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Abstract. In polarized Madin-Darby canine kidney 
(MDCK) epithelial cells, ankyrin, and the or- and 
B-subunits of fodrin are components of the basolateral 
membrane-cytoskeleton and are colocalized with the 
Na+,K+-ATPase, a marker protein of the basolateral 
plasma membrane. Recently, we showed with purified 
proteins that the Na+,K÷-ATPase is competent to bind 
ankyrin with high affinity and specificity (Nelson, 
W. J., and P. J. Veshnock. 1987. Nature (Lond.). 
328:533-536). In the present study we have sought 
biochemical evidence for interactions between these 
proteins in MDCK cells. Proteins were solubilized 
from MDCK cells with an isotonic buffer containing 
Triton X-100 and fractionated rapidly in sucrose den- 
sity gradients. Complexes of cosedimenting proteins 
were detected by analysis of sucrose gradient fractions 
in nondenaturing polyacrylamide gels. The results 
showed that ankyrin and fodrin cosedimented in su- 
crose gradient. Analysis of the proteins from the su- 
crose gradient in nondenaturing polyacrylamide gels 
revealed two distinct ankyrin:fodrin complexes that 

differed in their relative electrophoretic mobilities; 
both complexes had electrophoretic mobilities slower 
than that of purified spectrin heterotetramers. Parallel 
analysis of the distribution of solubilized Na+,K ÷- 
ATPase in sucrose gradients showed that there was a 
significant overlap with the distribution of ankyrin and 
fodrin. Analysis by nondenaturing polyacrylamide gel 
electrophoresis showed that the o~- and B-subunits of 
the Na÷,K+-ATPase colocalized with the slower migrat- 
ing of the two ankyrin:fodrin complexes. The faster 
migrating ankyrin:fodrin complex did not contain 
Na+,K÷-ATPase. These results indicate strongly that 
the Na÷,K÷-ATPase, ankyrin, and fodrin are coex- 
tracted from whole MDCK cells as a protein complex. 
We suggest that the solubilized complex containing 
these proteins reflects the interaction of the Na+,K +- 
ATPase, ankyrin, and fodrin in the cell. This in- 
teraction may play an important role in the spatial 
organization of the Na÷,K+-ATPase to the basolateral 
plasma membrane in polarized epithelial cells. 

T H~ plasma membrane of many specialized cell-types 
is organized into domains of distinct morphology and 
function. Cells of transporting epithelia exhibit a char- 

acteristic functional polarity that is a reflection of the asym- 
metrical distribution of enzymes and transport proteins be- 
tween the apical and basolateral membrane domains (for 
reviews, see Rodriguez-Boulan, 1983; Simons and Fuller, 
1985; Marlin, 1986). The mechanisms involved in the estab- 
lishment and maintenance of the protein specificity of these 
domains are poorly understood. Studies of the topogenesis 
of viral (Rodriguez-Boulan and Sabatini, 1978; Misek et al., 
1984; Rindler et al., 1984, 1985; Matlin and Simons, 1984) 
and endogenous glycoproteins (Caplan et al., 1986; Gottlieb 
et al., 1986; Urban et al., 1987) in Madin-Darby canine kid- 
ney (MDCK) cells indicate that newly synthesized proteins 
are targeted directly to the appropriate plasma membrane do- 
main, whereupon their distribution becomes restricted. This 
restriction may be accomplished by the tight junction that is 

situated at the boundary of the apical and basolateral mem- 
brane domains (Dragsten et al., 1981; Hertzlinger and Ojak- 
ian, 1984; for review, see Gumbiner, 1987). Alternatively, 
lateral diffusion may be restricted by interactions between in- 
tegral membrane proteins and cytoplasmic structural pro- 
teins (Nelson and Veshnock, 1986; for review, see Nelson, 
1989). Such interactions have been extensively characterized 
in erythrocytes and involve the linkage of integral membrane 
proteins, e.g., the anion transporter, to a cytoplasmic protein 
meshwork composed of ankyrin, spectrin, and actin, collec- 
tively termed the membrane-cytoskeleton (for reviews, see 
Branton et al., 1981; Bennett, 1985; Marchesi, 1985). 

Recent studies have identified ankyrin (Mr 215,000) and 
fodrin (c~-subunit, Mr 240,000; fl-subunit, Mr 230,000) as 
major components of the membrane-cytoskeleton in a variety 
of nonerythroid cells (for reviews, see Nelson and Lazarides, 
1984; Bennett, 1985; Marchesi, 1985). In vitro studies with 
purified proteins have shown that ankyrin and fodrin hetero- 
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tetramers form a complex (Davis and Bennett, 1984), and 
that high-affinity binding sites for ankyrin exist on the plas- 
ma membrane of nonerythroid cells (Davis and Bennett, 
1986). However, little is known about the molecular organi- 
zation of the membrane-cytoskeleton in nonerythroid cells 
and the role of these protein complexes in the formation of 
membrane domains. 

Recently, we initiated a study of the membrane-cytoskele- 
ton in polarized Madin-Darby canine kidney (MDCK) epi- 
thelial cells. We found that during the development of cell 
polarity there is a gradual reorganization of ankyrin and fo- 
drin, which results in the formation of a dense, insoluble, 
and metabolically stable protein meshwork that is localized 
predominantly if not exclusively to the basolateral plasma 
membrane in monolayers of polarized cells (Nelson and 
Veshnock, 1986). The formation of the membrane-cytoskel- 
eton requires extensive cell-cell contact (Nelson and Vesh- 
nock, 1987a) and coincides temporally and spatially with the 
development of polarity of the Na+,K+-ATPase, a marker 
protein of the basolateral membrane domain and a high-af- 
finity binding site for ankyrin (Nelson and Veshnock, 1987b). 

To gain insight into the organization and function of the 
membrane-cytoskeleton in polarized epithelial cells, we have 
searched for interactions between structural cytoplasmic 
proteins (ankyrin and fodrin) and the Na+,K+-ATPase in ex- 
tracts of whole cells. After fractionation of solubilized pro- 
teins in sucrose gradients and nondenaturing polyacrylamide 
gels, a discrete protein complex ~ s  identified that contained 
the Na+,K+-ATPase, ankyrin, and fodrin. The identification 
of this complex constitutes direct evidence of a molecular 
linkage between a specific integral membrane protein and the 
membrane-cytoskeleton in nonerythroid cells. The results 
strongly support a role of the membrane-cytoskeleton in the 
biogenesis and maintenance of membrane domains in polar- 
ized epithelial cells. 

Materials and Methods 

Cell Fractionation 

A low passage stock of MDCK cells (clone 8; Nelson and Veshnock, 1986) 
was established on collagen-coated 35-ram petri dishes at a confluent cell 
density of 3 x 105 cells/cm 2 in DME containing 5 #M Ca 2+ and 10% dia- 
lyzed FBS (LC medium); under these conditions there is little or no cell- 
cell contact (for details, see Nelson and Veshnock, 1987a). After ,'o12 h, 
the cells were placed on ice and processed at 4°C. The cells were rinsed 
twice with ice-cold buffer containing 15 mM Tris-HC1, pH 7.5, 120 mM 
NaCI, and 1 mM PMSE The petri dish was completely drained of buffer. 
200 #1 of isotonic buffer containing Triton X-100 (0.5% [vol/voll Triton 
X-100, 10 mM Tris-HC1, pH 7.5, 25 mM KCI, 120 mM NaCI, 2 mM EGTA, 
2 mM EDTA, 0.1 mM DTT, and 0.5 mM PMSF) was added and the petri 
dish was rocked gently for 5-10 rain. The monolayer of cells was scraped 
from the petri dish in extraction buffer with a rubber policeman, and cen- 
trifuged at 48,000 g for 5 rain. The supernatant was layered onto 3.8 ml lin- 
ear 5-20 % (wt/wt) sucrose gradients prepared in extraction buffer without 
Triton X-100, and centrifuged at 486,000 g for 5 h in the SW60 rotor of the 
L8-70M ultracentrifuge (Beckman Instruments, Inc., Fullerton, CA). Gra- 
dients were fractionated from the bottom to the top into 20 fractions (200 
#1). The following protein standards of known S values were centrifuged on 
replicate 5-20% (wt/wt) sucrose gradients: apoferritin, 17.2S; catalase 
11.35S; aldolase, 7.35S; bovine serum albumin, 4.6S; cytochrome c, 1.7S; 
purified human erythrocyte spectrin heterodimers, 9.6S; and ankyrin, 6.9S. 
Their distributions in the sucrose gradients were determined by SDS-PAGE. 

For surface labeling of MDCK cells with nsI, confluent monolayers of 
the cells were established in LC-medium in 35-ram petri dishes, washed in 
PBS, and then processed as described by Antonicek et al. (1987). Under 
these culture conditions, the apical and basolateral plasma membranes were 

accessible to 125I. Cells were extracted with isotonic buffer containing Tri- 
ton X-100 and solubilized proteins were fractionated in 5-20% (wt/wt) 
sucrose gradients (see above). To determine the distribution of 125I-labeled 
proteins, individual fractions were precipitated with TCA and collected on 
GF/C glass fiber filters (Whatman Inc., Clifton, NJ), dried, and counted 
in a gamma counter (model 5500; Beckman Instruments, Inc.). 

PAGE 

5-12.5% SDS-PAGE was performed as described by Laemmli (1970). Gels 
were stained with silver (Oakley et al., 1980) using the Gelcode Kit (Pierce 
Chemical Co., RDckford, IL). 2--4% nondenaturing PAGE was performed 
in 1.5-ram gel slabs at 4°C (Morrow and Haigh, 1983); the duration of elec- 
trophoresis was varied between 24-60 h. Erythrocyte spectrin heterodimer 
([aft]) and heterotetramer ([c~f]2) standards were purified as described pre- 
viously (Bennett, 1983). Ankyrin and Na+,K+-ATPase were purified, in- 
cubated together and extracted with the nonionic detergent, octaethylene- 
glycoldodecyl ether (Ci2Es) as described (Nelson and Veshnock, 1987b). 

Proteins separated in SDS or nondenaturing polyacrylamide gels were 
electrophoreticaUy transferred to nitrocellulose sheets (0.45 #m) (Towbin et 
al., 1981). Silver staining of the gel showed that all proteins had been trans- 
ferred to the nitrocellulose. The nitrocellulose was stained with India ink 
and processed for Western blotting with antibodies to ankyrin, ot-fodrin, or 
the ~- and /3-subunits of the Na+,K+-ATPase (Nelson and Veshnock, 
1986). Immune complexes were detected with 125I-labeled protein A (,x,10 
#Ci/#g) as described previously (Nelson and Veshnock, 1986). The nitro- 
cellulose was preincubated before addition of antibodies in a buffer contain- 
ing 3% BSA and 1% FBS. The nitrocellulose was exposed to XAR-5 x-ray 
film at -80°C with two intensifying screens (DuPont Co., Wilmington, 
DE). 

Results 

Our previous studies of ankyrin and fodrin in MDCK cells 
showed that these proteins exist as soluble and insoluble 
pools of protein that are defined by their extractability in iso- 
tonic buffer containing Triton X-100 (see .Materials and 
Methods; Nelson and Veshnock, 1986). In the absence of 
cell-cell contact, ,,o70% of the proteins are present in the 
soluble pool. However, this pool of protein can be rapidly 
recruited into an insoluble, metabolically stable pool upon 
induction of cell-cell contact; this insoluble pool comprised 
60-70% of the total ankyrin and fodrin. These results sug- 
gested to us that the soluble pool might be a precursor to the 
insoluble pool (Nelson and Veshnock, 1987a). Hence, an 
analysis of the molecular organization of ankyrin and fodrin 
in the soluble pool may provide new insight into the nature 
of the insoluble pool. 

To analyze the molecular organization of solubilized anky- 
rin and fodrin we have developed an analytical method for 
detecting protein complexes extracted from whole cells. Pro- 
teins are first fractionated in sucrose gradients and the dis- 
tribution of individual proteins is determined by immuno- 
blotting or immunoprecipitation with specific antibodies. 
Second, to determine whether cosedimenting proteins are 
in a complex, proteins from sucrose gradient fractions are 
separated by nondenaturing PAGE and their location in the 
gel determined by immunoblotting. 

Ankyrin and Fodrin Solubilized from MDCK Cells 
Cosediment in Sucrose Density Gradients 

Monolayers of MDCK cells were extracted for 5-10 min at 
4°C in a buffer containing 0.5 % (vol/vol) Triton X-100 and 
an isotonic salt concentration (see Materials and Methods). 
After centrifugation at 48,000 g, the supernatant was layered 
onto a linear 5-20% (wt/wt) sucrose gradient and cen- 
trifuged at 468,000 g for 5 h at 4°C. The distribution of anky- 
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Figure L Sucrose gradient fractionation of ankyrin and fodrin solubilized from MDCK cells in isotonic buffer containing Triton X-100. 
(A) 5-12.5% SDS-polyacrylamide gel of total proteins stained with silver. Fraction 1 is at the bottom of the gradient. Molecular weight 
standards; a, myosin (Mr 205,000); b,/J-galactosidase (Mr 116,000); c, phosphorylase b (M~ 97,000); d, BSA (Mr 68,000); e, ovalbumin 
(Mr 45,000); and f, carbonic anhydrase (Mr 29,500). (B) Profile of total protein concentration in the sucrose gradient determined using 
the Bio-Rad (Richmond, CA) protein assay. The specific gravity of the sucrose gradient was determined using a refractometer. The peak 
distribution of protein standards of known S value are shown (for details see Materials and Methods). (C and E) Western blot analyses 
of the distributions of ankyrin and a-fodrin in the sucrose gradient using affinity-purified antisera. (D and F) Corresponding densitometric 
analysis of the distributions of ankyrin and cx-fodrin. In each case, the values determined by scanning densitometry were normalized to 
that of the peak fraction (8 or 9) given an arbitrary value of 1. The peak fractions of purified erythrocyte spectrin heterodimers (SpD) 
and ankyrin (Ank) are indicated. 

fin and fodrin in the sucrose density gradient was determined 
by Western blotting (Fig. 1, C-F). Ankyrin and fodrin 
cosedimented in fractions 7-11 with an apparent S value of 
9.5-10.5, well separated from the majority of solubilized pro- 
teins (Fig. 1, C-F); these fractions contained <4% of the to- 
tad solubilized proteins (Fig. 1, A and B). The sedimentation 
rate of solubilized ankyrin and fodrin was faster than that of 
purified erythrocyte ankyrin and purified spectrin heterodi- 
mers (Fig. 1, D and F). When the centrifugation time was 

varied (3-6 h), ankyrin and fodrin invariably cosedimented 
(data not shown); the distribution of proteins varied with the 
time of centrifugation, demonstrating that cosedimentation 
was thus not the result of an equilibrium centrifugation. 

Identification o f  an Ankyrin: Fodrin Complex in 
Nondenaturing Polyacrylamide Gels 

To determine whether ankyrin and fodrin cosedimented as 
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Figure 2. Analysis by non- 
denaturing PAGE and West- 
ern blotting of ankyrin:fodrin 
complexes solubilized from 
MDCK cells. Proteins solu- 
bilized with isotonic buffer 
containing Triton X-100 were 
fractionated as described in 
Materials and Methods. After 
sucrose density gradient cen- 
trifugation, 100-120 #1 of frac- 
tions 6-11 were separated on 
2-4% nondenaturing poly- 
acrylamide gels. Proteins were 
transferred to nitrocellulose, 

stained with India ink (A) before incubation with ankyrin (B) or ct-fodrin (C) antibodies. The gels are representative of three separate 
experiments. The electrophoretic mobilities of purified erythrocyte spectrin heterodimers ([c~/3]) and heterotetramers ([c~/312) are indicated 
by arrows. 

a complex, individual fractions of the sucrose gradients were 
separated in linear 2--4 % nondenaturing polyacrylamide gels 
and transferred electrophoretically to nitrocellulose (Fig. 2). 
Staining of the nitrocellulose filter with India ink revealed 
two protein bands in fractions 6-11 from the sucrose gra- 
dient. These protein bands exhibited different relative elec- 
trophoretic mobilities in the gel. In addition, we noted that 
the protein bands showed slight, but reproducible, differ- 
ences in their sedimentation rates in the sucrose gradient 
(Fig. 2 A). The more rapidly migrating band (closed arrow- 
head) on the nondenaturing polyacrylamide gel had a peak 
distribution in fractions 7-9 in the sucrose gradient (average 
10.5S), whereas the more slowly migrating band (open ar- 
rowhead) had a peak distribution in fractions 8-11 (average 
9.5S). 

The distributions of ankyrin and fodrin on the nondenatur- 
ing polyacrylamide gel were determined directly by West- 
ern blotting. The faster migrating of the two protein bands 
stained more prominently with antibodies specific for anky- 
rin and fodrin, and had an electrophoretic mobility slower 
than that of purified human erythrocyte (o~fl)~spectrin het- 
erotetramers (Fig. 2, B and C) and canine lens fodrin (data 
not shown). The slower migrating protein band also reacted 
with both antibodies, but appeared to contain <15 % of the 
total ankyrin and fodrin solubilized from the cell compared 
with the faster migrating ankyrin:fodrin complex (>85 %). 
This result demonstrates that there are two distinct popula- 
tions of ankyrin: fodrin complexes, which are distinguishable 
by differences in their electrophoretic mobilities in nonde- 
naturing polyacrylamide gels. 

Separation of Na+,K÷-ATPase from Other Solubilized 
Surface Glycoproteins On Sucrose Density Gradients 

Our previous in vitro studies identified Na+,K÷-ATPase as a 
high-affinity binding site for ankyrin, and showed that a 
detergent-solubilized complex of these proteins was not dis- 
sociated in sucrose gradients or nondenaturing polyacryl- 
amide gels (Nelson and Veshnock, 1987b). Accordingly, we 
sought to determine whether Na+,K+-ATPase coisolated 
with the ankyrin and fodrin after sucrose gradient and non- 
denaturing polyacrylamide gel fractionation of proteins from 
whole MDCK cells. 

Greater than 80% of the Na÷,K+-ATPase in MDCK cells 

grown in LC-medium was solubilized in the isotonic buffer 
containing Triton X-100 (Fig. 3 A). In MDCK cell cultures 
that had extensive cell-cell contact the Na÷,K÷-ATPase ex- 
hibited different solubility properties (Fig. 3 B). Approxi- 
mately 50% of the Na÷,K+-ATPase was insoluble in the iso- 
tonic buffer containing Triton X-100 (compared with <20% 
in cells without cell-cell contact). 

Na÷,K÷-ATPase was solubilized from MDCK cells grown 
in LC-medium, and analyzed on sucrose gradients. The peak 
of a-subunit (Fig. 4 B) sedimented in fractions 6-10 (peak 
of "~10.5S), well-separated from the bulk of plasma mem- 
brane glycoproteins, which were identified by surface-label- 
ing with 125I (fractions 15-20; Fig. 4 A). The ~-subunit of 
the Na÷,K÷-ATPase had an identical sedimentation profile 
(data not shown). There was significant overlap in the distri- 
bution of the Na÷,K÷-ATPase with those of ankyrin and fo- 
drin (Fig. 4 C); these three proteins had almost identical 
peak fractions (7-9). The distributions of the Na÷,K÷-ATP - 
ase, ankyrin, and fodrin overlapped even when the duration 
of the centrifugation varied (data not shown), demonstrating 
this was not the result of an equilibrium centrifugation of in- 
dividual proteins and raising the possibility that all three pro- 
teins were cosedimenting as a complex. 

Figure 3. Solubility of Na ÷, 
K+-ATPase in MDCK cells. 
MDCK cells were grown in 
LC-medium (A) or DMEM 
(B) and extracted with iso- 
tonic buffer containing Triton 
X-100 (see Materials and 
Methods). Equivalent portions 
of the soluble and insoluble 
fractions were separated by 
5-12.5% SDS-PAGE and the 
partitioning of the Na÷,K ÷- 
ATPase in the two fractions 
determined by Western blot- 
ting and scanning densitometry. 

The Journal of Cell Biology, Volume 108, 1989 896 



Figure 4. Distribution of solubilized ix- and ~-subunits of Na+,K+-ATPase on sucrose density gradients. Proteins solubilized in Triton 
X-100, isotonic buffer were fractionated on sucrose density gradients. (A) Distribution of J25I-surface labeled proteins and proteins of 
known S value. Western blot (B) and corresponding densitometric analysis (C) of the tx-subunit Na+,K+-ATPase (- - -), and comparison 
with the distribution of fodrin ( ). 

Identification of  a Complex Containing 
Na÷,K ÷-ATPase, Ankyrin, and Fodrin Solubilized 
from MDCK Cells 

Protein fractions from the sucrose gradient were separated 
on linear 2-4  % nondenaturing polyacrylamide gels and in- 

dividual proteins were identified by Western blotting. The 
proteins in a single protein band (fractions 7-10) reacted with 
antibodies affinity purified against either the o~- or B-subunit 
of  the Na÷,K+-ATPase (Fig. 5, B and C). The electropho- 
retic mobility of  the Na+,K÷-ATPase subunits was identical 
to that of the slower migrating of the two ankyrin: fodrin com- 
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Figure 5. Nondermturing PAGE and Western blotting of Na÷,K+-ATPase solubilized from MDCK cells. After extraction with isotonic 
buffer containing Triton X-100 and sucrose gradient centrifugation, fractions 6-12 were resolved in 2-4% nondenaturing polyacrylamide 
gels. Proteins were transferred electrophoretically to nitrocellulose, stained with India ink (A), and processed for Western blotting (B and 
C) with afffinity-purified antibodies specific for the c~- (B) or B-subunits (C) of the Na+,K+-ATPase. The electrophoretic mobilities of 
purified erythrocyte spectrin heterodimers ([c~/~]) and heterotetramers ([aB]2) are indicated by arrows. 

plexes (Fig. 6, A-F; see also Fig. 2). Little or no staining of 
the faster migrating ankyrin:fodrin complexes was detected 
with Na+,K+-ATPase antibodies. The same distributions 
were found for Na÷,K+-ATPase, ankyrin, and fodrin when 
the nondenaturing gels were run for shorter or longer inter- 
vals (data not shown). 

We compared the electrophoretic mobility of the complex 
containing the Na+,K÷-ATPase, ankyrin, and fodrin (Fig. 6, 
lanes A-F) with that of  the purified proteins and complexes 

of  these proteins formed in vitro (Fig. 6, lanes G-N). The 
purified proteins were incubated at 4°C in the presence of a 
nonionic detergent (Triton X-100 or octaethyleneglycol- 
dodecyl ether) and DTT before electrophoresis (for details, 
see Nelson and Veshnock, 1987b). The electrophoretic mo- 
bility of  purified ankyrin (Fig. 6, lanes H and K),  spectrin 
heterodimers (Fig. 6, lanes G and L) and heterotetramers 
(Fig. 6, lane L) and solubilized Na÷,K+-ATPase (Fig. 6, 
lane I )  were distinctly faster than that of either of the two 

Figure 6. Comparative analysis of the elec- 
trophoretic mobilities in nondenaturing 
polyacrylamide gels of purified proteins and 
protein complexes solubilized from MDCK 
cells. (Lanes A-F) Analysis of protein com- 
plexes solubilized from MDCK cells. Pro- 
teins solubilized from MDCK cells in iso- 
tonic buffer containing Triton X-100 were 
separated in sucrose gradients. Peak frac- 
tions of ankyrin, fodrin, and Na+,K+-ATP - 
ase (fractions 7-9) were combined and ana- 
lyzed in a nondenaturing polyacrylamide 
gel. After transfer to nitrocellulose, protein 
complexes (large arrowhead) were iden- 
tiffed in replicate lanes by India ink staining 
(lane A) or Western blotting with antibodies 
specific for ankyrin (lane B), c~-fodrin (lane 
C), or the ~x- (lane D) or/3- (lane E) sub- 
units of the Na+,K+-ATPase. In addition 

(lane F), the nitrocellulose was incubated with a mixture of lectins (wheat germ agglutinin, concanavalin A, Helix pomentia) that had 
been labeled with ~25I using iodogen (Pierce Chemical Co., Rockford, IL) as described in Nelson and Veshnock (1986). (Lanes G-J) Anal- 
ysis of purified Na+,K+-ATPase and ankyrin. Human erythrocyte spectrin dimers (lane G) and ankyrin (lane H; A) were purified (Ben- 
nett, 1983), and the Na÷,K+-ATPase (lane I; ,,) was purified in a membrane-bound form (for details see Nelson and Veshnock, 1987b). 
Ankyrin and Na+,K+-ATPase (lane J; n) were incubated together at 4°C for 90 min as described in detail previously (Nelson and Vesh- 
hock, 1987b). Proteins were incubated in Ct2E8 before analysis in a 2-4% nondenaturing polyacrylamide gel. The gel was stained with 
Coomassie blue. (Lanes K-N) Analysis of purified spectrin and ankyrin. Ankyrin (lane K; A) and spectrin dimers and tetramers (lane 
L; o) were purified from human erythrocytes (Bennett, 1983), and incubated at 4°C for 90 min (lane M). (Lane N) Peak fractions of 
ankyrin, fodrin, and Na+,K÷-ATPase from sucrose gradients of proteins extracted from MDCK cells (see lanes A-F). The arrowheads 
indicate the protein complexes containing ankyrin, fodrin, and the Na÷,K+-ATPase (see lanes A-E). The nondenaturing polyacrylamide 
gel was stained with silver (see Materials and Methods). 
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ankyrin:fodrin complexes extracted from MDCK cells (Fig. 
6, lane N). Complexes of ankyrin and spectrin heterotet- 
ramers (Fig. 6, lane M) or ankyrin and Na+,K+-ATPase 
formed in vitro (Fig. 6, lane J) exhibited slower electropho- 
retie mobilities than that of the individual proteins, but faster 
electrophoretic mobilities than that of the complex contain- 
ing Na÷,K+-ATPase, ankyrin, and fodrin extracted from 
MDCK cells (Fig. 6, lane N); for instance, the complex 
formed between purified ankyrin and Na+,K+-ATPase had a 
relative electrophoretic mobility slightly slower than that of 
spectrin heterotetramers (Fig. 6, lanes G and I). 

Taken together, these results indicate that the slower 
migrating band of proteins extracted from MDCK cells com- 
prises a complex containing the Na÷,K+-ATPase, ankyrin, 
and fodrin. Comparison of the distribution of the Na+,K ÷- 
ATPase on the nondenaturing polyacrylamide gel and su- 
crose gradient indicates that >80% of the total amount of 
solubilized Na÷,K+-ATPase comigrated with ankyrin and 
fodrin on the nondenaturing polyacrylamide gel. Analysis by 
second-dimension SDS-PAGE revealed the presence of sev- 
eral other proteins in this complex (data not shown). Some 
of these may be glycoproteins, because they react with ~25I- 
labeled lectins (Fig. 6, lane F). Hence, a family of proteins 
that includes the Na+,K+-ATPase appears to be bound to the 
ankyrin:fodrin complex. Recently we have identified one of 
the other proteins in this complex as the cell adhesion pro- 
tein, uvomorulin. Immunoprecipitates containing uvomoru- 
lin, ankyrin, and fodrin using uvomorulin antibodies do not 
appear to contain Na+,K+-ATPase, indicating that there are 
individual complexes of integral membrane proteins, anky- 
rin, and fodrin (Nelson, W. J., R. W. Hammerton, E. Shore, 
and R. Kemler, manuscript in preparation). Further details 
of the stoichiometry of proteins in these complexes await fu- 
ture characterization of the other comigrating components. 

Discussion 

Previous studies have demonstrated that ankyrin and fodrin 
are colocalized to the plasma membrane of many noneryth- 
roid cell types (Nelson and Lazarides, 1984; Bennett, 1985; 
Marchesi, 1985), and that ankyrin interacts with fodrin bet- 
erotetramers and with high-affinity binding sites on the plas- 
ma membrane (Davis and Bennett, 1984, 1986). These results 
are consistent with the idea that ankyrin, fodrin, and integral 
membrane proteins form a membrane-cytoskeletal complex 
that may play an important role in the spatial organization of 
proteins on the plasma membrane (Nelson and Lazarides, 
1984; Bennett, 1985; Marchesi, 1985). However, the nature 
of the plasma membrane binding sites for ankryrin in cells is 
poorly understood, although it has been reported recently 
that purified ankyrin binds with high affinity and specificity 
to purified, membrane-bound Na+,K+-ATPase (Nelson and 
Veshnock, 1987b) and to the voltage-dependent Na ÷ chan- 
nel (Srinivasan et al., 1987). In the present study, we have 
identified and characterized a protein complex comprising 
ankyrin, fodrin, and the Na+,K+-ATPase in extracts of whole 
MDCK epithelial cells after fractionation of solubilized pro- 
teins in sucrose gradients and nondenaturing polyacrylamide 
gels. 

Central to our experimental approach to search for these 
protein interactions in extracts of whole cells is our previous 
demonstration that ankyrin and fodrin exist as soluble and 

insoluble pools of protein in MDCK cells (Nelson and Vesh- 
nock, 1986). These pools are operationally defined by the 
relative extractability of the proteins in a buffer containing 
0.5 % (vol/vol) Triton X-100 and an isotonic salt concentra- 
tion. However, the characteristics of the soluble pool are 
consistent with it being a precursor of the insoluble mem- 
brane-cytoskeleton (Nelson and Veshnock, 1986, 1987a). 

Identification of a Complex Containing the 
Na+,K÷-ATPase, Ankyrin, and Fodrin 
After fractionation of solubilized proteins in sucrose gra- 
dients and nondenaturing polyacrylamide gels, we detected 
two distinct protein complexes using antibodies specific for 
ankyrin, fodrin, and the Na+,K+-ATPase. The protein com- 
plexes differed in their relative electrophoretic mobilities in 
nondenaturing polyacrylamide gels. 

One protein complex contained >85 % of the total solubi- 
lized ankyrin and fodrin, but did not react with Na+,K +- 
ATPase antibodies. This ankyrin:fodrin complex had a 
sedimentation rate of 10.5S, and an electrophoretic mobility 
slower than that of purified human erythrocyte spectrin and 
canine fodrin heterotetramers. This ankyrin:fodrin complex 
did not contain the Na+,K+-ATPase or other glycoproteins 
as indicated by negative reactivity with '2~I-labeled lectins 
(Fig. 6). The electrophoretic mobility of this ankyrin:fodrin 
complex in the nondenaturing polyacrylamide gels indicates 
that it may comprise ankyrin bound to a fodrin heterotetra- 
mer [(a/3)2]. Additional support for this conclusion comes 
from preliminary electron microscopic analysis of these 
fractions (Heuser, J. E., and W. J. Nelson, unpublished ob- 
servations) which reveal structures similar in morphology 
to that of purified ankyrin-(ct/3)2fodrin complexes reported 
previously (Davis and Bennett, 1984). We are currently 
analyzing these structures further to confirm the presence of 
ankyrin-(ot~)2fodrin complexes. Taken together, these re- 
sults indicate that in the absence of cell-cell contact there is 
a large cytoplasmic pool of ankyrin: fodrin complexes which 
are not associated directly with integral membrane proteins. 

The second protein complex detected in the nondenaturing 
polyacrylamide gel contained the remainder of the solubi- 
lized ankyrin and fodrin and >80% of the solubilized ~t- and 
/3-subunits of the Na+,K+-ATPase. This protein complex 
was distinct from the ankyrin:fodrin complex described 
above by the criteria of its slower electrophoretic mobility in 
nondenaturing polyacrylamide gels and slightly different, 
but reproducible, sedimentation rate in sucrose gradients 
(9.5S). It is noteworthy that the electrophoretic mobility of 
the complex containing the Na+,K+-ATPase, ankyrin, and 
fodrin was very different from that of each of the proteins or 
a complex of ankyrin and the Na+,K+-ATPase formed in 
vitro (see Fig. 6). The interaction of ankyrin, fodrin, and 
the Na+,K+-ATPase in this complex appears to be noncova- 
lent because the association of ankyrin and fodrin with the 
Na+,K+-ATPase is dissociated with high concentrations of 
salt (data not shown); note also that DTT is present at all 
times to inhibit sulfbydryl exchange. 

These results indicate that the Na+,K+-ATPase and a por- 
tion of the solubilized ankyrin:fodrin complex are coisolated 
after sucrose gradient centrifugation and nondenaturing 
polyacrylamide gel electrophoresis. Whereas it is possible 
that other, as yet unidentified, proteins in the complex may 

Nelson and Hammerton Biogenesis oJ Epithelial Cell Polarity 899 



mediate the binding of these proteins, we suggest that the 
solubilized complex reflects the direct interaction of ankyrin, 
fodrin, and the Na+,K÷-ATPase in the cell. This is sup- 
ported principally by the fact that ankyrin has been shown 
to bind directly and with high affinity to fodrin heterotetra- 
mers (Davis and Bennett, 1984) and to purified, membrane- 
bound Na÷,K÷-ATPase (Nelson and Veshnock, 1987b). 

Additional evidence also supports this conclusion. First, 
the method used to identify this complex involved the rapid 
separation of proteins by high-speed sucrose gradient cen- 
trifugation (Merlie and Lindstrom, 1983); this procedure 
reduces the chance of promiscuous interactions between 
solubilized proteins that may occur during slow separation 
of proteins, e.g., gel filtration chromatography. Second, 
ankyrin, fodrin, and the Na+,K÷-ATPase cosedimented on 
the sucrose gradient as a single, symmetrical peak that was 
separated from >96% of the total solubilized proteins. Third, 
immunocytochemical studies have shown that ankyrin, fo- 
drin, and Na+,K÷-ATPase are colocalized at the basolateral 
plasma membrane of MDCK cells (Lamb et al., 1981; Caplan 
et al., 1986; Nelson and Veshnock, 1986) and kidney tubule 
cells (Koob et al., 1987). Fourth, complexes of purified 
ankyrin and fodrin heterotetramers, and ankyrin and Na ÷, 
K÷-ATPase formed in vitro are biochemically stable in the 
presence of nondenaturing detergents, and are not disso- 
ciated in sucrose gradients or in nondenaturing polyacryl- 
amide gels (Davis and Bennett, 1984; Nelson and Veshnock, 
1987b). Fifth, the sedimentation rate and electrophoretic 
mobilities of ankyrin, fodrin, and the Na+,K÷-ATPase in the 
complex were different from those of the individual purified 
proteins (Figs. 1, 5, and 6). Taken together, the evidence indi- 
cates strongly that the isolated complex containing ankyrin, 
fodrin, and Na÷,K+-ATPase represents the molecular orga- 
nization of the protein complex in the cell. 

What is the relationship between this soluble complex of 
ankyrin, fodrin, and Na÷,K÷-ATPase and the insoluble mem- 
brane-cytoskeleton? We have shown previously that upon in- 
duction of extensive cell-cell contact there is a dramatic in- 
crease in the size of the insoluble pool of ankyrin, fodrin, 
and Na+,K+-ATPase and a commensurate decrease in the 
size of the soluble pool of these proteins. At present we do 
not know the molecular basis for the difference in the extract- 
ability of these proteins. However, we suspect that the dif- 
ference is due to the degree of assembly of complexes of 
ankyrin, fodrin, and the Na+,K+-ATPase into higher-ordered 
structures on the plasma membrane (the membrane-cyto- 
skeleton) which are insoluble in isotonic buffer containing 
Triton X-100. That a portion of ankyrin, fodrin, and the 
Na+,K+-ATPase remains relatively soluble after cell-cell 
contact (see Nelson and Veshnock, 1986, and Fig. 3) may be 
a reflection of incomplete assembly of some of the complexes 
into these higher-ordered structures, or the maintenance 
of small pools of proteins in the cytosol or on intracellular 
vesicles. 

If, as we propose, the soluble complex of ankyrin, fodrin, 
and Na+,K÷-ATPase is a precursor of the insoluble pool of 
proteins, then it should be possible under appropriate extrac- 
tion conditions to dissociate the insoluble complexes to the 
soluble protomeric complex. We have found that buffers con- 
mining high concentrations of salt or denaturing agents are 
required to dissociate the insoluble complex of these pro- 
teins. However, under these conditions we have been unable 

to detect a complex of ankyrin:fodrin with bound Na÷,K ÷- 
ATPase (Hammerton, R. W., and W. J. Nelson, unpublished 
observation). This result is not inconsistent with our pro- 
posal, because buffers containing high salt concentrations 
have been reported to dissociate ankyrin from high-affinity 
binding sites on nonerythroid plasma membranes (Davis and 
Bennett, 1986). 

A Role for the Membrane-Cytoskeleton in the 
Biogenesis of Epithelial Cell Polarity 
The results of this present study, together with those of our 
previous studies on the dynamics of membrane-skeleton or- 
ganization upon cell-cell contact (Nelson and Veshnock, 
1986, 1987a), lead us to propose a simple model for the role 
of the membrane-cytoskeleton in the biogenesis of epithelial 
cell polarity. We suggest that the complex containing anky- 
rin, fodrin, and the Na+,K+-ATPase detected in this study is 
representative of the smallest repeating denominator of the 
membrane-cytoskeleton (termed a UNIT). In the absence of 
cell-cell contact, these UNITs are distributed at the entire 
plasma membrane or on cytoplasmic vesicles (Nelson and 
Veshnock, 1986). In addition, there exists a large pool of 
ankyrin-(ot/~)2 fodrin complexes that is dispersed in the cy- 
tosol. UNITs are relatively soluble in isotonic buffer contain- 
ing Triton X-100 and are metabolically unstable (t 1/2 ~15 h; 
Nelson and Veshnock, 1987a). Upon cell-cell contact, there 
is a rapid recruitment of these UNITs together with cytosolic 
ankyrin:fodrin complexes into relatively insoluble higher- 
order polymers on the plasma membrane ([UNIT]s), per- 
haps by the self-assembly of fodrin heterotetramers into 
oligomers as shown for erythrocyte spectrin (Morrow and 
Marchesi, 1981), posttranslational modifications of ankyrin 
(Staufenbiel and Lazarides, 1986) or interactions between 
spectrin binding proteins (Bennett et al., 1988; Ungewickell 
et al., 1979). Cytosolic ankyrin:fodrin complexes may play 
a role in interconnecting UNITs on the membrane. This pro- 
cess does not appear to require protein synthesis (Nelson and 
Veshnock, 1987a), indicating that recruitment proceeds di- 
rectly from these precursor UNIT complexes and cytosolic 
ankyrin:fodrin. Because the induction of cell-cell contact 
coincides with the increase in insolubility of ankyrin, fodrin, 
and the Na+,K+-ATPase, we suggest that the formation of 
the higher-order polymers ([UNIT]s) is initiated at areas of 
cell-ceU and cell-substratum contacts through "micropatch- 
ing" of membrane proteins and associated protomeric 
ankyrin-(otB)2fodrin complexes, in a manner analogous to 
that of ligand-induced receptor-cytoskeleton patching in 
lymphocytes (Nelson et al., 1983; Bourguignon and Bour- 
guignon, 1984); these events may be initiated by uvomorulin 
(Gumbiner et al., 1988) which is also contained in a complex 
with ankyrin and fodrin (Nelson, W. J., R. W. Hammerton, 
E. Shore, and R. Kemler, manuscript in preparation). Mi- 
cropatching may increase the number and size of nucleation 
sites on the plasma membrane for ankyrin:fodrin interac- 
tions (see above) resulting in a progressive recruitment of 
these complexes from the cytoplasm to the plasma mem- 
brane. The formation of relatively insoluble polymers of 
[UNIT]N on the plasma membrane results in the increased 
metabolic stability of the constituent proteins (tu2 >72 h; 
Nelson and Veshnock, 1986, 1987a). We suggest that UNITs 
trapped at the apical membrane, as a result of the formation 

The Journal of Cell Biology, Volume 108, 1989 900 



of the tight junction after cell-cell contact (reviewed by 
Gumbiner, 1987), do not aggregate and therefore remain 
metabolically unstable (t~ ~15 h). As a consequence, these 
"misplaced" UNITs are gradually lost from the membrane by 
protein turnover processes. This process of differential sta- 
bilization and accumulation of protein complexes in separate 
plasma membrane domains may play an important role in the 
overall morphogenesis of the polarized epithelium. The for- 
mation of insoluble, metabolically stable complexes of anky- 
rin, fodrin, and Na+,K÷-ATPase on the basolateral plasma 
membrane may function to generate and maintain the polar- 
ized distribution of the Na+,K÷-ATPase and other proteins 
to this domain of the plasma membrane. 

This study has focused on the molecular organization of 
the membrane-cytoskeleton at steady state, and has proposed 
a model of how protein complexes present at steady state may 
play a role in remodeling of the plasma membrane in the bio- 
genesis of epithelial cell polarity. However, at present we 
know little about the role of the membrane-cytoskeleton in 
the targeting to and capture of newly synthesized proteins 
(e.g., Na÷,K÷-ATPase) in plasma membrane domains. Fu- 
ture studies will address this problem by analyzing the steps 
in the assembly of these complexes from newly synthesized 
proteins. 
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