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Artificial intelligence (AI) and machine learning (ML) techniques are revolutionizing several indus-

trial and research fields like computer vision, autonomous driving, natural language processing,

and speech recognition. These novel tools are already having a major impact in radiology, diag-

nostics, and many other fields in which the availability of automated solution may benefit the

accuracy and repeatability of the execution of critical tasks. In this narrative review, we first pre-

sent a brief description of the various techniques that are being developed nowadays, with spe-

cial focus on those used in spine research. Then, we describe the applications of AI and ML to

problems related to the spine which have been published so far, including the localization of ver-

tebrae and discs in radiological images, image segmentation, computer-aided diagnosis, predic-

tion of clinical outcomes and complications, decision support systems, content-based image

retrieval, biomechanics, and motion analysis. Finally, we briefly discuss major ethical issues

related to the use of AI in healthcare, namely, accountability, risk of biased decisions as well as

data privacy and security, which are nowadays being debated in the scientific community and

by regulatory agencies.
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1 | INTRODUCTION

The last decade has seen a massive increase in the use of artificial

intelligence (AI), especially machine learning (ML) technologies, for

several applications. For example, personal assistants able to under-

stand vocal natural language and to perform simple tasks such as

retrieving information from a calendar, managing home automation

devices and place online orders are now being used on millions of

smartphones. A notable example of state-of-the-art AI is the self-

driving car, which employs computer vision and other sensors to

sense the surrounding environment, and automated control systems

to take decisions and move without any human input.

While AI and ML are sometimes used in the generalist press as

synonyms, ML constitutes only a branch of AI, the one dealing with

methods to give a machine the capability to “learn,” that is to improve

the performance in specific tasks, based on previous experience or on

provided data.1 Although other AI branches such as symbolic reason-

ing, heuristics, and evolutionary algorithms have had a tremendous

impact on science and technology,2 ML arguably constitutes the most

interesting and promising field of AI for applications in medical

research (Figure 1).

ML is based on the availability of data, which is used to train the

machine to perform the desired tasks. Due to its nature, ML lends

itself well to applications in which input data are used to generate an

output based on some features of the inputs themselves, for example,

to perform image classification. Indeed, a research area which was

dramatically advanced by ML in recent years is image processing.

Thanks to the continuous technical improvements, in 2015, a deep

neural network achieved for the first time superhuman performance

in a famous image classification contest, the ImageNet Large Scale

Visual Recognition Challenge.3 Computer can nowadays perform tasks

such as image classification, object detection (eg, face detection and

recognition), and landmark localization better than expert human

operators. Although the deployment of such powerful technologies to

medical imaging is still in its infancy, radiologists generally agree that

ML is a truly disruptive technology which can deeply transform how
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imaging data are interpreted and exploited for treatment planning and

follow-up.4 The impact of ML and AI on other basic medical research

fields has been less conspicuous so far; nevertheless, numerous novel

applications, for example, in motion analysis and mechanical charac-

terization of tissues, are starting to emerge.

As testified by the sharp increase in the number of published

papers in recent years, AI and ML are more and more being used to

investigate issues related to the spine, especially in radiological imag-

ing but also in other fields such as the outcome prediction of treat-

ments. The reported results are either promising or already surpassing

the previous state of the art in several applications; for example, ML

techniques nowadays allow for an accurate and perfectly repeatable

grading of intervertebral disc degeneration on magnetic resonance

imaging (MRI) scans. Indeed, the current pace of technical improve-

ments is expected to being further benefits in the next future.

With this narrative literature review, we aim at raising the aware-

ness of the current achievements and potential spine-related applica-

tions of AI in the spine science community, including readers working

in different fields who are not familiar with the technical aspects of

such technologies. To this aim, the paper first presents a brief general

overview of AI, with special emphasis on ML and its recent advances

which are having a practical or potential impact on spine research.

The following paragraphs describe the state of the art of the use of

ML and AI in spine science, including diagnostic spine imaging, the

prediction of the outcome of therapeutic interventions, clinical deci-

sion support systems, information retrieval, biomechanical analysis

and characterization of biological tissues, and motion analysis.

2 | HISTORICAL PERSPECTIVE

The first steps toward AI date back to the development of general

purpose computers, which were pioneered during the Second World

War and become available for nonmilitary use in the 1950s. The

newly available computing power allowed creating symbolic AI pro-

grams, that is, algorithms that apply a set of rules in order to imitate

reasoning and to draw decisions.2 Notable examples of such programs

are those aimed at checkers1 and chess gaming, which achieved very

good performances already in the 1970s,5 and the first chatbots

which could simulate to some extent a conversation in natural lan-

guage.6 In parallel, taking advantage of the recent advances in neuro-

logical research which showed that the central nervous system

consists of a large network of units communicating via electric signals,

research groups started developing the so-called artificial neural net-

works (ANNs), that is, networks of artificial neurons mimicking the

brain structure (Figure 2A),7 by means of analog systems.8 These net-

works, such as, for example, the perceptron,9 showed to be able to

perform simple logical functions and to recognize classes of patterns,

although with significant limitations.10

After the first two decades of research, there was a succession of

phases of general skepticism (the so-called “AI winters”) mainly due to

an underestimation of the complexity of the problems to be solved

and lack of the necessary computer power, and optimistic phases with

larger funding and technological breakthroughs.2 In the 1980s, expert

systems, that is, computer programs able to deal with practical prob-

lems based on set of rules derived from human expert knowledge,

were successfully employed in several research and industrial fields. In

the same years, ANNs were revamped by the development of

backpropagation,11 a powerful training algorithm which is still the base

for their use nowadays.

In the last two decades, the increases in computer power and its

improved accessibility even for small research institutes, made possi-

ble by graphics processing units (GPUs) with tremendous parallel com-

puting capabilities, fostered the adoption of AI solutions for many

practical applications.12 While the achievement of strong AI, that is, a

computer program with a flexible intelligence which can perform any

task feasible for humans, remains out of the foreseeable future, nar-

row AI, that is a machine able to apply AI only to a specific problem,

has found a widespread use. Internet search engines and speech rec-

ognition software are good showcases of the huge potential of the

recent advances.

One of the branches of AI which is seeing the fastest improve-

ments is deep learning12 (Figure 2B). In most implementations, this ML

method is based on deep neural networks, that is, network

FIGURE 1 Schematic overview of the main branches of artificial intelligence (AI), including machine learning (ML) methods which are having an

impact on spine research
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architectures with several layers, and is revolutionizing research fields

such as image processing, voice recognition and natural language pro-

cessing. In addition to the improved computer power, a key driver for

the success of deep learning was the availability of big data, massive

datasets collected from various sources, including the Internet and

medical institutions (eg, imaging databases), which are extremely valu-

able for an effective exploitation of deep learning in practical applica-

tions. As a matter of facts, most of the scientific papers applying AI to

spine research, which are described in the paragraph “Applications of

AI and ML in spine research,” are based on deep learning.

3 | MACHINE LEARNING

The expression “ML” was introduced by Arthur Samuel in 1959, who

defined it as the field of study that gives computers the ability to learn

without being explicitly programmed.1 This paragraph summarizes the

main concepts of ML, which are presented in deeper details

elsewhere.13,14

The general aim of ML is to make a prediction, that is, to estimate

the value of a desired output given an input, based solely on features

provided by the model developer or automatically learned from train-

ing data. More specifically, common applications of ML include:

(a) Classification: the input is assigned to a specific category

among a group of two or more. An example of binary classification is

the automated diagnosis of cancer based on histopathological images,

in which the machine should decide if an image shows features (eg,

texture and color information) depicting a pathological condition. The

automation of Pfirrmann grading for disc degeneration exemplifies a

multiclass classification problem, in which an MRI scan of the disc

should be assigned to a category ranging from 1 (healthy disc) to

5 (severe disc degeneration).15 Image segmentation, in which each

pixel is labeled based on its belonging to a specific region or anatomi-

cal structure, can also be considered as a subclass of classification

problems.

(b) Regression: the output of the task is continuous rather than dis-

crete. An example of a regression problem is the determination of the

coordinates of an anatomical landmark in a radiographic image.

(c) Clustering: the provided inputs are divided into groups, based

on features learned from the inputs themselves. Cluster analysis is

used to classify data when no a priori knowledge about the belonging

to a specific class is available. Clustering has been used, for example,

to subdivide into groups patients suffering from osteoporotic verte-

bral fractures based on pain progression.16

Another way to describe the different forms of ML is based on

the nature of the tasks to be performed:

(a) Supervised learning: the machine learns to predict the output

based on a collection of inputs for which the correct output (ground

truth) is known. In most implementations, supervised learning consists

in learning the optimal manner to map the inputs to the outputs, by

minimizing the value of a loss function representing the difference

between the machine predictions and the ground truth. It is the most

common type of learning used in medical research.

(b) Unsupervised learning: the machine learns from input data for

which there is no ground truth. This type of learning task identifies

patterns and features in the inputs, with the aim of extracting new

knowledge from the available data. Clustering is an application of

unsupervised learning.

(c) Reinforcement learning: instead of having ground truth data

available at the beginning of the task, feedback about the correctness

of the execution is provided after the task has been completed, thus

acting like to a reward or a punishment. Reinforcement learning is typ-

ically used in dynamic or interactive environments, for example, in

gaming. Clinical decision-making is rapidly gaining interest as another

field of application. Models of reinforcement learning are valuable

tools for the investigation of how nonhuman animals and humans

learn the causal structure of tasks and phenomena.

Regardless of the task to be performed, the availability of large

datasets to be used for training the algorithm and to test its accuracy

is essential for a successful implementation of ML. Especially in medi-

cal research, this requirement poses serious challenges related to data

privacy, ethics, regulation, and liability, which are described in

Section 6.

4 | METHODS USED IN SUPERVISED
LEARNING

The next paragraphs provide a brief summary of the methods used for

supervised learning, which play a cardinal role among the ML tasks in

FIGURE 2 Schematic representation of an artificial neural network (A), a deep network (B), and a unit, also called artificial neuron (C). In each

unit, the inputs (“x1,3”) are multiplied by weights (“w1,3”), summed to a bias term (“+t”), and the total sum is processed by a linear or nonlinear
activation function (“φ”)
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medical research, and are described in detail elsewhere.13 The concept

of supervised learning is based on the estimation of a function which

maps an input, which can be, for example, an image or a collection of

clinical data regarding a patient, to an output value. The training data

therefore consists of a set of pairs including an input and the relative

output, which is known. When the mapping function has been deter-

mined, it can be used to process new inputs for which the value of the

output is not available. If the number of training examples is sufficient

and an appropriate learning algorithm has been chosen, the algorithm

itself should be able to generalize well, that is, to provide accurate

results for inputs similar but different to those included in the training

data. Conversely, the predictions may reveal overfitting, that is, results

fitting precisely the input data but not able to make accurate predic-

tions on additional data, or underfitting, which happens when the

learning model is not sufficiently complex to capture the features of

the input data17 (Figure 3).

4.1 | Methods derived from statistics

Although considering linear regression in the realm of ML might be

counterintuitive, it constitutes a good example of a simple method to

create a function which maps an input (a number, or more frequently

a vector of numbers) to an output. Indeed, any form of input can be

mathematically formulated as a multidimensional vector of numbers,

conventionally named features, which can be processed by linear

regression. Features are a set of variables which characterize the data,

and can be either simple and human readable (such as, eg, age and sex

of a patient) or more difficult to interpret, such as the image features

extracted with specialized algorithms like SIFT18 and ORB,19 or with

texture and shape analysis. Even without feature extraction, an image

such as a radiograph can be also viewed as an array of integer num-

bers with length equal to the number of pixels in the image; each ele-

ment of the array would contain the color (gray level) of the specific

pixel. From this perspective, the application of linear regression even

in case of complex and large inputs is straightforward.

The linear regression function is commonly fitted by means of the

least squares method, which therefore acts as the learning algorithm.

In this case, performing a linear regression corresponds to minimizing

the mean square error (MSE) between the predictions and the inputs;

MSE therefore represents the loss function of the algorithm. In ML lit-

erature, MSE is also commonly named as L2 loss, whereas the L1 loss

is the mean absolute error (MAE) which is also a possibly effective

choice for regression problems. Due to its simplicity and its inherent

incapability of capturing a nonlinear behavior, linear regression is

prone to underfitting, and therefore is not the method of choice for

complex ML regression tasks.

Logistic regression can be seen as the equivalent of linear regres-

sion for classification problems. In its simplest form, the inputs (one or

multiple continuous numbers) are fitted to a binary output (0 or 1) by

means of a nonlinear curve, the logistic sigmoid function, which repre-

sents the probability that an input is mapped to the “1” output. If the

output probability is greater or equal than 0.5, a “1” is predicted,

whereas on the contrary the output is “0.” In addition to predicting

binary outputs, logistic regression can be effectively generalized to

multiclass classification problems. MSE is not the most appropriate

choice to act as loss function for logistic regression; specialized func-

tions such as the cross entropy are employed in this respect. Similar to

linear regression, logistic regression is outperformed by more complex

algorithms for most ML classification tasks.

Another method derived from statistical inference which found

its place in ML literature is the Bayes classifier,20 which is based on

Bayes' theorem of conditional probability. The naive Bayes classifier,

which assumes the independence of the features from each other, is

especially simple to implement, fast to train even for very large train-

ing datasets and potentially very effective in tasks where the assump-

tion of feature independence is reasonable. In spine research, Bayes

classifiers have been used for the classification of vertebral fractures21

and for computer-aided diagnosis.22

4.2 | Support vector machines

Considering each input belonging to the training data as a multidimen-

sional vector and therefore as a point in a multidimensional space,

performing a classification task corresponds to determining a partition

of the space which divides the points belonging to the various classes.

A support vector machine (SVM) is an algorithm which builds the

hyperplane, or a number of them, which can divide the space so that

FIGURE 3 Examples of a plausible good fitting (left), underfitting (center), and overfitting (right) in a binary classification task
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the points of the different classes are effectively and optimally parti-

tioned23 (Figure 4).

SVMs are powerful tools to perform multiclass linear classification

tasks, including image segmentation. Although the original publication

of the method dates back to 1963,24 SVMs are still widely used nowa-

days and may outperform the most recent techniques in specific

cases, for example, when the dataset available for training has a lim-

ited size. In spine science, SVMs have been used, for example, for the

grading of disc degeneration25 and for the classification of scoliosis

curve types.26 SVMs can be adapted to nonlinear classification and

regression problems, as well as to unsupervised learning (eg, for

clustering).

4.3 | Classification and regression decision trees

The use of tree-like structures in AI dates back to the pioneering

checkers programs by Arthur Samuel.1 Even for classification and

regression purposes, decision tree was first employed in the

1950s.27,28 Nowadays, decision trees are valuable support tools in

various fields including economics and military; notably, they are com-

monly used for the choice of the most appropriate medical treatment

in health care.

In ML, a classification and regression decision tree (CART) links the

values of the features to the possible outputs, therefore implementing

a classification or a regression task, by means of a set of conditions.29

For each condition, the tree splits into branches, which end with ter-

minal nodes representing the outcome of the decision; due to this

peculiar structure, CARTs are easier to understand for humans with

respect to other ML techniques. CARTs can be trained based on large

sets of input data by means of specialized algorithms,30,31 which are

generally not computationally intensive and thus suitable for very

large datasets. Regarding downsides, CARTs are prone to overfitting,

which can be limited by using special techniques such as pruning,

which reduces the size of the tree, and random forests,32 which exploit

multiple decision trees built on random subsets of the features and

average their predictions. CARTs and random forests have been used

for several applications in spine research. As a clinical decision support

system, decision trees have been used for the management of low

back pain,33 and for the preoperative selection of patients with adult

spinal deformity.34 Other applications include the evaluation of the

primary fixation strength of pedicle screws35,36 (Figure 5), and the pre-

diction of proximal junctional failure.37

4.4 | Artificial neural networks

ANNs constitute the branch of ML which has seen the most impres-

sive improvements in recent years, so much that it has been identified

by the general public with ML itself. Applications of ANNs in medical

research as well as in spine science are countless, and are described in

detail in the paragraph “Applications of AI and ML in spine research.”

ANNs are biologically inspired networks which loosely resemble

how the neurons are connected and interact in the brain.7 Mimicking

the principles of Hebbian learning,38 information flows from the

inputs to the outputs through artificial neurons, which are organized in

layers and perform simple operations such as making linear combina-

tions of their inputs multiplied by a weight, and then processing the

result through a linear or nonlinear activation function (Figure 2C). The

networks may include regularization terms, which are aimed at reduc-

ing the risk of overfitting by penalizing large values of the weights

through a penalty coefficient. Training the ANN consists in finding the

optimal values of the weights, so that the inputs belonging to the

training data are processed and transmitted through the layers result-

ing in outputs which fit well the ground truth.

The same loss functions described in the previous paragraphs,

that is, MSE, MAE, and cross entropy, are commonly used to train

ANNs and as metrics for their performance. In its simplest

FIGURE 4 Schematic representation of a simple support vector

machine (SVM) used for binary classification. In brief, the SVM builds
the optimal hyperplane (in green) which separates the two classes
maximizing the gap between them. A non-optimal hyperplane
(in orange) which correctly separates the two classes, but with a
smaller gap, is also shown. The SVM operates in the feature space
(“x1” and “x2” in the exemplary figure)

FIGURE 5 Example of a decision tree trained to predict the risk of

failure of pedicle screws. Reproduced with permission from Varghese
et al36
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implementation, the training algorithm, named backpropagation,11

consists in calculating the derivatives of the loss function with respect

to each weight, and adjusting the specific weight by the value of the

respective derivative multiplied by a coefficient, the learning rate. Iter-

ating the process determines a decrease of the loss function, which

would reach a minimum after convergence has been achieved. This

gradient descent algorithm has been superseded by more sophisticated

methods, such as, for example, the stochastic gradient descent39 and

Adam,40 which can generally achieve a faster and more robust

convergence.

ANNs are used in several industrial and research fields, for both

classification and regression problems. Although the applications of

ANNs in spine research are mostly based on supervised learning,

these networks are also proficiently employed for unsupervised tasks

and reinforcement learning. Starting from the earlier examples such

the single layer perceptron,9 a simple linear binary classifier consisting

of a single layer of outputs directly connected to the inputs via a

series of weights, high-performance network architectures which are

optimized to deal with specific problems have been developed. For

example, ANNs are nowadays used to generate new data which share

some characteristics with known data by means of the so-called gener-

ative models,41 and to process data keeping memory of previous

inputs, for example, with recurrent neural networks.42 The latter

methods found widespread use in speech recognition and automated

language translation.

4.5 | Convolutional neural networks

Image processing, as well as computer vision in general, are arguably

the largest fields of application of ANNs. The design of convolutional

neural networks (CNNs or ConvNets) has been inspired by the struc-

ture of the animal visual cortex, based on experiments carried out in

cats and monkeys.43,44 In the 1960s, Hubel and Wiesel described that

specific groups of neurons in the visual cortex are stimulated only be

small areas of the visual field, and extract features and information

from those areas. Specific groups of neurons are sensitive to features

such as a certain edge orientation, and others to other directions or

shapes. Visual perception then results from combining the information

coming from the neuron groups and exploiting information about their

architecture.

CNNs mimic rather closely such neuronal architecture.45,46 In a

convolutional layer, which is the characterizing component of a CNN, a

small filter (having most commonly a size of 3 × 3 × 3 or 5 × 5 × 3)

slides, or convolves, on the input image; for each possible position in

the image, a number is calculated by element-wise multiplication of

the weights of the filter by the corresponding values of the input of

the layer. The collection of all calculated numbers constitutes the so-

called activation map (Figure 6). Since a typical convolutional layer

consists of several filters, the convolution process results in a three-

dimensional matrix, each layer of which is an activation map. Convolu-

tional layers are usually combined with pooling layers,47 which

downsample the data and help in reducing the risk of overfitting, and

dense (fully connected) layers, which are the standard nonconvolutional

layers used in ANNs, to generate an output and thus to perform a clas-

sification or a regression task. Dropout layers, in which a predefined

fraction of artificial neurons are artificially canceled, force the network

to learn different ways of achieving the same output and are fre-

quently integrated in CNNs to reduce the risk of overfitting. Training

the convolutional layer consists in finding the optimal values of the

weights of the filters, and is performed by means of optimization algo-

rithms similar to those used for standard ANNs.48

4.6 | Deep learning

In simple terms, deep learning is the branch of ML which employs

methods involving multiple layers of processing units, with the final

aim of being able to capture different levels of abstraction. Practically,

deep learning is most commonly based on the use of multilayer ANNs,

commonly referred as deep neural networks. Although such ANNs with

several layers were developed in conjunction with CNNs and have

FIGURE 6 Schematic representation of a convolutional neural network (CNN), here exemplary aimed at performing the grading of disc

degeneration on T2-weighted MRI scans based on the scheme presented by Pfirrmann et al.15 In a convolutional layer, a small filter convolves
over the data creating a series of activation maps; these maps can be downsampled by pooling layers, and then processed by another
convolutional layer. In the simplest forms of a CNN, one or more fully connected layers perform the final classification or regression decision
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been available already in the 1970s, they never gained widespread

use due to the computational resources required for training, and the

lack of effective learning algorithms. In 1989, the research group of

LeCun introduced the first of a family of networks, LeNet-1, which

featured two convolutional layers and two pooling layers and could be

trained with the standard backpropagation.49,50 LeNet-1 scored state-

of-the-art results in an image classification task; later developments,

notably LeNet-5, showed that increasing the depth of the network,

that means adding layers, could drastically improve the accuracy of

the predictions.51 These pioneering studies, together with the

improved accessibility of computer power, opened the way to deep

learning which is nowadays considered as the most advanced frontier

in ML. It should be noted that deep learning architectures are not only

based on ANNs and aimed at computer vision, but also cover other

domains, such as, for example, the deep Boltzmann machines com-

monly used for making music and movie recommendations on the

Internet, and deep recurrent neural networks for speech recognition

and natural language understanding.49

Recent developments of deep architectures are continuously

raising the bar in image classification tasks. In 2012, AlexNet,52 a

CNN having five convolutional layers followed by three dense

layers, won several competitions and demonstrated that deep CNNs

have more potential for computer vision than any other current ML

technique. Among the various designs that were introduced after-

ward, some are worth of mention. The Visual Geometry Group

(VGG) architecture was developed at the University of Oxford and

is a large network with 138 million trainable parameters, 13 convolu-

tional layers and two dense layers.53 GoogLeNet, introduced in

2014, has 22 layers (including nine Inception layers, a novel design)

but a smaller number of parameters (11 million), benefiting the com-

putational resources necessary for training.54 The ResNet family of

networks, presented by Microsoft in 2015, features a large number

of layers, up to 152, none of which is fully connected.3 ResNet was

the first architecture to achieve superhuman performance in image

classification; its foundation innovation, the concept of residual

learning, that is, skipping layers in order to make the deep network

easier to train, is still exploited in many of the most recent

architectures.

A key driver for the widespread diffusion of deep learning is its

easy accessibility. In the spirit of knowledge sharing and cooperative

work which characterizes computer science and is gaining momentum

also in other fields, the vast majority of the recently developed algo-

rithms are publicly available on the Internet. ML frameworks such as

Torch (http://torch.ch/), Tensorflow (https://www.tensorflow.org/),

and Caffe (http://caffe.berkeleyvision.org/), as well as high-level librar-

ies such as Keras (https://keras.io/) and PyTorch (https://pytorch.org/)

are also freely available, even for commercial use.

Together with the improved accessibility of powerful GPUs and

of cloud computing platforms offering AI products and services, the

availability of state-of-the-art deep learning software is fostering its

use in a wide range of research fields. Although the adoption of deep

learning for real-world problems in spine science is still limited by the

short time passed since its first introduction, we expect it to become a

disruptive technology in the near future, especially for spine imaging

applications.

4.7 | Assessing the accuracy and robustness of ML
tools

Before any ML tools can be used to address practical problems and

deployed to industrial or research environments, their accuracy and

robustness need to be proven by performing a proper validation. To

do so, in supervised learning, the available data are typically split in

two or three datasets, which serve different purposes.55 The first one

is the training dataset in the strictest sense of the word, which

includes the majority of the available data (typically around 70%-80%)

and is actually used to train the model, that is, to calculate the weights

of the artificial neurons in case of ANNs. The second set is named vali-

dation dataset and is aimed at tuning the model hyperparameters, such

as learning and dropout rates, penalty coefficients in regularization

terms or even the number of units or layers, in order to improve the

model fit on the training data. The validation dataset might not be pre-

sent in the simplest ML implementations, when all hyperparameters

have been defined by the developer prior to training. The latter set is

the test dataset, which includes data which has not been seen by the

model, that is, neither used for learning the weights nor for tuning the

hyperparameters, and therefore allows for an unbiased assessment of

the model accuracy and robustness. The test dataset should be used

only when the model is completely trained; if modifications to the

model architecture or hyperparameters are performed after testing,

for example, to further improve the accuracy or to reduce overfitting,

a new test should be performed on another set of data which has not

been seen previously by the model.

For a proper assessment of the model performance, it is critical

that training, validation, and test datasets do not overlap. Besides,

selection bias should be avoided when creating the three datasets

from the available data; all sets should be equally representative sam-

ples of the data of interest. The quality of ground truth data is a fur-

ther issue of uttermost importance, especially when the size of the

database is limited; noisy ground truth would result in outputs which

are inaccurate to some extent, depending on the amount of data avail-

able.56 As a matter of fact, there is no precise rule to estimate the

minimum size of the training database for a good performance of the

model. Heuristics methods as well as naive guesses are sometimes

used to this purpose; a more comprehensive evaluation requires train-

ing the model on databases of different sizes, and creates a learning

curve representing accuracy vs data size. An estimation of the mini-

mum required size can then be extrapolated from the curve.

Test automation is currently widely used in software engineering

to execute a large number of tests in a controlled and formalized envi-

ronment, by means of specifically designed software. Although this

technology still has to find its place in the rapidly evolving field of ML,

especially regarding medical applications, its adoption for model vali-

dation is easy to foresee in the next future. A prerequisite for such

advance is the definition of standardized data sets, which shall be

used to perform quantitative comparisons between different models.

The validation process may reveal either underfitting, which

results in poor performance of the model on all the three datasets, or

overfitting, which can be detected when good accuracies are achieved

on the training data, but the unbiased evaluation on the test dataset

reveals a poor outcome. Whereas addressing underfitting typically
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involves increasing the complexity of the model, overfitting can be

remediated by means of specific techniques such as pooling and drop-

out layers or regularization, as mentioned above, or by simplifying the

model architecture.

5 | APPLICATIONS OF AI AND ML IN SPINE
RESEARCH

AI technologies are having a major impact in several research fields

related to the spine, which is expected to further increase in the

future. In the following paragraphs, we summarize the published appli-

cations of AI and ML in various domains of spine research, such as

diagnostic imaging, prediction of treatment outcomes, and decision

support systems. Applications more closely related to basic science

such as biomechanics and motion analysis are covered as well.

5.1 | Localization and labeling of spinal structures

ML approaches have been employed to extract information such as

the location of vertebrae, discs and spinal shape from radiological

images like planar radiographs, computed tomography (CT) and MRI

scans. As a matter of fact, localizing anatomical structures in an imag-

ing dataset is commonly a first step toward the development of fully

automated methods for the detection and classification of pathologi-

cal features, or to predict the outcome of therapies.

In addition to methods not strictly related to ML, based, for exam-

ple, on thresholding and heuristic search,57,58 proper ML techniques

have been used for localization tasks. Schmidt used a classification

tree to generate a probability map of the location of each interverteb-

ral disc centroid in MRI scans, which were then used by a probabilistic

graphical model to infer the most likely location, resulting in an aver-

age localization error of 6.2 mm with respect to a human-created ref-

erence.59 Oktay and Akgul trained an SVM for disc localization based

on a feature descriptor, the pyramidal histogram of oriented gradients,

obtaining mean localization errors ranging between 2.6 and 3.6 mm

depending on the disc level.60 In simple words, the method was based

on a sliding window, which is a rectangular region which slides over a

multiscaled version of the original image; for each position of the win-

dow, the value of the feature descriptor is calculated, and passed as

input to the SVM to determine if the current window contains an

intervertebral disc. When a set of the most likely disc locations have

been calculated, a graphical model is used to infer the position of each

specific disc. The same authors expanded and improved the method

to allow also localizing the vertebrae, achieving average errors lower

than 4 mm.25 Glocker et al confronted the challenging topic of locali-

zation of vertebrae in CT datasets of pathological spines, including

severe scoliosis, sagittal deformity and presence of fixation devices,

obtaining mean localization errors between 6 and 8.5 mm61,62

(Figure 7). The proposed method was based on classification random

forests trained to determine the location of the vertebral centroid,

and employed novel techniques to generate appropriate training data

and to eliminate false positive predictions.

More recently, ANNs and deep learning were also employed for

the localization of spinal structures. Chen et al used a hybrid method

involving a random forest classifier which performs a first coarse local-

ization used to drive a deep CNN63,64; this approach allowed for a

clear improvement with respect to the previous state of the art not

based on deep learning,62 that is, average localization errors for the

centroid of the intervertebral disc of 1.6 to 2 mm. The same research

group also used CNNs, both based on a 2D convolution, that is, pro-

cessing separately the single slices, and a novel 3D convolutional

layer.65 Suzani et al used a six-layer neural network to localize the ver-

tebral centroids by means of a regression task: for each voxel in the

dataset, the network voted the vector connecting the voxel itself to

the centroid. The votes were then used to statistically estimate the

most probable location of the vertebral centroid66. An alternative

approach was presented by Payer et al, who used 2D and 3D CNNs

to build regression heatmaps of the landmark locations67; the method

was, however, not applied to spine images. In several papers, after a

FIGURE 7 Examples of localization of the vertebral centroids from a literature study,61 dealing with different types of CT images (from left to

right: standard, low resolution, noisy, cropped). Manual annotations by an expert operator are shown in yellow, whereas the computer predictions
are in red. The numbers indicate the mean absolute error (MAE) with respect to the manual annotations. Reproduced with permission from
Glocker et al61
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satisfactory localization of the vertebral or disc centroids has been

achieved, the labeling task was performed by fitting a graphical

model.68,69 Recent works achieved high accuracies with complex

models able to perform the localization of landmarks and vertebral

centroids by taking as inputs the whole 3D dataset, without any pre-

liminary coarse localization or sliding window approach. Yang et al

were able to achieve localization errors for the vertebral centroid

between 6.9 and 9 mm in CT scans of patients suffering from various

pathologies as well as subjected to surgical instrumentation, with

strongly variable fields of view as well as image resolution70.

As a matter of fact, state-of-the-art techniques for localizing and

labeling spinal structures have achieved high performance comparable

to that of expert human observers. Detection and labeling functions

are nowadays already integrated in commercial Picture and Archiving

Communication System and commercially available clinical imaging

software, although technical details about those have not been pub-

licly disclosed.

5.2 | Segmentation

A key problem in image analysis is understanding the content of the

image, that is, subdividing the image in regions at a pixel level so that

each pixel belongs to a specific region. This process is named semantic

segmentation and can be conducted either manually or automatically;

this topic has been the subject of a vast body of literature, since it is

fundamental for applications such as computer vision and autono-

mous driving.71 In medical imaging, in addition to identifying if a pixel

belongs, for example, to a disc, the segmentation algorithm should

typically determine to which specific instance it belongs (eg, either

L1-L2 or L2-L3). This type of segmentation is named instance segmen-

tation, and is the most relevant for spine research.72

Assessing the quality of a segmentation algorithm involves the

definition of quantitative metrics, which might be less intuitive than

the localization error employed in localization tasks. Among the sev-

eral metrics which have been introduced in previous studies, the most

common ones are the Dice similarity coefficient (DSC), which

expresses the amount of spatial overlap between the segmented

image and the ground truth, and the mean surface distance (MSD),

which describes the mean distance between every surface voxel of

the segmented surface from the closest surface voxel in the ground

truth.

Many papers introduced methods for spine segmentation not

involving ML techniques, which in several cases required the interven-

tion of the user73–75; fully automated methods were described as

well.76 Other methods relied on fitting deformable anatomical models

to the images by means of optimization procedures.76–78 Among

many published techniques, the ones based on graphs and the normal-

ized cuts were especially successful,79,80 as well as methods derived

from them.81–83 For example, by using normalized cuts, Ayed et al79

achieved DSC values of 0.88 and MSD of 2.7 mm. Marginal space

learning assumes that the pose and shape of the object to be seg-

mented is quantized in a number of parameters.84,85 A large number

of hypotheses covering the parameter space, that is, describing all the

possible poses of the object, are then formulated; the best hypothesis

is selected by means of a classifier.

In recent years, CNNs specifically designed for instance segmen-

tation tasks were employed. Chen et al65 used a deep CNN including

3D convolutional layers to generate the probability of belonging to a

specific region at the voxel level. Postprocessing techniques including

thresholding and smoothing were used to refine the segmentation.

Lessmann et al86 introduced a 3D CNN with a memory component in

order to remember which vertebrae were already classified. In order

to be able to process large datasets, the technique uses a 3D sliding

window approach which first determines the position in which the

window contains an entire vertebra, and then performs the pixel-level

segmentation with a deep classifier. The memory is then updated so

that if a portion of the already segmented vertebrae is detected while

looking for the next ones, it is then ignored. This method allowed

achieving outstanding accuracies, with an average DSC of 0.94 and

MSD of 0.2 mm.

Although promising results have been achieved, the segmentation

of the anatomical structures of the spine still appears to have large

room for improvements. Indeed, spine segmentation challenges have

been proposed even very recently (Computational Methods and Clini-

cal Applications for Spine Imaging (Figure 8), xVertSeg (http://lit.fe.

uni-lj.si/xVertSeg/overview.php),87,88 and databases hosting anno-

tated images to be used for the development of new segmentation

methods are currently publicly available (http://spineweb.digitalima

ginggroup.ca/spineweb/).

5.3 | Computer-aided diagnosis and diagnostic
imaging

The use of ML for diagnostic purposes dates back to the 1980s. In

1988, Bounds et al89 trained a multilayer perceptron to diagnose low

back pain and sciatica, with reported accuracies ranging between 77%

and 82%, better than those obtained by human medical doctors (68%-

76%) (. Symptoms and previous medical history, in a standardized

form, were used as training data; as output, the ANN classified the

back pain in four categories, namely simple back pain, radicular pain,

spinal pathology (tumor, inflammation, or infection), and back pain

with significant psychological overlay. More recently, most papers

exploited the availability of imaging data to perform the automated

diagnosis of a spinal disorder. Nowadays, the use of ML for diagnostic

imaging of the spine encompasses several types of disorders, such as

degenerative diseases, spinal deformities as well as oncology.

Similar to the detection and segmentation of spinal structures,

the first published works about computer-aided diagnosis based on

medical imaging employed non-ML techniques based on classical

image processing techniques,90 or simple ML methods such as Bayes-

ian classifiers.91 Shallow ANNs such as perceptrons were also used in

the 2000s for various purposes, for example, detecting osteophytes.92

Two automated classification systems for degenerated intervertebral

discs on T2-weighted MRI images were presented in 2009,74,93 and

both provided a binary output (“normal” vs “degenerated”). One study

was based on a simple statistical model trained on 30 MRI datasets,93

whereas the other paper employed a Bayesian binary classifier and

exploited MRI scans from 34 patients74; both studies took into

account information about the signal intensity and the texture of the

disc. In 2011, Ghosh et al tested several different classifiers in
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performing the same task, including an SVM, all trained on 35 MRI

stacks,94 obtaining accuracies ranging between 80% and 94%; the

SVM resulted to be the most accurate technique. Hao et al95 pro-

posed an SVM-based method which considered, in addition to the

intensity and texture information, the shape of the disc in order to

classify it as degenerated or not; accuracies up to 91.6% were

achieved. Oktay et al96 further refined such approach by including

information from the T1-weighted MRI scan. A significant advance

was provided by the works of Ruiz-Espana et al97 and Castro-Mateos

et al,98 who classified disc degeneration not on a binary basis but fol-

lowing the classification scheme published by Pfirrmann et al,15 which

describes five degeneration degrees and is commonly employed in the

clinical practice. Both studies included the extraction of features

describing the intensity as well as the shape of the discs which were

then passed to a classifier, which was a custom solution in the former

paper and a simple ANN in the latter one. Prior to the feature extrac-

tion, the discs were segmented automatically in both works. The

paper by Jamaludin et al99 introduced several improvements and inno-

vations, such as the collection of a high number of disc images to be

used for training and testing, namely 12 018 discs from 2009 patients

whereas most previous papers involved less than 100 MRI datasets,

and the use of a CNN as a classifier, which obviated the need for a

segmentation prior to the classification (Figure 9). The method

allowed achieving an agreement with human observations of 70.1%,

comparable to the reported inter-rater agreement between distinct

expert radiologists of 70.4%. Furthermore, the same method was used

to successfully detect other features such as endplate lesions and

marrow changes. Recently, Niemeyer and coworkers used a deep

CNN and further increased the size of the training set, setting the

state-of-the-art accuracy for automatic degeneration grading with the

Pfirrmann classification system at 97%.100

Aside from the degenerative spine, ML techniques have been also

applied to the study of spinal deformities. The research area which

has been impacted to the largest extent by ML is the evaluation of the

severity of adolescent idiopathic scoliosis by means of noninvasive

techniques such as surface topography. As a matter of fact, such tech-

niques do not offer a direct visualization of the spine; the extraction

of clinically relevant conclusions can therefore take a decisive advan-

tage from inference tools which can exploit subtle patterns in the data

which may not be visible to human observers. Ramirez et al101 classi-

fied surface topographies of scoliotic patients in three categories,

namely mild, moderate, and severe curves, by means of an SVM, a

decision tree, and a technique derived from statistics, the linear dis-

criminant analysis. The authors achieved an accuracy of 85% with the

SVM, which outperformed the other classifiers. Bergeron et al102 used

a regression SVM to extract the spinal centerline from surface topog-

raphy, using as ground truth data obtained from biplanar radiographs

of 149 scoliotic subjects. The first attempt to predict the curve type, a

simplified version of the Lenke classification system distinguishing

three types of scoliotic curves,103 was performed by Seoud et al,26

who used an SVM trained on radiographs from 97 adolescent subjects

suffering from idiopathic scoliosis, and achieved an overall accuracy of

72.2% with respect to diagnoses based on measurements conducted

on planar radiographs. More recently, Komeili et al104 trained a deci-

sion tree to classify surface topography data into mild, moderate and

severe curves as well as to identify the curve location (thoracic-thora-

columbar, proximal thoracic, or lumbar), in order to determine the risk

of curve progression. The model was able to detect 85.7% of the pro-

gression curves and 71.6% of the nonprogression ones.

The analysis of radiographic data of patients suffering from spinal

deformities has also been tackled exploiting ML techniques. The chal-

lenging automated analysis of the Cobb angle describing the severity

FIGURE 8 Five automated segmentation methods for CT scans developed in the frame of the grand challenge organized by the International

Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2014).
Reprinted with permission from Yao et al87

10 of 20 GALBUSERA ET AL.



of a scoliotic curve has been confronted with various approaches,

ranging from non-ML methods such as the fuzzy Hough transform105

to deep learning techniques. Sun et al106 used a regression SVM to

predict the Cobb angle from coronal radiographs, with a very good

accuracy (relative root mean squared error of 21.6%) highlighting a

potential clinical use. Zhang et al107 trained a deep ANN to predict

the vertebral slopes on coronal radiographic images and used the

slope data to estimate the Cobb angle, achieving absolute errors lower

than 3�. Wu et al108 and Galbusera et al109 exploited the three-

dimensional information contained in biplanar radiographs to perform

a more comprehensive assessment of the pathological curvature. See-

ing the problem from another perspective, Thong et al110 attempted

to use an unsupervised clustering method to obtain a novel classifica-

tion scheme for adolescent idiopathic scoliosis which effectively

describes the variability of the curves among the subjects. Based on

915 biplanar radiographs, the clustering method defined 11 classes

differing based on the location of the main curve, in particular of the

apical vertebra, as well as kyphosis and lordosis (Figure 10).

Although the definition of computer-aided detection (CADe) sys-

tems is rather general and may cover all the studies which have been

summarized in this paragraph, this name is commonly employed in the

scientific literature to describe computer programs able to identify

and localize relevant features such as lesions and fractures in medical

images, with the aim of reducing the risk of missed diagnosis and

favoring incidental findings. In the spine field, CADe systems have

been used to detect and classify with good success vertebral fractures

using either a regression SVM112 or a CNN,113 with accuracies up to

95% for vertebral body compression fractures. CADe systems are also

being developed for the detection of spine metastases on CT scans,

which has been undertaken by using a classifier trained on a number

of features extracted from the image of each single vertebra.114,115

The developed systems were able to detect both lytic and blastic

lesions in real time, with occasional false positives requiring the judg-

ment of a human operator. Burns et al116 developed an alternative

approach, in which a watershed segmentation algorithm was used to

identify large regions with similar intensities, which were considered

FIGURE 9 Top: workflow to perform classification tasks on lumbar MRI scans from a literature study.99 First, vertebrae are detected, then the

volumes corresponding to the intervertebral discs are extracted and passed to a classifier. Bottom: the various radiological parameters (Pfirrmann
grading of disc degeneration15; disc narrowing; spondylolisthesis; central canal stenosis; endplate defects; marrow changes) automatically
extracted from the images in the same study. Reproduced from Jamaludin et al99
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FIGURE 10 Eleven clusters of spine curves of patients suffering from adolescent idiopathic scoliosis, automatically determined from a large

database of biplanar radiographs.110 For each cluster, exemplary radiographs, da Vinci views,111 coronal and top views of the three-dimensional
reconstructions are shown. Reproduced with permission from Thong et al110
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as candidate lesions. By means of an SVM classifier processing fea-

tures extracted from the shape, location, and intensity of the region,

the method determined if the candidate region is indeed a tumoral

lesion. This method was also rather prone to produce false positives

(620 false-positive detections vs 439 true-positive lesions), which

appear to be an issue requiring further research efforts.

In summary, in light of the tremendous advances which have been

observed in recent years, there is no doubt that ML is bringing a revo-

lution to diagnostic imaging, both in general and concerning the study

of spine disorders. Although the figure of a human radiologist is not

going to be replaced by a computer soon, also taking into account

ethics aspects such as the issue of individual responsibility, the poten-

tial impact of accurate and reliable automated diagnostic tools is

enormous.

5.4 | Outcome prediction and clinical decision
support

Predictive analytics is a branch of statistics aimed at making predictions

about the future based on available data from the past, and has been

largely impacted by novel AI technologies and big data sources.117

Healthcare has shown interest in predictive analytics since its early

days, due to its large potential in providing improvements to patient

care and financial management. Applications of predictive analytics

which have been applied to healthcare include the identification of

chronic patients at risk of poor health outcome and who may benefit

from interventions, the development of personalized medicine and

therapies, the prediction of adverse events during the hospital stay,

and the optimization of the supply chain.

In the last decade, several studies presented models aimed at pre-

dicting various aspects of the outcome of spine surgeries, a selection

of those is described below. McGirt et al118 used simple statistics-

derived techniques such as linear and logistic regression to predict

values such as the Oswestry Disability Index (ODI)119 1 year after the

surgery, the occurrence of complications, readmission to the hospital,

and return to work. The prediction model was based on data from

750 to 1200 patients, and scored accuracies between 72% and 84%

regarding complications and return to work. The predictors taken into

account by the model were more than 40 and included the preopera-

tive ODI, age, ethnicity, body mass index, a detailed description of the

symptoms, the possible presence of other spinal disorders as well as

various scores describing the health and functional status of the

patient. More recently, Kim et al120 used logistic regression and a shal-

low ANN to specifically predict the occurrence of four types of major

complications in patients undergoing spine fusion, namely cardiac

complications, wound complications, venous thromboembolism, and

mortality, and achieved results largely better than by using the clinical

score commonly employed for such applications (Figure 11). A similar

approach was used by Lee et al121 who focused on the prediction of

surgical site infection. Interestingly, a successive study performed an

external validation, that is, based on another sample of patients, of

this predictive model, highlighting several limitations and showing a

generally poor performance.122 Recently, a large retrospective

study123 presented an ensemble of decision trees to predict, with an

overall accuracy of 87.6%, major intraoperative or perioperative

complications following adult spine deformity surgery. Durand et al

investigated a different outcome, the necessity of blood transfusion

after adult deformity surgery, which was predicted with good success

using single decision trees and a random forest.124

An application of predictive analytics which is nowadays finding a

wide use in the clinical practice is the decision support tool (DST),

which exploits the predictive power of the models to support clinical

decisions by providing personalized predictions. A recent example of

DST in spine care is the Nijmegen Decision Tool for Chronic Low Back

Pain,125,126 which is based on predictors covering various aspects of

the patient's health (namely, sociodemographic, pain, somatic, psycho-

logical, functioning, and quality of life) to suggest either surgical treat-

ment, conservative care, or no intervention. This DST is still under

development, and the technical implementation of the decision has

not been finalized yet.

Compared to the other applications of AI and ML in spine

research, predictive analytics and clinical decision support currently

appear to be at a lower level of development. As a matter of fact,

there is no DST based on ML techniques to support the decisions in

spine surgery, for example, the length of instrumentation and the

choice of the anchoring implants in spine deformity surgery. Imaging

data are usually not exploited by predictive models, which are not

generally based on state-of-the-art techniques such as deep learning.

Indeed, large databases including clinical and imaging data, which

would be necessary to train such models, are still lacking, under con-

struction or inaccessible by AI researchers. Nevertheless, the recent

proliferation of national and local spine registries, some of these

including imaging data, will likely allow for significant advances in the

near future also in this field.

5.5 | Content-based image retrieval

The digital imaging databases of large hospitals typically contain sev-

eral thousands of images for each anatomical district and imaging

modality. To facilitate image retrieval for clinical studies or educational

purposes, many institutions implement an indexing based on the con-

tent of each image, so that the whole imaging database can be easily

searched by means of keywords. This indexing process is commonly

manually performed, but is a cumbersome, error-prone and expensive

task.127 Automated content-based image retrieval (CBIR) has become

an active area of research in recent years, and is strongly benefiting

from the introduction of ML techniques.

Several CBIR frameworks employ the so-called relevance feedback,

which consists in an evaluation of the relevance of each item returned

by the query.128 This feedback can be either explicit, that is, the user

is asked to grade the relevance of the returned items, or implicit, that

is derived automatically from the user behavior, for example, based on

which documents are selected by the user for a closer inspection or

on the time spent looking at the item. Recent studies introduced ML

techniques such as SVMs to implement relevance feedback.129 For

the classification of the images, most CBIR systems are based on sim-

ple solutions such as SVMs rather than on deep learning architec-

tures.130,131 Nevertheless, recent studies started to employ deep

learning.132,133
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Regarding spine imaging, a few sophisticated algorithms tailored

to exploit the features of spine images has been presented. Xu et al134

proposed a novel relevance feedback algorithm for spine radiographs

retrieval based on the vertebral contour. The algorithm includes a

short-term memory feature which was able to keep a memory of the

human choices between different feedback iterations; the final selec-

tion about the relevance of each image is then performed by a deci-

sion tree. The same research group presented a CBIR system which

also took into account the shape of the intervertebral space.135

5.6 | Biomechanics

So far, AI and ML impacted basic biomechanics to a lower extent with

respect to applied clinical and radiological research. Nevertheless, in

recent years, a few papers describing applications of ANNs for typical

biomechanical problems such as the estimation of loads and stresses

started to appear. Although studies specifically addressing spine bio-

mechanics are currently not available, we believe that it is worthy to

briefly mention here some ML-based studies investigating other mus-

culoskeletal districts, since the analysis of the state-of-the-art may

help in delineating the possible future fields of applications of ML

techniques in spine biomechanics.

ML has been used to estimate the material properties of biologi-

cal tissues. Chande et al136 employed shallow ANNs to estimate the

relationship between the stiffness of the ligaments and the kinematics

of the foot in patients suffering from adult acquired flatfoot defor-

mity. In order to create the training data, the authors constructed and

employed patient-specific computer models of the foot anatomy. Zad-

poor et al137 investigated a related problem, that is, the prediction of

the mechanical loads that determine certain mechanical properties of

a biological tissue subject to remodeling, namely trabecular bone. The

authors employed an existing biomechanical computational model

FIGURE 11 Example of heatmap showing the importance of the various factors (first column) in determining an outcome, namely the risk of

complications following posterior lumbar spine fusion, as predicted with machine learning (ML) techniques in a literature study.120 Reproduced
with permission from Kim et al120
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able to predict bone tissue adaptation under mechanical loading based

on the local strains, and used it to run a series of simulations in which

random loads were applied to a small bone trabecular sample. The

outputs of the simulations, that is, the remodeled local bone densities,

were used to train the ANN to predict the loads which induced that

form of remodeling.

Another field of application of ML is the calculation of stresses in

patient-specific analysis, thus eliminating the need for computationally

expensive finite element models. For example, Lu et al138 developed a

shallow ANN able to predict the stress in the cartilage of the tibial pla-

teau and femoral condyles of the knee joint. A finite element model of

the knee was used to generate a dataset then used for training the

ANN, which was able to predict the stress in each element of the

articular cartilage with a dramatic reduction in time and cost with

respect to creating and solving the finite element model itself.

In general, the use of ML techniques in musculoskeletal biome-

chanics appears to be still in its infancy; the few published papers did

not exploit yet the potential of the latest innovations such as deep

learning. Nevertheless, the available papers clearly demonstrate the

potential of ML in this field. Computational models that are able to

predict the biomechanical response of bones, joints as well as the

spine are widely available and could be used for generating large data-

sets to be used as training data for ML models, as suggested previ-

ously.138 This approach would facilitate a more widespread adoption

of patient-specific modeling in bench-to-bedside applications where

the computational resources and time required for the construction

and solution of a traditional biomechanical model may conflict with

the clinical demands.

5.7 | Motion and gait analysis

The quantitative analysis of human motion, and especially gait, with

cameras, optoelectronic systems, wearable inertial devices, electromy-

ography systems, force plates, and pressure sensors is widely

employed for the scientific and clinical investigations of several

pathologies. Indeed, the study of gait pattern alterations in patients

suffering from spinal disorders is a very active area of research.139,140

Traditional gait analysis aims at the measurement of spatiotemporal

parameters such as walking velocity, stride and step lengths, cadence,

and duration of the stance and swing phases; kinematic parameters

such as the angles of rotation of the various joints; kinetic parameters

such as forces and moments in the joints, which typically involve the

use of force platforms. The value of these parameters are then com-

pared to reference ranges and used for diagnostic purposes, or to

monitor patient recovery. In addition to the study of gait, specific

motion analysis protocols have been developed for the investigation

of spine motion during common activities such as standing, chair rise

sitting, stair climbing, and flexing the trunk.141

In the last two decades, this consolidated approach has been

revisited while ML techniques have been gaining a wide use in several

research fields.142 Recent papers employed ML techniques such as

SVMs143–145 and ANNs146 for the classification of abnormal gait pat-

terns with good success. However, only a few studies involving ML

techniques to investigate spinal disorders have been presented so far;

this lack of documentation reflects the technical difficulties in

assessing position and motion of the vertebrae due to soft tissue arti-

facts.147 An example of a pioneering study in this field is offered by

Hayashi et al,148 who trained an SVM to distinguish gait patterns

associated to either L4 or L5 radiculopathy in patients suffering from

lumbar canal stenosis, achieving an accuracy of 80.4%.

ML has also been successfully employed to investigate spine dis-

orders by means of electromyography systems.149 The authors built

an SVM to identify patients responding to a functional restoration

rehabilitation program for chronic low back pain, based on dynamic

surface electromyography readings, with an accuracy of 96% on a

sample of 30 patients.

A radically different research field related to gait and ML concerns

humanoid or animal-shaped agents, that is, computer models, learning

how to walk and move in a simulated environment, which may be geo-

metrically complex and including obstacles. The process of learning to

walk consists in appropriately activating the actuators, which act as

the muscles in a human subject, while keeping equilibrium and achiev-

ing the locomotion goal, and has been shown to be very challenging

to be replicated in a ML framework. Indeed, the implementation of

such models requires sophisticated reinforcement algorithms, which

typically provide rewards when the model is able to accomplish its

goal, that is, reaching the target location, and punishments when the

agent fails, for example, if it falls on the ground. A good example of

the state of the art is offered by Heess et al150 (https://www.

youtube.com/watch?v=hx_bgoTF7bs).

6 | ETHICS ISSUES AND REGULATION

The implementation of AI technologies in healthcare, especially

regarding tools with a direct clinical impact such as those aimed at

supporting diagnosis or clinical decisions, is undoubtedly determining

a paradigm shift. Such a change of perspective involves the emer-

gence of several major ethics issues, which are being heatedly dis-

cussed both in the scientific community and by regulatory agencies.

Most AI technologies, notably including deep learning networks

which now are having a major role, appear as a black box to an exter-

nal user.151 Although methods to visualize the inner structure and

behavior of the AI tools have been presented (eg, 152) and more

human-readable technologies such as decision trees are also being

used, AI predictions appears largely to be determined by an obscure

logic which cannot be understood or interpreted by a human

observer.153 This limitation directly leads to the issue of the account-

ability of the decisions, which is nowadays being debated at a regula-

tory level. In other words, if a prediction fails, for example, in case of

misdiagnosis, determining if the responsibility is of the radiologists

who used the AI system, of the device itself or of the manufacturer is

of critical importance. This obscure nature has also severe implications

regarding the marketing approval of novel AI tools, which require dee-

per testing and verification with respect to other technologies, and

thus longer time-to-market and cost.

A second issue concerns possible biases in the predictions, which

may be either intentional, that is, fraudulent, or unintended. Examples

of intentional biases are a DST preferably promoting the use of drugs

or devices by a specific manufacturer, or a tool designed to maximize
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a specific quality metrics relevant for the hospital but not necessarily

optimizing patients' care.153 Unintended biases may be related to

scarce availability of data regarding some rare pathologies or pheno-

types, which may be then insufficiently covered in the training dataset

with respect to more common conditions, or ethnicities for which

datasets are indeed not existing or limited.151 Besides, insufficient

data collection efforts, for example, by privileging data sources easier

to access, may also lead to unintended biases. To limit the impact of

such issues, efforts toward a governance of AI are starting to be

undertaken, with the final aim of building a robust public trust.154 It

should be noted that cultural differences between the European

Union, the United States, and East Asian countries may likely result in

dramatically different attitudes from a regulatory and governance

point of view.155

The use of AI in healthcare also raises serious concerns about

data privacy and security, due to the massive amount of clinical and

imaging data required for training and validation of the tools, thus

involving issues about data collection, transmission and storage, as

well as informed consent. Data anonymization is being commonly

used to enhance privacy and security; nevertheless, patients retain

rights on their anonymized data, which are subjected to strict regula-

tions about storage, transmission and use, especially when data are

used in a for-profit environment. The recent introduction of the Gen-

eral Data Protection Regulation in the European Union considerably

expanded the rights of the patients by adopting an explicit opt-in pol-

icy regarding the permission for data processing; on the other side, it

further enlarges the policy differences with the less strict United

States, thus possibly strengthening the leading role of this country in

AI innovation.155 Due to the large amounts of investments related to

AI technologies and their potential economic consequences, policy

makers and regulatory agencies need to take into account these

aspects as well.

Following in the footsteps of the free software movement, pro-

viding open access to ML models and training data would be a possi-

ble way to foster public trust, as well as to improve accountability and

prediction bias by giving the scientific community the possibility of

further testing and developing these technologies. As a matter of

facts, source code for most of the recent AI and ML algorithms is pub-

licly available, released by public research institutions as well as com-

panies such as Google (Mountain View, California) and Nvidia (Santa

Clara, California). However, due to business and regulatory reasons,

the public release of detailed technical information about production-

ready ML software intended to be used for clinical applications is

highly unlikely to happen.

7 | CONCLUSIONS

AI and ML are emerging disruptive technologies which have nowadays

reached a substantial level of development, enabling them to have

already a practical impact on several research fields. Computer vision

and image processing are especially gaining momentum, due to the

latest innovations in deep learning and improved accessibility of com-

putational resources, such as powerful GPUs. Indeed, most recent

spine research studies using AI and ML techniques are related to

medical imaging, but an increasing impact on other fields such as spine

biomechanics should be expected in the near future. Ethics aspects

related to accountability, data privacy and security as well as the risk

of biased predictions are relevant and are currently under the atten-

tion of policy makers and regulatory agencies.
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