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Abstract: Diatoms are responsible for approximately 40% of the global primary photosynthetic pro-
duction and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming
species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions,
suggesting the possibility of the existence of high genetic diversity with differential adaptation.
Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide
sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on
intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to
develop molecular markers with high resolution and specificity for C. granii, attempting to identify
different taxa of this species, which will set up a stage for subsequent functional assays. Comparative
genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic
variations, which was used to guide the development of a molecular marker with high resolution
and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1),
was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three
different clades. Preliminary analysis of field samples collected in various coastal regions in China
revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow
Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic
diversity and biogeographic distribution of C. granii in different ecosystems.

Keywords: red tide species; Coscinodiscus granii; mitochondrial genomes (mtDNAs); molecular
marker; genetic diversity

1. Introduction

Diatoms (Bacillariophyta) are single-celled eukaryotic algae that serve as primary
source of photosynthesis (and oxygen production) in the ocean. Diatoms are the most
species-rich group of algae, with more than 200,000 estimated species, contributing up
to 20% of global primary productivity [1–3]. Coscinodiscus (Coscinodiscophyceae, Bacil-
lariophyta) is a species-rich genus with 174 taxonomically accepted species (Guiry and
Guiry 2022), among which 49 species have been identified in various coastal regions in
China [4]. Some Coscinodiscus species can form red tides that may cause serious damage to
aquaculture through competitive utilization of nutrients or by causing extensive clogging of
fishing nets and other equipment [5,6] and can cause hypoxia and bring substantial losses
to fishery by generating a large amount of sediments [7]. As some Coscinodiscus species
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cannot tolerate cold temperature, their distribution indicates warming ocean temperatures
and have been used to track global warming (https://sites.evergreen.edu/vms-spring/
coscinodiscus/accessed on 1 June 2016).

Coscinodiscus granii L.F. Gough 1905 is a cosmopolitan Coscinodiscus species [8]. Coscin-
odiscus granii plays an important role in the marine ecosystem and has an important impact
on the carbon pool because of its relatively large cell sizes and high carbon content [9].
Coscinodiscus granii has been found to form characteristic autumn red tides in the Baltic Sea
and exist at high densities in spring and summer in the North European Seas [10,11]. In
China, C. granii is commonly found in coastal waters and has been listed as the dominant
phytoplankton species in the Bohai Sea [12,13].

Despite the wide existence of C. granii, few studies have been conducted on C.
granii [14], little is known about the biogeographic distribution characteristics of C. granii
and about its genetic diversity. Early research on diatoms including C. granii mainly fo-
cused on morphological characteristics observed using microscopy. The application of
molecular biology methods and common molecular markers including 18S rDNA, 28S
rDNA, ITS, cox1, and rbcL enabled quantitative analysis of phytoplankton [15–17]. While
these molecular markers can be effectively used to distinguish species, they have limited
power in resolving intra-species variations. In addition, accumulating evidence suggested
the existence of high genetic diversity among red tide strains isolated from different geo-
graphical regions. For example, Phaeocystis globosa strains isolated from Hong Kong and
Shantou, China were shown to have different toxicity during red tides, optimum growth
temperature, and colony size [18]. As such, we expect that similar studies are needed to
address C. granii intra-species diversity, which will be valuable for tracking ecosystemic
functions and the formation red tides. We hypothesize that C. granii genetic diversity
plays a role in its adaptation and red tide development. The goal of this study was to
develop a molecular marker that has low intra-genome variation and high resolution for
distinguishing different strains.

Mitochondrial genomes (mtDNAs), which carry many important genes related to cell
respiration and metabolism, have been analyzed in diverse studies, including evolutionary
studies, species identification, and speciation analysis [19,20]. Multiple mtDNA-based
molecular markers including cox1 and cytochrome b (cob), 16S rDNA have been commonly
used for species identification. Molecular markers with higher resolution and specificity
have been developed based on the comparative analysis of mtDNAs for many eukaryotic
algae [18,21,22].

In this project, we aimed to develop a molecular marker with both high resolution
and high specificity for distinguishing C. granii strains through comparative analysis of C.
granii mtDNAs. Taking advantage of the recently constructed mtDNA [9] as the reference
sequence, we identified intra-species genome variations (GVs) among six C. granii strains.
We also tested the applicability of this new molecular marker in probing C. granii genetic
diversity in the coastal waters of China.

2. Materials and Methods
2.1. Strain Isolation, Culturing, and Preservation

Six candidate C. granii strains were isolated in water samples collected during expedi-
tions in coastal waters of Jiaozhou Bay, China (Figure 1 and Table 1). The expeditions, which
were carried out during August and November in 2020 on research vehicle “Innovation”,
were supported by the Jiaozhou Bay National Marine Ecosystem Research Station, Insti-
tute of Oceanology, the Chinese Academy of Sciences. These strains were first identified
using light microscopy (Zeiss, Oberkochen, Germany). Morphological characteristics of
these strains accorded with the description of C. granii [23]. Single cells were identified by
morphology and picked up by pipetting individual cells using a micropipette under an
inverted light microscope, followed by multiple washes with sterile culture medium before
transferring each single cell to 24-well polystyrene cell culture plate. The strains were
cultured in L1 medium (including 1‰ volume fraction Na2SiO3·9H2O and a mixture of
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1% streptomycin liquid 100×, Solarbio, Beijing, China) with autoclaved and sterile filtered
seawater. The cultures were maintained at 19–20 ◦C, with an irradiance of about 68 µmol
photons m−2 s−1 in a photoperiod cycle of 12 h L/12 h D. Vegetative cells of six cultures
were harvested for sequencing. Identification of these C. granii strains were based on both
morphological features and molecular characterization using full-length 18S rDNA and
ribulose-1, 5-bisphosphate carboxylase (rbcL) genes [21]. Phylogenetic tree was based on
maximum likelihood (ML), using by MEGA7 [24].
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Figure 1. Sampling sites of the six strains of Coscinodiscus granii. Sampling sites are marked by blue
shapes.

Table 1. The sampling station information of the six Coscinodiscus granii strains.

Strain Number Stations Sampling Time Longitude (◦E) Latitude (◦N)

CNS00554 JZW-B2 2020.08 120.19 36.13
CNS00741 JZW-C1 2020.08 120.18 36.11
CNS00613 JZW-D5 2020.09 120.30 36.02
CNS00614 JZW-D5 2020.09 120.30 36.02
CNS00746 JZW-A3 2020.11 120.25 36.16
CNS00749 JZW-A4 2020.11 120.29 36.10

2.2. Field Sampling and Initial Preparation

Field samples were collected from 66 sampling sites from coastal waters of China,
including the Bohai Sea (October 2019), the North Yellow Sea (October 2019), the Changjiang
Estuary (March 2019), the East China Sea (September 2019), the Pearl River Estuary (June
2019), the Beibu Gulf (January 2019), and the Jiaozhou Bay (March 2021). Details of the
sampling sites were shown in Figure 2 and Table S1. At each sampling site, 1000 mL surface
water was filtered using mesh (Hebei Anping Wire Mesh Co., Ltd., Shijiazhuang, China) to
remove large, suspended solids, zooplankton, and phytoplankton, followed by a second
filtration through a 0.2 µm polycarbonate membranes (Millipore Corporation, Billerica,
MA, USA) using a vacuum filtration pump. The filter membranes were transferred in tubes
and were then snap-frozen in liquid nitrogen for brief storage for a few weeks.



Microorganisms 2022, 10, 2028 4 of 14

Microorganisms 2022, 10, x FOR PEER REVIEW 4 of 14 
 

 

transferred in tubes and were then snap-frozen in liquid nitrogen for brief storage for a 
few weeks. 

 
Figure 2. Geographical distribution of environmental samples used in this study. The environmen-
tal samples are marked by triangles. The results of positive amplified samples are marked by red 
shapes. 

2.3. DNA Preparation and Genome Sequencing 
For cultures of C. granii strains, algal cells at exponential growth phase were trans-

ferred to a 50 mL centrifuge tube. Then, the algal cells were obtained by centrifugation 
(12,000× g, 6 min) and stored in a 1.5 mL EP tube for storage in liquid nitrogen for subse-
quent DNA extraction. Total genomic DNA from cultures and field samples were ex-
tracted with DNAsecure Plant Kit (Tiangen Biotech, Beijing, China) according to manu-
facturer’s instructions and quantified using a NanoDrop One spectrophotometer (Labtech 
International Ltd., Uckfield, UK). Genomic DNA samples of six C. granii strains were pre-
pared for genome sequencing. The sequencing libraries were prepared by using the NEB 
Next® Ultra™ DNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). The PCR 
products were purified using AMPure XP system (Beckman Coulter, Beverly, MA, USA), 
and libraries were analyzed for size distribution by NGS3K/Caliper and quantified using 
real-time PCR (Qubit®3.0 Flurometer, Thermo Scientific, Waltham, MA, USA). After qual-
ification, the libraries were sequenced using a 2 × 150 bp Illumina NovaSeq 6000 platform 
(Illumina, San Diego, California, USA) at Novogene (Beijing, China), yielding about 5 Gb 
sequencing data of paired-end reads with 150 bp in length. 

2.4. Filtering and Assembly of Sequencing Data 
Raw data were filtered into clean data with Fastq following a series of quality control 

(QC) procedures as previously described [25]. Here, briefly, the raw data processing steps 
included: (1) removing reads with >10 nt aligned to the adapters; (2) removing reads with 
≥10% unidentified nucleotides (N); (3) removing reads with >50% bases having Phred 
quality < 5; and (4) removing putative PCR duplicates generated by PCR amplification in 
the library construction process. 

The filtered reads were assembled into scaffolds with SPAdes (v3.14) [26], Platanus-
allee (2.0.2) [27], and ABySS (2.1.5) [28] with default parameters. With the mtDNA of 
Thalassiosira pseudonana (NC_007405) serving as references, scaffolds corresponding to 
mtDNAs of C. granii were identified using BLAST with default parameters. Analysis of 
the resulting scaffold using MEGA 7.0 (v7.0) and DOTTER (v4.44.1) to estimate whether 
sequences at the ends achieved overlap. Subsequently, the obtained draft mtDNA se-
quences were checked by aligning sequencing reads against the mtDNA using the MEM 

Figure 2. Geographical distribution of environmental samples used in this study. The environmental
samples are marked by triangles. The results of positive amplified samples are marked by red shapes.

2.3. DNA Preparation and Genome Sequencing

For cultures of C. granii strains, algal cells at exponential growth phase were trans-
ferred to a 50 mL centrifuge tube. Then, the algal cells were obtained by centrifugation
(12,000× g, 6 min) and stored in a 1.5 mL EP tube for storage in liquid nitrogen for subse-
quent DNA extraction. Total genomic DNA from cultures and field samples were extracted
with DNAsecure Plant Kit (Tiangen Biotech, Beijing, China) according to manufacturer’s
instructions and quantified using a NanoDrop One spectrophotometer (Labtech Interna-
tional Ltd., Uckfield, UK). Genomic DNA samples of six C. granii strains were prepared
for genome sequencing. The sequencing libraries were prepared by using the NEB Next®

Ultra™ DNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). The PCR products
were purified using AMPure XP system (Beckman Coulter, Beverly, MA, USA), and libraries
were analyzed for size distribution by NGS3K/Caliper and quantified using real-time PCR
(Qubit®3.0 Flurometer, Thermo Scientific, Waltham, MA, USA). After qualification, the
libraries were sequenced using a 2 × 150 bp Illumina NovaSeq 6000 platform (Illumina,
San Diego, CA, USA) at Novogene (Beijing, China), yielding about 5 Gb sequencing data of
paired-end reads with 150 bp in length.

2.4. Filtering and Assembly of Sequencing Data

Raw data were filtered into clean data with Fastq following a series of quality control
(QC) procedures as previously described [25]. Here, briefly, the raw data processing steps
included: (1) removing reads with >10 nt aligned to the adapters; (2) removing reads with
≥10% unidentified nucleotides (N); (3) removing reads with >50% bases having Phred
quality < 5; and (4) removing putative PCR duplicates generated by PCR amplification in
the library construction process.

The filtered reads were assembled into scaffolds with SPAdes (v3.14) [26], Platanus-
allee (2.0.2) [27], and ABySS (2.1.5) [28] with default parameters. With the mtDNA of
Thalassiosira pseudonana (NC_007405) serving as references, scaffolds corresponding to
mtDNAs of C. granii were identified using BLAST with default parameters. Analysis of
the resulting scaffold using MEGA 7.0 (v7.0) and DOTTER (v4.44.1) to estimate whether
sequences at the ends achieved overlap. Subsequently, the obtained draft mtDNA sequences
were checked by aligning sequencing reads against the mtDNA using the MEM algorithm of
BWA v0.7.17. The results of alignments were extracted with SAMtools (1.9) and visualized
with IGV v2.8.12 [18]. According to alignments, assembly errors were corrected and N
regions were replaced in the draft mtDNA. Molecular markers including full-length 18S
rDNA, 16S rDNA, ITS, and rbcL were assembled with SPAdes. Finally, the assembly results



Microorganisms 2022, 10, 2028 5 of 14

of the mtDNA and molecular markers of the C. granii strain (CNS00554) were all validated
with BWA and IGV. The circular mtDNA (CNS00554) of C. granii was 34,970 bp in size
(GenBank accession number: MW435847). The annotation of protein coding genes (PCGs),
transfer RNA (tRNA) genes, ribosomal RNA (rRNA) genes, and open reading frames (orf s)
was conducted using Open Reading Frame Finder (ORF finder) with SmartBLAST and
BLASTP, tRNAscan-SE, and MFannot [9].

2.5. Phylogenetic Analysis and Synteny Analysis

A total of the 27 shared protein-coding genes (PCGs), including atp6, 8, 9; cob; cox1,
2, 3; nad1-7, 4L, 9; rpl2, 13, 14, 19; rps3, 4, 8; and tatC, from 34 publicly available diatom
mtDNAs and two species of Ochrophyta, were first individually aligned using MAFFT [29]
and then trimmed using trimAL [30] with default parameters: gt = 1, and all amino acid
sequences were concatenated using Phyutility v1.2.2 [31]. Mitochondrial genes of two
species Sargassum fusiforme (KJ946428) and Sargassum muticum (KJ938301) in Ochrophyta
were selected as out-group taxa. The maximum likelihood (ML) phylogenetic tree was
constructed using IQ-TREE (v1.6.12) [32]. Bootstrap analysis was performed using the
ultrafast bootstrap approximation with 1000 replicates. In this study, p value was 0.01
after the ILD test, which indicated that sequence concatenation did not affect phylogenetic
accuracy [19]. Comparison of mtDNAs of C. granii and C. wailesii was shown in the CIRCOS
(v0.69) [21]. The order and content of genes in the mtDNAs of C. granii and C. wailesii were
also displayed by Microsoft Excel 2019.

2.6. Developing Molecular Markers with High Resolution and High Specificity Based on
C. granii mtDNAs

To search for GVs, we aligned Illumina reads of the six C. granii strains against the
mtDNA of the reference strain CNS00554 using BWA (v0.7.17) with default parameters.
Alignment results were screened using SAMtools with default parameters, and single-
nucleotide variants (SNVs) with homozygous support >85% were called using VarScan
(v2.4.4) [33]. The nucleotide diversity (Pi) values of C. granii mtDNAs were evaluated.
The 400 bp (the length was appropriate for metabarcoding projects using Illumina DNA
sequencing platform) sliding windows in the mtDNA of CNS00554 for SNVs were visual-
ized using the R package circlize (v0.4.11) [34]. Primer Premier 5.0 was used to design the
primers (cgmt1-F: TGGTGGGGAGGTTCTGTT; cgmt1-R: TTAAGCCTAAGTAGAGTTGA)
of the novel high-resolution and high-specificity molecular markers cgmt1 (C. granii mito-
chondrial 1). The primers were synthesized by Sangon Biotech Co., Ltd., Shanghai, China.
In order to verify the specificity and resolution of the designed primers, PCR amplification
experiments were carried out. The PCR mixture contained 2 µL of each primer cgmt1-F
and cgmt1-R (final concentration 200 nM each), 25 µL 2 × Taq Mastermix (Tiangen, China),
50 ng of template DNA and added ddH2O water to 50 µL volume. The PCR protocol was
94 ◦C for 3 min, 32 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C, and 50 s at 72 ◦C, and a final
extension at 72 ◦C for 10 min.

2.7. Genetic Diversity and Biogeographic Distribution Analyses Based on the Molecular Marker

With the high-resolution and high-specificity molecular marker developed in this
project, we explored C. granii genetic diversity by examining amplification results of the
molecular marker in 66 environmental samples collected from expeditions to the Bohai Sea,
the North Yellow Sea, the Jiaozhou Bay, the Changjiang Estuary, the East China Sea, the
Pearl River Estuary, and the Beibu Gulf (Figure 2 and Table S1). The environmental samples
were PCR amplified and cloned before Sanger sequencing. The obtained forward and
reversed fragments were assembled by ContigExpress (Vector NTI Suite 6.0, Invitrogen).
Sanger sequencing results were aligned using MAFFT followed by editing using MEGA
7.0. The ML phylogenetic tree was constructed by the method mentioned above.
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3. Results
3.1. Morphological and Molecular Identification of C. granii Strains

Six candidate C. granii strains (CNS00554, CNS00613, CNS00614, CNS00741, CNS00746,
and CNS00749) were collected in the Jiaozhou Bay. The cells of C. granii were easily
identified in girdle view due to its wedged shape. The cell lengths of C. granii were about
60–300 µm and height was about 30–180 µm. In addition to morphological identification,
this study used two common molecular markers (full-length 18S rDNA and rbcL) for
further identification. The six strains were clustered well with C. granii sequences reported
previously in the maximum likelihood (ML) phylogenetic trees based on the marker full-
length 18S and rbcL (Figure 3). The results of phylogenetic analysis indicated that these six
strains were all C. granii.
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3.2. Phylogenetic Analysis and Synteny Analysis of C. granii mtDNAs

The complete mtDNA (GenBank accession number: MW435847) of C. granii (strain
CNS00554) has a circular genome of 34,970 bp in size, encoding 60 genes (Figure 4). The
ML phylogenetic trees constructed using 27 common PCGs shared by mtDNAs of 34
Bacillariophyta and two Ochrophyta species as outgroup taxa indicated that 34 species
in Bacillariophyta formed a single clade-the Bacillariophyceae. The Mediophyceae and
Coscinodiscophyceae were both paraphyletic assemblages. The phylogenetic tree also
showed that the C. granii (MW435847) clustered with C. wailesii (MW122841) with robust
support (Figure 5). Synteny comparison of mtDNAs of C. granii and C. wailesii revealed
the order of genes in the mtDNAs of the two species were generally similar, except for the
rearrangements (translocation and inversion) of a few gene blocks, including trnP(ugg)-
trnY(gua)-rps11 and atp8-trnA(ugc) (Figure 6).
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Figure 4. Circular maps of the mtDNA of Coscinodiscus granii (Strain CNS00554). Circular map of the
mtDNA of C. granii. The transcriptional direction inside the ring is clockwise and the transcriptional
direction outside the ring is counterclockwise. The protein-coding genes and rRNAs and tRNAs
genes are labeled inside or outside the circle. The color of the gene boxes indicates the different
functional groups of genes. The ring of bar graphs on the inner circle shows the GC content in
dark gray.
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mtDNAs, and Sargassum fusiforme (KJ946428) and Sargassum muticum (KJ938301) in Ochrophyta were
used as out-group taxa. The numbers beside branch nodes are the percentage of 1000 bootstrap values.

Microorganisms 2022, 10, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Phylogenetic analysis of C. granii (CNS00554). Maximum likelihood (ML) phylogenetic 
tree using concatenated amino acid sequences of 27 common protein-coding genes from 34 publicly 
diatom mtDNAs, and Sargassum fusiforme (KJ946428) and Sargassum muticum (KJ938301) in Ochro-
phyta were used as out-group taxa. The numbers beside branch nodes are the percentage of 1000 
bootstrap values. 

 
Figure 6. Synteny comparison of C. granii and C. wailesii. (A): Block diagram of gene content and 
gene rearrangement, tRNAs are indicated by capital single letter. Solid line boxes indicate the same 
Figure 6. Synteny comparison of C. granii and C. wailesii. (A): Block diagram of gene content and
gene rearrangement, tRNAs are indicated by capital single letter. Solid line boxes indicate the same
conserved block of genes, while dotted boxes indicate translocation event and gene block connected
by a red line indicates inversion event. Blocks with the same color represent the same type of genes.
(B): The assignment of genes into different functional groups is indicated by colors.



Microorganisms 2022, 10, 2028 9 of 14

3.3. Defining a Molecular Marker with High Resolution and High Specificity for Distinguishing
C. granii Strains

To develop molecular markers for tracking genetic diversity of C. granii using Illumina
DNA sequencing, the length of the molecular markers should ideally be between 350 and
400 bp. Comparative analysis of the six C. granii mtDNAs identified a 400 bp-window
with dense variations (Figure 7A). Furthermore, sliding window analysis of nucleotide
variability (Pi) was used by complete mtDNAs of six C. granii strains (Figure 7B). In the
end, we identified a genomic region containing 6 SNVs in mtDNA of C. granii strain
CNS00554 (position: 5649–6048 bp). According to the optimization principle of primer
software design, the amplification primers were designed in the region of 5749–6248 bp.
Phylogenetic analysis using this small region suggested that it could be used to effectively
distinguish these strains as molecular marker. Six strains of C. granii were divided into
three clades based on this region (Figure 7D), which achieved similar resolution as the
complete mtDNA (Figure 7C). The high resolution of molecular marker, which we named
cgmt1, was 397 bp in size.
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Bay (JZW).

To test the specificity of newly developed molecular marker cgmt1, two analyses
were carried out as the follows. First, we carried out BLAST searches of cgmt1 in NCBI
NT database, which showed low similarity (less than 29%) to sequences of other species,
suggesting high specificity to C. granii. Second, we carried out PCR assays using primers
designed against cgmt1 and DNA preparations extracted from different 14 representative
eukaryotic algae species, including Amphidinium carterae, Alexandrium tamarense, Karenia
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mikimotoi, and Prorocentrum donghaiense of the phylum Dinoflagellata, Chattonella marina,
Aureococcus anophagefferens, and Heterosigma akashiwo of the phylum Ochrophyta, Skele-
tonema costatum, Thalassiosira weissflogii, Chaetoceros curvisetus, C. wailesii, and Coscinodiscus
sp. of the phylum Bacillariophyta, Phaeocystis globosa and Isochrysis galbana of the phylum
Haptophyta. We also included DNA preparations extracted from six C. granii strains as
positive control. While most of these 14 representative eukaryotic algae species showed
completely negative results, some showed some but greatly reduced signals. (Figure S1).

3.4. Probing C. granii Genetic Diversity and Geographical Distribution Using cgmt1

To evaluate genetic diversity and explore the biogeographical distribution of C. granii
strains, we PCR amplified cgmt1 from 66 environmental samples collected from various
coastal areas of China. Among these 66 PCR amplicons, nine showed strong signals, which
were further analyzed by cloning and sequencing. Sequencing results revealed that C. granii
was mainly detected in the Bohai Sea and the North Yellow Sea (Figure 2). Phylogenetic
analysis based on cgmt1 sequence from 6 different strains of C. granii and 55 sequencing
results from 9 positive environmental samples showed high genetic diversity (Figure 8).
The phylogenetic analysis revealed at least three clades. Clade 1 included sequences of
environmental samples from the Yellow Sea and the Bohai Sea, as well as sequences of
strains from the Jiaozhou Bay. Clade 2 contained only sequences from the Jiaozhou Bay.
Clade 3 contained sequences of environmental samples collected from the Bohai Sea and
strains from the Jiaozhou Bay. The results indicated that the molecular marker cgmt1 had
high resolution, and that it could be used for tracking genetic diversity of C. granii in the
field studies.
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4. Discussion

Coscinodiscus granii has a worldwide distribution, suggesting adaptation to a wide
range of temperatures [11] and salinities and possibly high genetic diversity. Coscinodiscus
granii has been reported to form dense red tides, usually present great abundance in numer-
ous ocean regions around the world, including the Bohai Sea and the Yellow Sea of China.
However, current methods including morphology-based methods and common molecular
marker-based methods have been inadequate for uncovering intra-species genetic differ-
ences. Common molecular markers including 18S rDNA, 28S rDNA, rbcL, and ITS have
been demonstrated to be ineffective in resolving Phaeocystis globosa intra-species genetic
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diversity [18]. While cox1 gene showed high resolution for resolving some algal species, the
presence of introns in cox1 in many species limits its application [16,35]. Molecular markers
with high resolution and high specificity for intra-species genetic diversity analysis have
been developed through comparative analysis of mtDNAs [19,21,22].

Our analysis revealed the mtDNA of C. granii was 34,970 bp in size, which was shorter
than the mtDNA (36,071 bp) of C. wailesii and most diatom mtDNAs that were generally
compact with few repeats and a small number of introns [36]. In this study, the mtDNA
of C. granii included small intergenic regions, the absence of introns, and the low repeat
content, which made it smaller size of mtDNA than others [22,37–39]. Rearrangements
of DNA sequence containing four main events: translocation, inversion, duplication, and
deletion [40]. Comparative analysis of C. granii and C. wailesii mtDNAs showed that most
gene arrangements were conserved, except for the rearrangements of a few gene blocks,
including translocation and inversion events. Notably, ribosomal protein coding genes
rps2, rps10, and rpl5 that are found in mtDNAs of many other diatom species [21,22] were
absent from the mtDNA of C. granii. Furthermore, the two orfs identified in C. granii shared
no similarity with these three genes. The reason for this may be that the three genes were
lost or transferred to the nucleus during evolution [41]. The AT content of the mtDNA of
C. granii was 75.70%, which was essentially the same as that of C. wailesii (75.00%), and
substantially higher than that of M. undulata (78.40%) in the class Coscinodiscophyceae [40].
Comparative analysis of mtDNAs can facilitate exploring synteny relationships among
closely related species and ascertaining gene gains or losses in evolution [42].

Mitochondrial genomes evolve quickly and thus provide a rich source of molecular
variations at the nucleotide level, which made it more suitable for the development of
high-resolution molecular markers [43,44]. In this study, we collected and isolated six C.
granii strains from Jiaozhou Bay in China, covering two seasons (summer and autumn).
We successfully developed a new molecular marker named cgmt1 based on comparative
analysis of C. granii mtDNAs, which showed high resolution and specificity in distinguish-
ing different C. granii strains. Furthermore, we used cgmt1 as the molecular marker to
track and probe C. granii geographical distribution and genetic diversity in environmental
samples collected in the Bohai Sea, the North Yellow Sea, the Jiaozhou Bay, the Changjiang
Estuary, the East China Sea, the Pearl River Estuary, and the Beibu Gulf. In this study,
phylogenetic analysis of cgmt1 amplified from different samples showed that C. granii was
mainly distributed in the Bohai Sea and the North Yellow Sea of China, which was con-
sistent with the results of previous studies [12]. The results also highlighted the reliability
and practicability of the newly developed molecular markers and indicated that C. granii
had high genetic diversity. Indeed, such effective marker cgmt1 could facilitate studies on
C. granii. On the one hand, it could be used in metabarcoding analyses for tracking the
geographical distribution patterns of C. granii genotypes not only in Chinese coastal waters
but also other ocean regions of the world. On the other hand, we could distinguish different
strains of C. granii from different geographical spans and seasons, especially during red
tides period, to evaluate strain-specific differential contribution to red tides and to trace the
possible origin of C. granii red tides.

5. Conclusions

Through comparative analysis of mtDNAs, we successfully developed a new molec-
ular marker cgmt1 (C. granii mitochondrial 1) with high resolution and specificity for C.
granii intra-species genetic differences. We demonstrated that it could be used effectively
to investigate the biogeographical distribution and track genetic diversity of C. granii.
This molecular marker holds great potential applications for the studies on biogeographic
distribution and intra-species genetic diversity of C. granii in coastal waters of China and
other countries.
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