non-binding status in the variable bn,w (with a uniform prior 
on binding ‘ bn,w = 1’ or non-binding ‘ bn,w = 0’), we modeled sn,w a two-component Gauss-
ian mixture distribution as:
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Fig. 1  ChIP-seq peak detection using a Gaussian mixture model. ChIP-BIT2 a converted read counts to read 
intensity and then b used a mixture of Gaussian distributions to differentiate (strong and weak) binding 
events from background signals
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If bn,w = 1 , we assumed the region bound by the protein and modeled read intensities 
at protein-bound regions using a global Gaussian distribution with mean µ1 and vari-
ance σ 2

1
 , where model parameters µ1 and σ 2

1
 were unknown and needed to be estimated. 

If bn,w = 0 , we assumed it a background region and modeled the read intensity using a 
local Gaussian distribution with mean rn,w and variance σ 2

0
 (the variance of background 

signals was estimated using the input ChIP-seq data).
The second likelihood function P

(

dn,w|bn,w
)

 in Eq. (1) modeled the regulatory effects 
of the selected region on nearby genes. ChIP-seq data visualization around gene pro-
moter regions (Additional file  1: Fig. S1A) and evidence from previous studies [8, 17] 
both suggest that: for protein binding sites, the ChIP-seq read intensity follows an expo-
nential distribution towards the gene TSS; for background regions, the distribution is 
relatively uniform around the TSS. Therefore, we modeled dn,w a mixture distribution 
with two components as follows:

where � represented the exponential distribution parameter, which was unknown and 
needed to be estimated. dP represented the length of a promoter region.

For enhancers, ChIP-seq data visualization (Additional file 1: Fig. S1B) shows that the 
distribution of ChIP-seq read intensity is uniform and does not correlate with the dis-
tance to the enhancer center or the nearest TSS. Therefore, specifically for peak calling 
at distal enhancers, we assumed uniform distributions on dn,w as:

where dE represented the length of an enhancer region.
ChIP-BIT2 used the Expectation–Maximization algorithm to iteratively estimate dis-

tribution parameters and the probability of binding occurrence in each window (Fig. 1b). 
Briefly, in the E-step, ChIP-BIT2 estimated the model parameters based on the inferred 
binding status variables ( bn,w ) of all regions; in the M-step, ChIP-BIT2 updated the pos-
terior probability P

(

bn,w|sn,w , dn,w
)

 for each window using the estimated model param-
eters, and then updated the binding status in the variable bn,w  accordingly. We iterated 
the E and M steps until the changes of parameter values were less than 5%. ChIP-BIT2 
combined consecutive windows with probabilities higher than a cut-off threshold and 
output them together as one single peak. Depending on the protein feature and the win-
dow resolution, a sharp peak can take one or two windows and a wide peak can take 
more than ten windows.

ChIP‑BIT2 pipeline

ChIP-BIT2 was implemented using C/C++. The pipeline of ChIP-BIT2  was shown in 
Fig. 2 (Additional file 1: Fig. S2). Given a pair of sample and input ChIP-seq profiles in 
SAM format, ChIP-BIT2 firstly extracted the genomic coordinates of individual reads 
from sample and input ChIP-seq profiles, respectively (Additional file 1: Fig. S3). And 
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then it detected peaks at promoters, enhancers (if annotation files were provided), or 
across the whole genome.

Promoter mode

Promoters refer to the proximal regulatory regions centered around gene TSS. A TSS 
annotation file is required to enable the ‘-promoter’ running mode of ChIP-BIT2. Users 
can set the preferred promoter size using the ‘-s’ option. Under this mode, ChIP-BIT2 
jointly modeled read intensities in the sample and input ChIP-seq profiles using the 
Gaussian mixture model [Eq. (2)]. In the meanwhile, it modeled the relative distance of 
each window to the nearest TSS using the Exponential-Uniform mixture model [Eq. (3)]. 
A demo of using ChIP-BIT2 for detecting peaks at promoters was provided in Addi-
tional file 1: Fig. S4.

Enhancer mode

Enhancers referred to distal regulatory regions interacting with promoters/TSSs in the 
3D genome [18]. The linear distance of an enhancer to its target promoter/gene can be 
up to 1 Mbps. Some proteins like EP300, H3K27ac, and H3K4me1 specifically bind to 
enhancers frequently and have higher ChIP-seq signal enrichment at enhancers than 
at promoters or other genomic locations [10–12]. To effectively detect ChIP-seq peaks 
for such proteins, an enhancer annotation file is required to enable the ‘-enhancer’ run-
ning mode of ChIP-BIT2. Under this mode, ChIP-BIT2 modeled read intensities in the 
sample and input ChIP-seq profiles jointly using Eq.  (2). Different from the  promoter 
mode, ChIP-BIT2 modeled the relative distance of each window to the enhancer center 

Fig. 2  ChIP-BIT2 pipeline. ChIP-BIT2 respectively extracted read location information from sample and input 
ChIIP-seq SAM format profiles. Depending on the running mode, it can detect peaks from the whole genome 
or from annotated regulatory regions like promoters or enhancers. To enable  peak detection of different 
sizes, ChIP-BIT2 partitioned genomic segments into smaller windows and calculated read intensity in each 
window for distribution parameter learning and binding occurrence probability estimation. Windows with 
the posterior probability over 0.9 were output in BED format as final peaks
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using a Uniform distribution [Eq. (4)]. A demo of using ChIP-BIT2 for peak detection at 
enhancers was provided in Additional file 1: Fig. S5.

Whole genome mode

Promoters and enhancers are two categories of well-understood regulatory regions. 
There exist many other types of genomic regions also bound by DNA proteins. For 
example, cohesion proteins CTCF and RAD21 usually bind at the boundaries of topo-
logical associated domains and play a key role in the 3D chromatin structure [19]. Tran-
scription initiation protein POLA2 binds to all active regulatory regions in the whole 
genome. For such proteins, it is important to call their ChIP-seq peaks from the whole 
genome, using the ‘-WG’ mode of ChIP-BIT2. As no annotated regulatory regions were 
needed, ChIP-BIT2 modeled read intensities from sample and input ChIP-seq profiles 
and predicted peaks at genome-wide locations.

Results
Histone modification benchmark analysis

The ChIP-BIT algorithm has been benchmarked on narrow TFBSs and demonstrated 
to perform better than conventional peak callers [8, 20]. To evaluate the accuracy of 
ChIP-BIT2 on detecting narrow or wide histone modifications, for selected HMs we 
benchmarked ChIP-BIT2 on experts-labeled peak/nonpeak regions. We used an HM 
benchmark dataset [14] including 10,253 H3K4me3 regions (narrow pattern) and 2573 
H3K36me3 regions (broad pattern), the protein binding statuses of which were respec-
tively and independently labeled by three experts by visualizing ChIP-seq data across 
multiple immune cell samples (T-cell, B-cell, and monocyte). For some peaks with low-
resolution peak boundaries, peak-start and -end regions were respectively labeled.

Here we compared the detection accuracy of ChIP-BIT2 to that of MACS2 (2020.4 
version) [21] and CNN-Peaks [22]. MACS2 was widely used in ChIP-seq peak detection. 
It featured regions with high read counts as peaks so most of its detected peaks were 
strong. CNN-Peaks was a supervised machine-learning approach, not making distribu-
tion assumptions on read depth but learning proper cut-off thresholds at labeled regions 
from the sample ChIP-seq data. As CNN-Peaks used different thresholds to determine 
the peak/nonpeak status for regions with different ChIP-seq read depths, it  could cap-
ture weak binding events.

We downloaded H3K4me3 and H3K36me3 ChIP-seq data and their matched input in 
K562 and GM12878 cells, from ENCODE data portal (https://​www.​encod​eproj​ect.​org/) 
[15]. K562 and GM12878 cell lines are both blood-specific, providing a matching context 
to the benchmark data. In total, four ChIP-seq datasets and three peak calling tools were 
included in this comparison. Peak detection errors were assessed using PeakError [14]. 
To account for both false positives and false negatives, we calculated the F1 score, the 
harmonic mean of precision and recall (2 * precision * recall/(precision + recall)).

To fairly compare the peak detection accuracy between supervised (CNN-Peaks) and 
unsupervised approaches (ChIP-BIT2 and MACS2), we performed 4-fold  cross-vali-
dation: using  three folds to optimize model parameters of each method and using the  
hold out one fold to assess detection accuracy. Under this setting, the difference between 
the three selected methods was small but ChIP-BIT2 had the highest F-1 score (Table 1). 

https://www.encodeproject.org/
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In reality, in a ChIP-seq profile, the peak regions were largely unknown before peak 
detection analysis. The model parameters of a peak caller cannot be specifically opti-
mized using signals from true peak/nonpeak regions. This largely limited the application 
of supervised approaches. Using pre-trained models to predict peaks in a new ChIP-seq 
profile may not return good results either,   because ChIP-seq experiments were highly 
context-specific.

Both ChIP-BIT2 and MACS2 were unsupervised approaches. As shown in Table  1, 
under unsupervised settings, ChIP-BIT2 had a higher accuracy than MACS2. ChIP-
BIT2 ran reasonably fast (< 15  mins) on DELL T7600 workstation with 3.1  GHz CPU 
(32 cores) and 128 GB RAM. As ChIP-BIT2 detected additional weak binding events by 
screening many more candidate regions, its run-time was slightly longer than MACS2.

Run‑time of ChIP‑BIT2

To evaluate the running time of ChIP-BIT2 in different scenarios, we downloaded ChIP-
seq data of 39 TFs in breast cancer MCF-7 cells and their matched input data from 
ENCODE and the GEO databases (Additional file 1: Table S1). We also downloaded TSS 
and enhancer annotation files for MCF-7 cells from the SCREEN webserver (https://​
screen.​encod​eproj​ect.​org/) [23]. In total, we obtained 25,802 promoters (possibly over-
lapping for closely located genes) and 34,599 enhancers. ChIP-BIT2 and ChIP-BIT were 
respectively applied to individual ChIP-seq datasets, under CentOS Linux 7.3 system, on 
a DELL T7600 workstation with 3.1 GHz CPU (32 cores) and 128 GB RAM. ChIP-BIT2 
achieved a speed improvement of ~ 40% over ChIP-BIT (Fig. 3). Moreover, although the 
number of enhancers was 30% more than the number of promoters, ChIP-BIT2 had a 
similar running time between ‘promoter’ and ‘enhancer’ modes.

DNA proteins exhibiting different binding tendency to promoters or enhancers

We applied ChIP-BIT2 to another 11 HMs with available MCF-7 ChIP-seq data in the 
ENCODE data portal (Additional file 1: Table S1). The number of peaks for each of 
the above TFs and these HMs was shown in Fig. 4a. For TFs like MYC and ER-alpha 
that were reported to be highly active in MCF-7 cells [24–26], ChIP-BIT2 detected a 

Table 1  F1-score and run-time of competing peak callers on H3K4me3 and H3K36me3 benchmark 
region detection using ENCODE ChIP-seq datasets

Cell line K562 GM12878

Histone protein H3K4me3 H3K36me3 H3K4me3 H3K36me3

F1-score (Supervised)

 ChIP-BIT2 0.93 0.90 0.95 0.90

 MACS2 0.89 0.78 0.93 0.83

 CNN-peaks 0.91 0.85 0.90 0.88

F1- score (unsupervised)

 ChIP-BIT2 0.88 0.82 0.91 0.82

 MACS2 0.82 0.77 0.84 0.79

Run-time (unsupervised)

 ChIP-BIT2 14m1s 9m21s 15m7s 9m9s

 MACS2 3m42s 2m39s 5m35s 2m32s

https://screen.encodeproject.org/
https://screen.encodeproject.org/
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high number of peaks. Further, for each protein, we calculated the proportion of its 
ChIP-seq peaks in annotated promoters, enhancers, or the other regions (Fig. 4b) and 
also calculated the ratio between promoter-overlapping peaks and enhancer-overlap-
ping peaks (Fig. 4c).

For enhancer marker proteins like EP300 and H3K27ac, their  ChIP-BIT2 
detected  peaks were significantly more enriched at enhancers than at promoters 
(fold change 1.4; p value < 0.01, fisher exact test). NOTCH3 has been previously 
demonstrated to bind to promoters of breast cancer genes [8]. Indeed, we detected 
twofold more NOTCH3 binding events at promoters than at enhancers (fold change 
2; p value < 0.001, fisher exact test). Transcription initiation protein POL2A usually 

Fig. 3  Running time comparison between ChIP-BIT2 and ChIP-BIT

Fig. 4  Peak detection summary of ChIP-BIT2 for 50 DNA proteins. a Using breast cancer MCF-7 cells ChIP-seq 
data of 39 TFs and 11 HMs from ENCODE data portal, ChIP-BIT2 detected peaks from the whole genome. b 
We calculated the proportion of peaks detected from promoters, enhancers or at other regions (peaks from 
whole genome minus peaks in promoters or enhancers), respectively, and c calculated the log2 ratio of the 
numbers of peaks between enhancers and promoters
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bind to transcriptional regulatory regions. As expected, we observed similar pro-
portions of POL2A ChIP-seq peaks between promoters and enhancers. There were 
also proteins with binding sites mostly located outside the annotated promoters or 
enhancers (Fig.  4b, grey color). For example,  CTCF functions as an insulator and 
bind at the topological associating domains boundary area [27]. In our analysis, 
only a small proportion (25%) of CTCF peaks overlapped with existing promoters or 
enhancers. Therefore, to efficiently call ChIP-seq peaks, we recommended running 
ChIP-BIT2 in a proper mode if prior knowledge of the binding preference of the pro-
tein was available.

Large‑scale application to breast cancer MCF‑7 cell line data

To demonstrate that ChIP-BIT2 detected additional peaks that were functionally 
important but missed by conventional peak callers, for the same set of proteins, we 
compared ChIP-BIT2 results to peaks detected by the ENCODE pipeline (Additional 
file  1: Table  S1; 26 TFs and 11 HMs). We focused our comparison to regulatory 
regions associated with ‘actively’ expressed genes in MCF-7 cells because peaks in 
these regions were more likely to be functional (having regulatory effects). To iden-
tify active promoters or enhancers in MCF-7 cells, we downloaded two RNA-seq 
datasets from the GEO database (accession numbers: GSE62789 and GSE51403). 489 
genes were significantly (adjusted p value < 0.05) and actively (log2FC > 1) expressed 
in both datasets. Regions (± 10 kbps) around TSSs of these 489 genes were selected 
as ‘active’ promoters. 1050 enhancers looping with the above promoters through 
ENCODE MCF-7 cell line  ChIA-PET 3D chromatin interactions were selected as 
‘active’ enhancers. Venn diagram of ChIP-BIT2 peaks and ENCODE peaks over-
lapping with these selected active regulatory regions were shown in Fig. 5. Overall, 
ChIP-BIT2 recalled 92% of ENCODE peaks and identified additional 11,813 (52%) 
new peaks.

Specifically, for in total of 26 TFs, ChIP-BIT2 recovered ~ 93% (6179/6610) 
ENCODE peaks in promoters and predicted 6816 new peaks. For specific proteins, 
for example, few peaks were identified for TDRD3 in the ENCODE database. After 
evaluating TDRD3 read intensities using ChIP-BIT2, we found that its read enrich-
ment at many regions in the sample ChIP-seq profile was much higher than that 
in the input data. Therefore, ChIP-BIT2 finally detected TDRD3 peaks in 438 pro-
moter regions, covering nearly 90% of the selected active promoters. For MBD3, 
ENCODE peaks were on 35% of promoters while ChIP-BIT2 detected more peaks 
on 55% of promoters. For all 11 histone proteins, ChIP-BIT2 captures nearly all 
ENCODE peaks (99%, 3215/3254), demonstrating its strong capability of detect-
ing wide histone modifications. An additional set of 693 histone modifications were 
captured, ~ 20% in ChIP-BIT2 results. A similar comparison was done for peaks 
at  MCF-7 active enhancers. For TFs, ChIP-BIT2 identifies 10,225 peaks, overlap-
ping with 92% ENCODE peaks and providing 3844 new peaks. For HMs, the similar-
ity between the two peak calling approaches was also high, with an overlap rate of 
86%. In summary, for both TFs and HMs, ChIP-BIT2 detected a majority of peaks  
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identified  by the ENCODE pipeline and also  predicted new peaks at functionally 
important regulatory regions.

Discussion
ChIP-BIT2 can detect strong and weak peaks from annotated regulatory regions or 
the whole genome, using a Bayesian model to integrate sample and input ChIP-seq 
profiles. To better capture ChIP-seq peaks at regulatory regions, ChIP-BIT2 takes 
into account protein binding locations when it estimates the probability of each peak 
because a weak peak locating closer to the  gene TSS could have a higher regula-
tory effect on  that gene  than peaks located farther. We demonstrated the accuracy 
and wide applicability of ChIP-BIT2 using benchmark data and public data in the 
ENCODE and GEO databases.

Currently, ChIP-BIT2 detects peaks from the given ChIP-seq data one at a time. 
We are working on its parallel mode to enable peak calling from multiple ChIP-seq 
profiles together, facilitating the robust peak calling using multiple replicates of one 
protein or association analysis between multiple proteins. Currently, ATAC-seq data 
are widely used to capture open chromatin regions in a particular tissue or cell type 
[28, 29]. Different from ChIP-seq data, ATAC-seq used paired-end reads. Yet, some 
existing peak callers simply treat the paired ends of one long read as two separate sin-
gle-end reads and then detect peaks in the same way as from a ChIP-seq profile. This 
simplification may break some ultra-wide open chromatin regions into several dis-
connected narrow peaks, causing errors in the genome-wide chromatin accessibility 

Fig. 5  Venn diagram of binding events detected by ChIP-BIT2 and ENCODE at MCF-7 active promoters or 
enhancers. a TFBSs at 489 promoters; b HMs at 489 promoters; c TFBSs at 1050 enhancers; d HMs at 1050 
enhancers
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analysis. We plan to extend the preprocessing function of ChIP-BIT2 and enable 
modeling read intensity in ATAC fragments of different lengths. With such an exten-
sion, ChIP-BIT2 will be able to detect ATAC-seq peaks.

Conclusions
We have developed a C++ software package, ChIP-BIT2, for DNA–protein binding site 
detection from the  ChIP-seq data. ChIP-BIT2 can capture the subtlety in differentiating 
weak binding sites from background regions by jointly modeling read intensities from sam-
ple and input ChIP-seq profiles. ChIP-BIT2 exhibits an accurate performance on detecting 
both narrow and wide ChIP-seq peaks and it has a broad applicability in TF or HM ChIP-
seq data analysis.
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