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Photosynthetic microorganisms can serve as the ideal hosts for the sustainable

production of high-value compounds. Purple photosynthetic bacteria are typical

anoxygenic photosynthetic microorganisms and are expected to be one of the suitable

microorganisms for industrial production. Purple photosynthetic bacteria are reported

to produce polyhydroxyalkanoate (PHA), extracellular nucleic acids and hydrogen gas.

We characterized PHA production as a model compound in purple photosynthetic

bacteria, especially focused on marine strains. PHA is a family of biopolyesters

synthesized by a variety of microorganisms as carbon and energy storage materials.

PHA have recently attracted attention as an alternative to conventional petroleum-based

plastics. Production of extracellular nucleic acids have been studied in Rhodovulum

sulfidophilum, a marine purple non-sulfur bacterium. Several types of artificial RNAs

have been successfully produced in R. sulfidophilum. Purple photosynthetic bacteria

produce hydrogen via nitrogenase, and genetic engineering strategies have been

investigated to enhance the hydrogen production. This mini review describes the

microbial production of these high-value compounds using purple photosynthetic

bacteria as the host microorganism.

Keywords: purple photosynthetic bacteria, polyhydroxyalkanoate, extracellular nucleic acids, hydrogen,

sustainable production

INTRODUCTION

Biosynthesis of high-value compounds in photosynthetic organisms is one of the potential
methods to reduce costs, and can contribute to a sustainable system because they can utilize
sunlight energy and carbon dioxide (CO2) in the air for their growth. Cyanobacteria,
algae and plants have two photosystems (photosystem I and II), extract electrons from
water, and evolve oxygen as a byproduct (Fischer et al., 2016). On the other hand,
anoxygenic photosynthetic bacteria possess only a single photosystem, either type I or type
II photosynthetic reaction center, and extract electrons from organic compounds, sulfur
compounds and hydrogen. Since anoxygenic type I and type II reaction centers are structurally
and functionally similar to oxygenic photosystems, a lot of progress in photochemical
reaction, and electron transport in photosynthetic reaction centers, has been made using
anoxygenic photosynthetic bacteria owing to their simple structure (Hillier and Babcock, 2001).
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Purple photosynthetic bacteria, which are typical anoxygenic
photosynthetic bacteria, are classified into purple sulfur and
purple non-sulfur bacteria. Purple sulfur bacteria use sulfide
and hydrogen as an electron donor, whereas purple non-sulfur
bacteria utilize organic compounds (Madigan and Jun, 2009).
Purple photosynthetic bacteria are widely distributed in aquatic
environments. We succeeded the isolation of marine purple non-
sulfur bacteria from natural seawater (Higuchi-Takeuchi et al.,
2016). Some species of purple non-sulfur bacteria are known
to have the nitrogen fixation ability (McKinlay and Harwood,
2010). This means that they can use N2 in the air as nitrogen
source for their growth. However, exact nitrogen fixation ability
of purple non-sulfur bacteria has not been evaluated despite their
contribution to the nitrogen flux in aquatic environments.

The utilization of marine organisms has several potential
advantages for large-scale commercial production. Sterilized
seawater can be used as a culture medium instead of a synthetic
medium. Moreover, the high salt concentration of seawater
can inhibit biological contamination during the cultivation.
Considering these advantages, marine purple photosynthetic
bacteria would be an ideal host organism for microbial
production. Purple photosynthetic bacteria are reported to
produce intracellular polyhydroxyalkanoate (PHA), extracellular
nucleic acids and hydrogen gas as shown in Figure 1. In this
mini review, we summarize the current state of biological
production using marine purple photosynthetic bacteria as
host microorganisms.

PHA PRODUCTION

PHA is a family of biopolyesters that a lot of microorganisms
accumulate as carbon and energy storage materials in the
presence of excess carbon (Lenz and Marchessault, 2005).
PHA have attracted attention due to their biodegradable and
biocompatible properties (Numata et al., 2009). Cupriavidus
necator, a hydrogen-oxidizing bacterium, is the most studied
bacterium for PHA production and produced about 90% of dry
cell weight (wt%) PHA (Steinbuchel, 1991).

One of the most significant factors for commercial PHA
production is the cost for carbon sources such as sugars or
plant oils. In addition, the supply of those carbon sources
is not stable because of natural environmental factors such
unexpected weather and natural disasters. To solve the problems,
direct production of PHA from CO2 via photosynthesis has
been investigated using cyanobacteria and plants (Osanai et al.,
2013; Yoshizumi et al., 2017). Among photosynthetic organisms,
purple photosynthetic bacteria are known to have better ability
to produce PHA (Liebergesell et al., 1991). PHA production
in purple photosynthetic bacteria has been characterized
using freshwater-type purple photosynthetic bacteria such as
Rhodospirillum rubrum (Brandl et al., 1989), Rhodobacter
sphaeroides (Khatipov et al., 1998), Rhodobacter capsulatus
(Kranz et al., 1997), and Allochromatium vinosum (Rehm and
Steinbuchel, 1999). On the other hand, reports about PHA
production usingmarine purple bacteria are limited, even though
marine bacteria have several advantages, as described in this

review. Therefore, we evaluated for the production of PHA
by marine purple photosynthetic bacteria and found that 3
purple sulfur bacteria and 9 purple non-sulfur bacteria strains
synthesized PHA (Higuchi-Takeuchi et al., 2016).

PHA Synthase of Purple Photosynthetic
Bacteria
PHA is produced from acetyl-coenzyme A (CoA) through
three enzyme reactions (Figure 1A). Ketothiolase (PhaA)
catalyzes the formation of acetoacetyl-CoA from two acetyl-CoA
molecules. Acetoacetyl reductase (PhaB) reduce acetoacetyl-CoA
to 3-hydroxyacyl-CoA. PHA synthase (PhaC) catalyzes the
polymerization of (R)-3-hydroxyacyl-CoA to PHA. PhaC is a key
enzyme of PHA synthesis and polymerization reaction of PhaC
have been studied extensively (Stubbe and Tian, 2003; Numata
et al., 2012, 2015). Crystal structures of the catalytic domain of
PhaC from R. eutropha and Chromobacterium sp. USM2 were
reported (Kim et al., 2016; Wittenborn et al., 2016; Chek et al.,
2017). However, detailed PHA polymerization mechanism is still
not completely elucidated.

PHA synthase is divided into four classes according to subunit
composition, sequence similarity and substrate specificity, as
shown in Table 1 (Rehm, 2003; Stubbe and Tian, 2003; Stubbe
et al., 2005). Classes I and II consist of single subunit PhaC with
molecular weight between 60 and 70 kDa. Class III synthases are
composed of two subunits, PhaC and PhaE. Class IV synthases
are composed of the PhaC of PhaR subunits. We checked PhaC
amino acid sequences from 21 purple photosynthetic bacteria
strains that whole genome sequences are available. PhaC from
13 purple non-sulfur bacteria were categorized as Class I PHA
synthase. On the other hand, PhaC and PhaE homologous
sequences were found from 8 purple sulfur bacteria strains,
indicating that PHA synthase belong to Class III. A. vinosum, a
purple sulfur bacterium, has Class III type PhaC and extensively
studied its biological activity (Liebergesell and Steinbuchel, 1992;
Rehm and Steinbuchel, 1999; Yuan et al., 2001). Rhodovulum
sulfidophilum is a marine purple non-sulfur bacterium and
widely used as a representative strain. Whole genome sequences
of R. sulfidophilum were determined in 2013 (Masuda et al.,
2013). We discovered phaC homologous sequences in the R.
sulfidophilum was classified as a class I PhaC. Alignment analysis
of amino acids revealed that important amino acid residues for
PHA polymerization were conserved in R. sulfidophilum.

PHA synthase from R. sulfidophilum (PhaCRs) was
produced by a cell free protein expression system and
characterized its activity (Higuchi-Takeuchi et al., 2017).
The polymerization activity of PhaCRs increased linearly with
increasing concentrations of substrate, (R)-3-hydroxybutyryl-
CoA (3HB-CoA) and did not saturate, suggesting that the
PhaCRs was not saturated due to low affinity for the substrate.
Generally, PhaC is thought to exist as monomeric and dimeric
forms in equilibrium and dimerization of PhaC induced by
substrate binding facilitate the PHA polymerization (Wodzinska
et al., 1996). We analyzed multimer formation of PhaCRs by
size exclusion chromatography and Native PAGE, the results of
which showed PhaCRs existed predominantly as a dimer form
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FIGURE 1 | Sustainable production of high-value compounds in marine purple photosynthetic bacteria. PHA was produced from acetyl-CoA in tree steps (A).

Extracellular nucleic acids were produced in the process of GTA-like particle production controlled by CtrA (B). The nitrogenase complex is composed of

dinitrogenase reductase and dinitrogenase. Nitrogenase catalyzes the proton reduction to hydrogen as well as the reduction of nitrogen to ammonia (C).

even in the absence of 3HB-CoA (Higuchi-Takeuchi et al., 2017).
Dimerization of PhaC is considered to be the rate-limiting steps
for PHA polymerization. Linear relationship between the PhaCRs

activity and concentrations of 3HB-CoA might result from low
affinity for the substrate and the absence of rate-limiting step due
to the existence of predominant active dimer. These properties
are quite different from well-known PhaC.

PHA Production Under Various Culture
Conditions
PHA accumulation is known to be enhanced in the presence
of excess carbon and under nutrient limited conditions such
as nitrogen and phosphorus (Lenz and Marchessault, 2005).
Nitrogen limited conditions were commonly used for PHA
production in the case of purple photosynthetic bacteria. We
examined PHA production under nutrient rich and nitrogen
limited conditions and found a difference between purple sulfur
bacteria and purple non-sulfur bacteria (Higuchi-Takeuchi et al.,
2016). Marine purple sulfur bacteria synthesized PHA only under
nitrogen-limited conditions and the yield of PHA was 50–200
mg/L. In contrast, marine purple non-sulfur bacteria were able

to produce PHA under growth conditions without nutrient
deficiency. Under this condition, one marine purple non-sulfur
bacteria produced 302mg PHA /L. PHA-producing bacteria
are classified into two groups according to culture nutrient
conditions (Lee, 1996). The first group bacteria require nutrient
limitation for PHA production. A lot of PHA-producing bacteria
including C. necator belong to this group. In the second group
bacteria, nutrient limitation is not required for PHA production.
Marine purple sulfur bacteria are categorized to the first group,
whereas purple non-sulfur bacteria belong to the second group.
We also found that iron concentrations (ferric citrate) affect the
cell growth and PHAproduction inR. sulfidophilum (Foong et al.,
2019). Very low concentrations of iron (1–2µM)was sufficient to

promote cell growth and a high PHA yield (1,000 mg/L) during
the logarithmic phase.

PHA production was examined in marine purple non-sulfur
bacteria under various growth light and oxygen conditions
(Higuchi-Takeuchi and Numata, 2019). R. sulfidophilum
produced higher PHA under low-light conditions than under
high-light conditions. The 800-nm LED lighting was the
best for PHA concentration (1,200 mg/L) among three types
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TABLE 1 | Classification of PHA synthase.

Class Subunits (MW) Substrate Organism (References)

I PhaC (60–73 kDa) C3–C5

monomer

Cupriavidus necator (Yuan et al.,

2001), Aeromonas caviae

(Numata et al., 2012)

II PhaC (60–65 kDa) >C6 monomer Pseudomonas sp. 61-3 (Takase

et al., 2004)

III PhaC (40–53 kDa)

PhaE (20–40 kDa)

C3–C5

monomer

Allochromatium vinosum (Muh

et al., 1999), Synechocystis sp.

PCC6803 (Numata et al., 2015)

IV PhaC (40 kDa)

PhaR (22 kDa)

C3–C5

monomer

Bacillus megaterium (McCool

and Cannon, 2001)

of wavelengths we studied. We found that marine purple
non-sulfur bacteria strains hardly accumulated PHA (<5
wt%) under aerobic conditions in the presence of malate and
pyruvate. Interestingly, the addition of acetate induced high
PHA production (33 wt%) under aerobic conditions. The
expression of isocitrate dehydrogenase in the tricarboxylic acid
(TCA) cycle decreased under aerobic conditions in the presence
of malate and pyruvate and upregulated by the addition of
acetate. Considering these results, we proposed that low PHA
production under aerobic conditions is caused by low activity
of the TCA cycle and its activity was enhanced by the addition
of acetate. We found that the expression of PdhR, which is
a transcriptional repressor of the pyruvate dehydrogenase
complex, was upregulated upon the addition of acetate. The
changes in the metabolic state might be induced by the addition
of acetate under aerobic conditions and PdhR is involved in
this regulation.

PHA Properties Synthesized in Purple
Photosynthetic Bacteria
Microorganisms can produce various type of PHAs depending
on the carbon source and metabolic pathway and more
than 150 monomer unit has been identified to date. The
most common types of monomer are 3-hydroxybutyrate
(3HB) and 3-hydroxyvalerate (3HV). PHA composition affects
the mechanical and thermal properties of PHA. Poly(3-
hydroxybutyrate) [P(3HB)], homopolymer of 3HB, is a highly
crystalline and brittle material. Melting temperature of P(3HB)
is around 180◦C (Rehm, 2003). The copolymer of 3HB and
3HV, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-
co-3HV)], has a lower melting temperature and higher
biodegradability compared to P(3HB) depending on the
polymer composition (Mitomo et al., 1995). We found that
three strains of marine purple sulfur bacteria synthesized
3HB homopolymer (Higuchi-Takeuchi et al., 2016). On the
other hand, purple non-sulfur bacteria synthesized copolymers
of 3HB and 3HV. The similar copolymer syntheses were
reported in freshwater type purple photosynthetic bacteria
(Liebergesell et al., 1991). PHA synthases of purple sulfur
bacteria (Class III) and purple non-sulfur bacteria (Class I) are
different as described above. Differences of PHA production

and properties might be explained by different properties of
PHA synthase.

Molecular weight and its distributions are important
properties of polymer production, because it affects physical
and mechanical characteristics of polymeric materials. In the
case of PHA, decreases in molecular weight of PHA have been
reported during extraction and purification processes (Ramsay
et al., 1990; Hahn et al., 1994). In addition, higher molecular
weights PHA are known to have desirable mechanical properties
(Aoyagi et al., 2003). Therefore, high-molecular weight PHA
production has been studied using E. coli that do not have PHA
degradation pathway (Kusaka et al., 1999). Gel permeation
chromatography analysis revealed that some marine purple
photosynthetic bacteria strains synthesized high-molecular-
weight PHA compared to other PHA-producing bacteria
(Higuchi-Takeuchi et al., 2016). Thus, PHA produced by purple
photosynthetic bacteria has valuable properties for industrial
PHA production.

EXTRACELLULAR NUCLEIC ACID
PRODUCTION

Extracellular nucleic acids (DNA and RNA) have been
found in natural conditions such as freshwater, seawater,
and soil and it is reported that some bacteria produced
nucleic acids extracellularly (Paul and David, 1989; Vlassov
et al., 2007). These extracellular nucleic acids are proposed
to have a role in biofilm formation and horizontal gene
transfer that is the movement of genetic information between
organisms. R. sulfidophilum is one of the bacteria that produce
extracellular nucleic acids (Ando et al., 2006; Suzuki et al.,
2009). One group extensively studied extracellular nucleic
acids in R. sulfidophilum (Kikuchi and Umekage, 2018). They
found that log phase cells of R. sulfidophilum produced
extracellular nucleic acids in the culture media (Ando
et al., 2006). Extracellular DNA sequences were found in
their genome (Suzuki et al., 2009) and extracellular soluble
RNAs corresponded to the ribosomal RNAs and transfer
RNAs (Ando et al., 2006).

Gene transfer agents (GTAs) are considered to be
involved in the production of extracellular nucleic acids
in R. sulfidophilum. GTAs are bacteriophage-like particles
that package DNA fragments and were first discovered in
R. capsulatus (Lang et al., 2012). The genes with homology
to the GTA components were identified in the genome of
R. sulfidophilum and GTA-like particles were found in R.
sulfidophilum cell cultures (Nagao et al., 2015). The two-
component signal transduction protein, CtrA, has been reported
to be necessary for the GTAs of R. capsulatus (Lang and Beatty,
2000). The ctrA-deficient mutant of R. sulfidophilum lost
the ability to produce GTA-like particles and also decreased
the amount of extracellular soluble nucleic acids (Komatsu
et al., 2018). Thus, extracellular nucleic acid production is
involved in GTA-like particle production and controlled by
CtrA (Figure 1B).
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Production of Artificial RNA in R.

sulfidophilum
Variety types of RNA molecules have been reported to
date, such as small interfering RNAs, double-stranded
RNAs, piwi-interacting RNAs and micro RNAs. RNAs have
become key players in biology and have also utilized as
medicines for RNA-based therapy. Currently, these RNA
molecules have been prepared by in vitro transcription
(Milligan et al., 1987) and chemical synthesis (Marshall and
Kaiser, 2004). However, these methods are expensive and
time-consuming and not appropriate for large quantities
of RNAs. Alternative method for RNA production is a
microbial production.

R. sulfidophilum is a good microbial host for RNA production
because this bacterium has no detectable ribonucleases (Suzuki
et al., 2010). Using R. sulfidophilum, in vivo production
methods of artificial RNA were reported (Suzuki et al., 2010,
2011; Nagao et al., 2014). They succeeded the production
of 45 ng/L streptavidin RNA aptamers that function as
an RNA drug by specifically targeting a defined molecule
(Suzuki et al., 2010). The RNA aptamers were produced in
the culture medium and retained streptavidin binding ability.
Production of RNA aptamers was improved by modification
of promoter. Finally, the extracellular RNA aptamer of 200
ng could be prepared from 1 L culture (Suzuki et al., 2011).
They also produced the short hairpin RNA that contain
long stem-loop structure (Nagao et al., 2014). The other
group succeeded production of human microRNA precursor in
R. sulfidophilum (Pereira et al., 2016).

PHOTOHYDROGEN PRODUCTION

Hydrogen gas is a completely clean-burning fuel. However,
most of the hydrogen is produced from fossil fuels (Holladay
et al., 2009). Photosynthetic organisms convert H2O, reduced
sulfur compounds and organic compounds into hydrogen
utilizing sunlight energy (photohydrogen production).
Purple non-sulfur bacteria is known to produce hydrogen
via nitrogenase (McKinlay and Harwood, 2010; Eroglu
and Melis, 2011) (Figure 1C). Nitrogenase are composed
of two multisubunit proteins, dinitrogenase reductase and
dinitrogenase. Dinitrogenase reductase transfers electrons to the
dinitrogenase with concomitant ATP hydrolysis. Nitrogenase
mediates the reduction of nitrogen gas into ammonia and
protons into molecular hydrogen. Hydrogen is produced as a
by-product of the nitrogenase reaction according to Equation (1):

N2 + 8H+
+ 8e− + 16ATP → 2NH3 +H2 + 16ADP+ 16Pi

(1)

Nitrogenase complex is known to be very sensitive to oxygen.
Since purple non-sulfur bacteria extract electrons from substrates
other than water such as organic carbon, oxygen is not
produced during the photosynthesis. In addition, purple non-
sulfur bacteria can grow under anaerobic conditions. Therefore,
nitrogenase complex is not inhibited by oxygen in anaerobic
grown purple non-sulfur bacteria. R. palustris (Rey et al., 2007)

and R. sphaeroides (Koku et al., 2002) are studied as well as
host strains of purple non-sulfur bacteria for photohydrogen
production. R. sulfidophilum is also reported to have hydrogen
production ability (Maeda et al., 2003; Cai and Wang, 2012).

Improvement of Photohydrogen
Production in Purple Non-sulfur Bacteria
Genetic manipulation has been applied to improve
photohydrogen production of purple non-sulfur bacteria.
Hydrogenase catalyze the oxidization of hydrogen to reuse
hydrogen, leading to consumption of hydrogen. Therefore,
one target of enhanced hydrogen production is inactivation of
hydrogenase. For example, hydrogenase-knockout mutant of
R. sphaeroides produced 2.42 L H2/L culture (Kars et al., 2009)
and R. capsulatus produced 0.14mL H2/h/mg dry cell weight
(Ooshima et al., 1998). Photosynthetic organisms have a light
harvesting system consisting of proteins and pigments to absorb
light. The light harvesting system changes their size to absorb
light efficiently depending on light environments. The light
harvesting size was reduced to increase light capture efficiency
and this mutant showed 1.4 folds higher hydrogen production
(Kondo et al., 2002). Another target for the enhancement of
hydrogen production is the modification of PHA synthesis. It
is considered that hydrogen production competes with PHA
synthesis in terms of reducing power. PHA synthesis deletion
mutant of R. sphaeroides showed higher hydrogen production
(3.34mL H2/mg dry cell weight) (Hustede et al., 1993; Kim et al.,
2006).

A variety of kinds of large-scale photobioreactor has
been investigated for industrial photohydrogen production
in purple non-sulfur bacteria. Reactor design, culture light
condition and nutrient sources have been investigated and
are reviewed elsewhere (Eroglu and Melis, 2011). Since purple
non-sulfur bacteria can utilize waste materials containing
organic carbon as carbons source, photohydrogen production
was investigated using various kind of wastes to reduce
production cost (Wu et al., 2012). Hydrogen production
could be successfully achieved using waste water from
manufacturer and kitchen (118mL H2/h) (Tao et al., 2008)
and food wastes (2.75mL H2/g dry cell weight, 40 L H2/L)
(Franchi et al., 2004; Laurinavichene et al., 2010).

CONCLUSION AND PERSPECTIVES

Marine purple photosynthetic bacteria are environmentally
friendly microorganisms and can produce high-valuable
compounds such as PHA, extracellular nucleic acids, and
hydrogen gas. Previously, we demonstrated that marine purple
photosynthetic bacteria were able to produce PHA even in
seawater (Higuchi-Takeuchi et al., 2016), suggesting that
abundant natural resources such as seawater, CO2, N2 and
sunlight energy can be used as a culture medium, biological
sources and energies. Genetic tools such as synthetic promoter
and transformation method have not been fully established yet in
marine purple photosynthetic bacteria, even though we recently
developed a transformation method using chemical competent

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 October 2019 | Volume 7 | Article 258

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Higuchi-Takeuchi and Numata Marine Purple Photosynthetic Bacteria Factory

cells of marine purple photosynthetic bacteria (Higuchi-Takeuchi
et al., 2019). In addition, large-scale, continuous, and high cell
density cultivation methods for ideal photosynthetic production
have not been established yet. However, we are interested in
multiple advantages of marine purple photosynthetic bacteria
over the other microbial systems as described in this mini-review
and also seriously consider that marine purple photosynthetic
bacteria would be a suitable production host contributing to the
sustainable society in future.
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