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Background
The transcriptomics technologies (microarray, RNA sequencing) provide massive 
molecular-scale information about the patients. The analysis of these gene expres-
sion profiles is one of the main challenges for the development of new tools for per-
sonalized medicine [1] and especially in oncology [2]. The analysis of these data may 
support the physician for the diagnosis of cancer, the classification of tumors, the out-
come prognosis, and the individualized treatment decision. Complex pathologies, like 
cancers, disrupt gene expression, leaving signatures that can contain valuable infor-
mation. The problem is that these signatures are complex non-linear combinations of 
genes hidden in the multiple gene expressions. Machine learning is the main approach 
to identify these signatures and to construct models making predictions from gene 
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expression profiles. Many classical methods of the machine learning community have 
been adapted and tested in the transcriptomic context; this includes linear and quad-
ratic models, support vector machines (SVM), random forest (RF), and boosting [3]. 
Although these methods produced promising results, constructing models that are 
accurate and robust enough for practical medical application is still an open prob-
lem. The most challenging problems are the high dimensionality of the gene expres-
sion data, the insufficient number of training examples that lead to overfitting during 
training, and lack of robustness of the results.

In the last ten years, deep learning has become one of the most important break-
throughs in machine learning [4]. Its primary application domain is image recogni-
tion and speech recognition, where it has beaten other machine-learning techniques. 
However, it is also promising in many other domains, particularly the biomedical 
sciences. Deep learning techniques have recently drawn attention in bioinformat-
ics because of their automatic capturing of nonlinear relationships from their input 
and a flexible model design. However, deep learning methods are still very new in 
gene expression analysis, and few works have been published compared to the other 
machine learning methods [5].

Unlike images or text data, gene expression data has no structure that can be 
exploited in a neural network architecture. Therefore, the main architecture used 
for prediction from gene expression data is the multilayer perceptron (MLP). Fakoor 
et al. propose one of the first works to apply MLP on gene expression data to predict 
the presence of cancer or the sub-type of cancer [6]. Several works try to apply MLP 
to others types of prediction or use variants to improve the performances. Lai et al. 
use a multi-modal MLP to integrate clinical data with gene expression and predict the 
prognostic for non small cell lung cancer [7]. Chen et al. add to the classical cross-
entropy used in the MLP, a clustering loss to the last hidden layer. Its purpose is to 
maximize the marge between each class in the latent space defined in hidden layers 
and provide better prediction of cancers [8]. In DeepSurv, Katzman et al. replace the 
classical output layer of a MLP by a Cox proportional hazard layer for modeling inter-
actions between expression profile and treatment effectiveness [9]. Bourgeais et  al. 
use a MLP whose architecture mimics the Gene Ontology to detect cancers and pro-
duce an explanation of the prediction [10].

Other types of architecture have been tested, like convolutional neural networks 
(CNN) or graph neural networks (GNN). However, they are facing the problem of lack 
of structure in the gene expression data. Mostafa et al. use CNN to predict tumor type 
from 1D or 2D expression profiles [11]. The groups of genes analyzed in convolution 
windows depend on the arrangement of the genes in the 1D-vector or the 2D-matrix. 
Unlike image data, this arrangement is random and does not represent specific informa-
tion. Some works tried to integrate external information to identify a structure in the 
gene expression that CNN or GNN can exploit. For example, the co-expression networks 
or protein-protein interaction networks have been used to represent the gene expression 
profile by a graph, and the predictions are computed through a graph neural network 
[12, 13]. However, there is no consensus that this integration of structural information 
may help the network to extract relevant expression patterns and improve the prediction 
performance [14].
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Transfer learning is often proposed to tackle the problem of small-training set and the 
high dimension of the gene expression data. The term transfer learning refers to a set of 
techniques to transfer information from a model (source) to another one (target). Trans-
fer learning is widely used in image analysis and natural language processing, where 
some common visual or textual patterns are helpful for any classification task. They can 
be extracted from a large source dataset and transferred to the target dataset for the 
classification task.

There are different scenarios of transfer learning [15]. We can distinguish supervised 
transfer learning from unsupervised transfer learning. In supervised transfer learning, 
the labels of samples are used to build the source model, and we consider that the source 
classification task is close to the target classification task. Unsupervised transfer learning 
takes advantage of a large set of unlabeled source data to learn a new representation of 
the data. It generally consists of learning an encoder that projects the data into a small 
dimension space. In this case, we consider that the new data representation learned from 
source data, will be helpful for the target classification task. For the different scenarios, 
after the source model has been trained, the parameters a re copied to the target model. 
Note that it is possible to retrain the whole target model on target data; in this case, 
transfer learning is used as an initialization of the target model.

In the gene expression context, the standard approach is the unsupervised pre-training 
of the hidden layers of the MLP. This approach generally involves an autoencoder (AE) 
that compresses the gene expression profile into a small vector. Since the training of the 
AE is unsupervised, we can benefit from much larger datasets. Kim et al. train a vari-
ational autoencoder (VAE) from the pan-cancer TCGA dataset, then the hidden layers 
of the encoder are copied to the hidden layers of the MLP that predicts the hazard ratio 
of patient with a specific cancer  [16]. In  [17], each hidden layer of a MLP for cancer 
prognostic prediction is initialized with a denoising auto-encoder (DAE) trained from a 
large pan-cancer dataset. Alzubaidi et al. pre-train their MLP with a sparse auto-encoder 
to predict cancer subtypes and identify biomarkers [18].

There is no clear consensus about the performances and utility of deep learning for 
prediction tasks based on gene expression data. Few experimental works have been 
done to evaluate NN and compare them with state-of-the-art machine learning mod-
els. Moreover, their conclusions are not consistent. Indeed, Yu et al. show that shallow 
MLP is more accurate and robust than deep architecture, CNN, and classical machine 
learning methods for disease prediction [14]. Smith et al. evaluate the deep representa-
tion methods used in unsupervised pre-training, for cancer diagnosis, cancer stage, and 
survival prediction. They conclude that deep learning methods are not superior to the 
classical machine learning approaches [19].

The difficulty of obtaining reliable results about the performance of deep learning 
methods comes mainly from the large number of hyper-parameters involved in these 
approaches. Many parameters must be chosen to set the architectures of the NN, the 
learning algorithms, and the regularization techniques. Using a non-optimal value in 
one of these parameters may strongly affect the model’s performance.

Non-expert users may overlook the sensitivity of NN to the hyper-parameter values 
due to the increasing complexity of DNN models that make the parameter tuning task 
very hard. This leads these users to keep the default settings when training their models 
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leading to sub-optimal results. Moreover, since a lot of pre-trained NN models are avail-
able, transfer learning is used without addressing all the strategies that can significantly 
improve the NN results. In this paper, we address these points by performing an exhaus-
tive evaluation of MLP for several cancer prediction tasks based on gene expression data 
(microarray and RNA-Seq data). We measure the impact of the main hyper-parame-
ters on the performance of NN and compare the NN with the state-of-the-art machine 
learning models (SVM, XGBoost, LASSO, RF). In addition, we investigate the useful-
ness of different transfer learning strategies, including unsupervised pre-training. To our 
knowledge, this is the first work that promotes the appropriate use of deep learning and 
transfer learning for biomedical prediction tasks and the most extensive experimental 
study that addresses this topic. Indeed, we trained and evaluated around 93,000 NN for 
performing 22 prediction tasks.

Results
Two large gene expression datasets are used in our experiments. We tested the NN for 
pan-cancer and specific cancer classification, supervised transfer learning (from pan 
cancer to a specific cancer, from a specific cancer to another specific cancer, between cell 
lines and patient data) and unsupervised transfer learning. Figure 1 summarizes all these 
experiments.

Data and experiment design

Our experimentation is based on two large datasets, including 22 classification tasks. 
The first one comes from a pan-cancer study of cross-experiments compiling the gene 
expression profiles from about 40,000 publicly available Affymetrix HG-U133Plus2 

Fig. 1  All experiments performed in this study
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arrays [20]. It combines different gene expression datasets containing diverse tissues 
and experimental protocols and integrates both patient and cell line data. The dataset is 
accessible via the ArrayExpress database (accession number E-MTAB-3732). After qual-
ity control and normalization, the dataset contains the expression of 54,675 genes. The 
samples whose status is not clearly defined are dropped. We only keep samples from the 
most present tissues in the dataset (tissues with more than 400 samples). For each sam-
ple, the available information is its status (cancer/non-cancer), type (patient/cell line), 
and tissue. 12 classification tasks are associated with this dataset. It consists of predict-
ing the presence of cancer in the pan-cancer case or in each of the 11 specific cancers. 
Note that the classes are unbalanced since cancer samples are three times more present 
than non-cancer samples. Table 1 gives the characteristics of this dataset. This dataset 
is divided into a training set of 13,000 samples and a test set of 3709 samples preserving 
the proportion of cancer/non-cancer samples.

The second dataset comes from the TCGA portal,1 a repository of multi-omics data-
sets containing only real patients with several types of cancer [21]. We use the RNA-seq 
datasets containing at least 350 samples. This dataset is much more homogeneous than 
the first dataset, and many clinical annotations are available. We investigate two clas-
sification tasks in a pan-cancer context. The first one is the prediction of the presence of 
cancer, where the classes are very unbalanced since 92.7% of samples are labeled cancer. 
The second pan-cancer task is the prediction of the type of cancer. We also consider 
eight specific cancer tasks for the prediction of the presence of cancer. LGG, OV, and 
LIHC data are not used for this task since no non-cancer samples are available. Table 2 
gives the characteristics of this dataset. This dataset is divided into a training set of 5000 
samples and a test set of 1450 samples for the binary classification task and 980 samples 
for the multi-class classification task by preserving the proportion of cancer/non-cancer 
samples and the type of cancer.

Table 1  Characteristics of the microarray dataset

The columns represent respectively the type of tissues (Disease), the numbers of samples (Size), patient samples (Patients), 
cell line samples (Cell lines), cancer samples (Cancer), non-cancer samples (Non-cancer) and the proportion of the majority 
class (Prior)

Disease Size Patients Cell lines Cancer Non-cancer Prior

Leukemias 4283 3452 831 2336 1947 0.55

Bone marrow cancer 3525 3374 151 3185 340 0.90

Breast cancer 2171 1366 805 1863 308 0.86

Kidney cancer 657 423 234 400 257 0.61

Liver cancer 727 312 415 601 126 0.82

Lung cancer 1415 749 666 818 597 0.58

Skin cancer 835 554 281 454 381 0.54

Brain cancer 869 468 401 819 50 0.94

Colon cancer 1239 875 364 1112 127 0.90

Ovary cancer 573 427 146 533 40 0.93

Prostate cancer 415 182 233 350 65 0.84

Total 16,709 12,182 4527 12,471 4238 0.75

1  The TCGA Research Network: https://​www.​cancer.​gov/​tcga.

https://www.cancer.gov/tcga


Page 6 of 23Hanczar et al. BMC Bioinformatics          (2022) 23:262 

Sensitivity analysis

The NN is one of the most complex models to optimize in machine learning because of 
the high number of hyper-parameters to tune. We investigate the impact of the main 
hyper-parameters on the model accuracy for the classification tasks previously defined 
(these hyper-parameters are described in Sect.  5.1). Hyper-parameters defining the 
architecture of the NN (number of layers, number of neurons, batch normalization, 
dropout) and controlling the training (optimizer, learning rate, L1 or L2 regularization, 
batch size) are tested by a random search procedure. A range of tested values for each 
hyper-parameter is defined and reported in Table 3. At each iteration, for each hyper-
parameter, a value is randomly drawn from its range following a uniform distribution. A 
NN is constructed and trained with these parameters from 80% of the training set, and 
its accuracy is estimated on the remaining 20%. This procedure is iterated more than 
10,000 times for each classification task.

The results of these experiments are represented in Fig. 2. Each row (1–7) of this fig-
ure represents the impact of a hyper-parameter on the model accuracy, and each col-
umn (A–C) represents the results on a classification task. A boxplot represents the 

Table 2  Characteristics of the TCGA dataset

The columns represent respectively the type of tissues (Disease), the numbers of samples (Size), cancer samples (Cancer), 
non-cancer samples (Non-cancer) and the proportion of the majority class (Prior). This dataset contains only patient data

Disease Size Cancer Non-cancer Prior

BRCA​ 1214 1101 113 0.91

KIRC 610 538 72 0.88

LUAD 592 533 59 0.90

UCEC 574 551 23 0.96

THCA 560 502 58 0.89

LUSC 551 502 49 0.91

PRAD 550 498 52 0.90

HNSC 544 500 44 0.92

LGG 510 510 0 1

OV 374 374 0 1

LIHC 371 371 0 1

Total 6450 5980 470 0.927

Table 3  Tested values of the hyper-parameters and their best values for the pan-cancer prediction 
tasks

Hyper-parameters Tested range Microarray TCGA cancer pred. TCGA type pred.

Nb layers [1, 20] 4 5 4

Nb neurons [20, 2000] 600-600-600-60 500-500-500-500-50 700-700-700-50

Batch norm. Yes/no No Yes Yes

Dropout [0, 0.8] 0 0 0

Optimizer SGD/RMSprop/ADAM SGD SGD SGD

Learning rate [1−6, 1] 10−3 10−3 5.10−2

L1 regularization [0, 1−2] 0 0 0

L2 regularization [0, 1−2] 0 0 0

Batch size [8, 1024] 8 32 8
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performances obtained for each tested value for the number of hidden layers, optimizer, 
and weight of the L1 penalty. For the number of neurons, batch size and dropout prob-
ability (rows 2, 5 and 6), each point represents a DL model (represented by its hyper-
parameter value and accuracy). The blue curve is the loss interpolation that gives the 
tendency of the accuracy. The learning rate figures (row 4) use the same representation; 
the three tested optimizers are differentiated using distinct colors.

The results from the two first rows show that the architecture of the network has few 
impacts on its performance. There is less than 2% difference between the best and the 
worst boxplot in the number of hidden layers figures (row 1) and less than 1% in the evo-
lution of the loss curve in the number of neurons figures (row 2). The best accuracy for 
microarray (column A) and TCGA type prediction (column C) tasks is reached by small 
networks. Beyond five hidden layers, the accuracy is decreasing. It is well-known that 
deep networks may be difficult to train correctly because of the gradient vanishing prob-
lem. The standard method to avoid this problem consists in using residual connections 
to preserve a good gradient retro-propagation. We tested this approach on networks 
from 10 to 20 hidden layers and noted that the residual connections do not improve 

Fig. 2  Analysis of the impact of each hyper-parameter on the accuracy of the model
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the accuracy. For the TCGA cancer prediction task (column B), the accuracy slightly 
increases from one layer to four layers and becomes stable for deeper networks.

The results from rows 3–5 show that the gradient descent greatly impacts the per-
formances. Three standard optimizers are tested and compared: the stochastic gradi-
ent descent with momentum (SGD), RMSprop, which uses the squared gradients to 
scale the learning rate, and Adam, which combines the principles of momentum and 
RMSprop. The three optimizers may produce the best accuracy if they are well-tuned. 
On the learning rate figures (row 4), we see that the behaviors of RMSProp and ADAM 
are very similar. Both need a much smaller learning rate value than SGD, and models 
may reach good or very poor accuracy for some ranges of the learning rate. Note the 
binary aspect of this observation: either the gradient descent has a correct trajectory, 
and we obtain good performances, either the optimizer fails, and the performances are 
awful. SGD is much more stable and never produces very bad results except for extreme 
values of learning rate. The optimizer boxplot figures (row 3) cannot be used to compare 
the performances of the optimizers since they represent the accuracies obtained with all 
tested learning rates. We should keep only the accuracies with the correct learning rate 
range for each optimizer for a fair comparison. These figures are useful for comparing 
networks’ accuracy with and without batch normalization. We see that batch normali-
zation has a small impact on the performances. It is beneficial only for the TCGA type 
prediction task (column C). The batch size has a significant impact on the performances. 
It appears that it is negatively correlated with the accuracy, especially on the TCGA type 
pred task. Small batch size produces better results for all classification tasks.

The results from the two last rows show the impact of the regularization methods on 
the performances. The dropout and L1 penalty (rows 6 and 7) does not change the accu-
racy for small values and decrease the accuracy for large values. Note that the results of 
the L2 penalization (not shown in the figure) are very similar to those of the L1 penaliza-
tion. In all of our experiments, we do not identify cases where the regularization meth-
ods improve the performances.

Comparison of the deep learning approach with the state‑of‑the‑art

The performance of neural networks with the optimal hyper-parameters selected in 
the previous (see Table  3) is evaluated on the three classification tasks and compared 
with the state-of-the-art of machine learning: extreme gradient boosting (XGBoost), 
least absolute shrinkage and selection operator (LASSO), random forest (RF), and sup-
port vector machine (SVM) with linear (SVMlin) or Gaussian (SVMrad) kernel. A t-test 
based selection of the most discriminative gene has been used for the classical machine 
learning method. The number of selected genes and the hyper-parameters of these 
methods have been tuned in an internal tenfold cross-validation loop. Table 4 gives the 
accuracies obtained by NN and classical machine learning methods on the three pan-
cancer classification tasks. A paired t-test tests the significance of these results. NN has 
the best accuracy on the three tasks. We note that on the TCGA dataset, the difference 
of accuracy between NN and others methods is non-significant for the cancer predic-
tion task and small for the type prediction task. All classifiers obtain the same level of 
accuracy, except LASSO. Note that the TCGA classification tasks are easier to achieve 
when the size of the training set is 5000, the classifiers reach 99% of accuracy. There is no 
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space for significant improvements. Concerning the microarray dataset, NN is signifi-
cantly better than other classifiers (p value < 0.001) with a large margin (from 94.75 for 
SVMrad to 96.18 for NN).

The performance of the models is highly dependent on the number N of available 
examples for the training. Figure  3 shows the accuracy of NN, XGBoost, LASSO, RF, 
and SVM as functions of the size of the training set on both datasets. We clearly see 
that NN gives worse results for very small datasets ( N < 300 ) than the state-of-the-art. 
From N = 300 to N < 3000 , NN obtains performances equivalent to the other machine 
learning methods. From N > 3000 , NN becomes the best method, and the difference 
with the other methods increases with increasing N. On the microarray dataset, from 
N > 5000 , the gain of performance of classical machine learning methods coming from 
the increase of the training set size is small, whereas the accuracy gain of NN is much 
larger. NN takes advantage much more from very large training sets.

NN has similar results for specific cancer classification to other methods (detailed 
results in supplementary materials). None of the tested methods is statistically better 
than the others. The size of the training sets is between 500 and 1000; these results are 
therefore coherent with the curves in Fig. 3 where all methods give similar results in the 
area defined by ‘ 500 < N < 1000’.

Table 4  Accuracies obtained by NN and classical machine learning methods on the three 
classification tasks

Bold highlights the methods with the best accuracy

The symbol ** indicates that the accuracy of NN is significantly higher than the other methods (p value < 0.01 from the 
paired t-test)

Classifier Microarray TCGA can. TCGA type

XGBOOST 92.56 ± 0.29 99.03 ± 0.27 98.50 ± 0.14

LASSO 93.79 ± 0.35 97.70 ± 0.22 98,46 ± 0.14

RF 93.76 ± 0.29 98.41 ± 0.11 97,39 ± 0.21

SVMlin 93.81 ± 0.19 98.45 ± 0.09 98,70 ± 0.09

SVMrad 94.75 ± 0.25 98.66 ± 0.11 98,51 ± 0.09

NN 96.18** ± 0.18 99.09 ± 0.25 98.89** ± 0.18

Fig. 3  Accuracy of state-of-the-art ML and NN models in function of the training set size
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Supervised transfer learning

We investigate the transfer learning approach to improve the performances of the NN 
[15, 22]. There are two types of data in the context of transfer learning: the source and 
the target data. The target dataset represents the data of interest on which a classifica-
tion task is defined. The idea of transfer learning is to transfer relevant information from 
the source model to the target model to make it more efficient. The classification task 
associated with the source data must be identical or related to the target task.

Between cell lines and patient data

This subsection evaluates the benefit of supervised transfer learning between cell lines 
and patient data on the microarray dataset. Although we mixed these two types of 
data to learn an accurate model for cancer prediction in the previous section, it clearly 
appears that cell line data and patient data do not follow the same distribution. We high-
light this point in the following experiments. A NN is only trained on the training cell 
line data and tested separately on the cell line and patient test data. The same experiment 
is done with a NN trained only from training patient data. All the procedure is iterated 
10 times, this means that 10 NN are trained on cell line data and tested on patient data 
for each value of N and F The results presented in the Table 5 show that cell line data 
are easier to predict than patient data. Models reach almost 100% of accuracy for cell 
line data prediction with N = 4527 whereas models are still below 95% for patient data 
prediction with more than twice training examples. It is not so surprising, since we know 
that the biology in real persons is much more variable and complex than in cell lines, 
the classification task is therefore harder. The second and most important result is that 
a model trained on cell line (resp. patient) data cannot be applied on patient (resp. cell 
line) data; the accuracy falls from 99% (resp. 94%) to 66% (resp. 59%).

Although the distribution of cell lines and patient data is different, the tissues’ biol-
ogy and gene expression patterns should be similar. We, therefore, hypothesize that a 
transfer of information would be possible between cell line models and patient models. 
Indeed, gene interactions and expression signatures should be related between cell lines 
and patient data and transferable from one type of data to another. We test this hypoth-
esis in the following experiment. The cell line data are considered as the source and the 
patient data as the target. The source and target classification task are the same: the pre-
diction of the presence of cancer. A model is trained using all training cell line data; its 
accuracy must approach the accuracy reported in the Table  5. Then, the first F layers 
are frozen ( F ∈ {0, . . . , 4} ), i.e., the weights of these layers become fixed. Finally, a sec-
ond training of the network, called fine-tuning, is performed using a subset of n training 

Table 5  Accuracy of model trained on patient or cell line data

Test

Cell line Patient

Training

 Cell line 99.36 ± 0.12 66.33 ± 3.17

 Patient 59.29 ± 7.25 94.80 ± 0.42
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patient data ( n ∈ [25, 5000] ). Note that the unfrozen layers are not reinitialized during 
the fine-tuning procedure, and the weights from the first training are kept. Ten fine-
tuned models are trained from this procedure for each value of F and n, and ten baseline 
models are trained for performance comparison. The baseline models correspond to NN 
trained directly from the n training patient data used for fine-tuning. The same experi-
ment is also done with the patient data as the source and cell line data as the target for 
testing the transfer from patient model to cell line model.

Figure 4 gives the results of both transfer learning experiments. The curves represent 
the gain of accuracy provided by transfer learning, i.e., the accuracy of fine-tuned mod-
els minus the accuracy of baseline models. Each curve represents the transfer learning 
performance with different values of F. Each boxplot of the Fig.  4 plot represents the 
accuracy gains of 10 fine-tuned NN. We show that the best performances are obtained 
for F = 0 , corresponding to the special case of transfer learning called pre-training. For 
F = 1 , the curve is just below the pre-training curve, the other curves ( F = 2, 3, 4 ) are 
located much lower (particularly from cell line model to patient model). The more lay-
ers are frozen, the worse the performances of transfer learning are. All curves, except 
the pre-training curve, show a phenomenon of negative transfer learning for some val-
ues of n. Transfer learning decreases the performance of the models instead of increas-
ing it. This phenomenon is bigger with many frozen layers. If the pre-trained layers are 
not relevant for the target data, it will be difficult to correct the weights of the NN dur-
ing the fine-tuning step if many layers are frozen. The benefit of transfer learning highly 
depends on the size of the training set n and is particularly interesting for small training 
sets. With n = 25 and F = 0 , for the transfer from cell line to patient model, the base-
line model obtains an accuracy of 64.54%, and the fine-tuned model reaches 74.18%; for 
the transfer from patient to cell line model, the baseline model obtains an accuracy of 
55.58%, and the fine-tuned model reaches 80.74%. The baseline models learned noth-
ing with a very small dataset; their accuracy is around the proportion of the majority 
class, whereas fined-tuned models provide more relevant predictions. Pre-training is 

Fig. 4  Transfer between cell lines and patient data. Accuracy difference between pre-trained model and 
baseline model. The colors represent the number of frozen layers in the pre-trainned model
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beneficial for n < 200 for cell lines to patient transfer and n < 400 for patients to cell 
line transfer. After these thresholds, pre-trained models obtain the same accuracy as the 
baseline. However, we note that the convergence of the gradient descent during fine-
tuning takes fewer epochs than in the baseline models training. The pre-training can be 
interpreted as an initialization of the NN to a point in the parameter space where the 
gradient descent will converge faster and more efficiently in a small training set scenario. 
We also notice that the transfer from patient to cell lines is more efficient than from cell 
lines to patient; the accuracy gain is up to 0.25 in the first situation and 0.15 in the sec-
ond one.

Between different types of cancer

In this section, we test the transfer learning between different types of cancer. Unlike the 
transfer between cell lines and patient data cases, the gene expression profiles of differ-
ent types of cancer can be different. It could be hard to find relevant expression patterns 
to transfer from one cancer to another. However, some studies on pan-cancer data point 
out that it is possible to identify a global signature of cancer [20]. In the next two sets 
of experiments, we evaluate the performance of transfer learning, firstly from all types 
of cancer to a specific one and secondly from one type of cancer to another one. The 
previous experiments show that supervised transfer learning is better when no layers are 
frozen, so only supervised pre-training is considered in the following experiments. Since 
the target data is limited to a specific type of tissue, the target dataset is small (from 371 
to 4283). All accuracies are therefore estimated by stratified tenfold cross-validation.

From pan-cancer to specific cancer
This experiment evaluates the transfer from a model trained on all types of cancer to a 

specific one. For a given target type of cancer, all training examples except the examples 
of the target type are used to train a source model. Then, the source model is transferred 
to the target model that is fine-tuned with a subset of n training examples from the tar-
get data. The accuracy of the target model to detect cancer in the target data is evaluated 
and compared with the baseline model trained directly using the n training examples 
of the target tissues. Figures  6 and 5 show respectively the results on the TCGA and 
microarray datasets. The accuracy of baseline and fine-tuned models is represented 
respectively in red and blue as a function of n. For each value of n, the significance of the 
difference of accuracy between baseline and fine-tuned models is estimated by a paired 
t-test. The one star (resp. double stars) symbol means that the difference is significant 
with a p value of 0.05 (resp. 0.01) and the color of the star indicates the best model (red 
for baseline, blue for fine-tuned).

Transfer learning performance is not as good as in the cell lines—patients case. The 
effectiveness of transfer learning depends on the type of cancer. We identify three types 
of results. The first one concerns cases where transfer learning is beneficial, the accu-
racy of fine-tuned models is higher than baselines for small n. It gathers leukemias, 
breast, liver, lung, ovary for microarray data and BRCA, HNSC, LUSC, THCA, UCEC 
for TCGA data. As in the previous experiment, the less data there is, the more useful 
transfer learning is. In the second type of results, transfer learning does not change the 
performances. The accuracy of fined-tuned and baseline models is equivalent. It con-
cerns kidney, brain, colon for microarray data and KIRC, LUAD, PRAD for TCGA data. 
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Fig. 5  Transfer from pan-cancer to a specific cancer for microarray data. Accuracy of pre-trained model (red) 
and baseline (blue). The single (resp. double) star indicates that the accuracy difference is significant with a p 
value of 0.05 (resp. 0.01)

Fig. 6  Accuracy of pre-trained model (red) and baseline (blue) for TCGA data. The single (resp. double) star 
indicates that the accuracy difference is significant with a p value of 0.05 (resp. 0.01)
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The last type presents negative transfer; the fine-tuned models have lower accuracy than 
baselines. It concerns only bone marrow and skin for microarray data. Note the case of 
the lung cancer in microarray data and HNSC, UCEC for TCGA data, where transfer 
learning is clearly beneficial for small N, but becomes negative for larger N. We point out 
that the negative transfer is very small in these special cases. The accuracy difference is 
less than 1% for HNSC and UCEC, and less than 2% for lung, which is much lower than 
the gain of accuracy for small N.

From one cancer to another
In this experiment, we test the possibility of transfer learning from specific can-

cer to another one. All training examples from the source data are used to train 
the source model. Then, this source model is transferred to the target model that 
is fine-tuned with a subset of n training examples from the target data. The accu-
racy of the target model to predict the presence of cancer in the tissue of the tar-
get type is evaluated and compared with the baseline model trained directly from 
the n training examples of the target tissue. Figures 7 and 8 show the difference of 
accuracy between the baseline and fine-tuned model for all pairs of source/target 

Fig. 7  Transfer between two types of cancer for microarray data. Accuracy difference between pre-trained 
model and baseline model in function on the training set size
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combination on the TCGA and microarray datasets. The diagonal represents results 
where source and target are the same. This case is equivalent to train a model from 
a training set containing the source and target set. It is not surprising that the fine-
tuned models obtain much better accuracy than the baseline. In the majority of the 
other cases (source different from target), the transfer learning does not improve 
the baseline. There is also almost no negative transfer. However, we note some cases 
where fine-tuned models are significantly better than baselines: “brain to kidney”, 
“bone marrow/breast/skin to lung”, “ovary to skin” in microarray data, and “UCEC 
to THCA / LUSC” in TCGA data. It would be interesting in future experiments to 
confirm these results and check whether these special cases are just some artifacts in 
the set of experiments or relevant biological information can really be transferred in 
these specific cancers.

Fig. 8  Transfer between two types of cancer for TCGA data. Accuracy difference between pre-trained model 
and baseline model in function on the training set size



Page 16 of 23Hanczar et al. BMC Bioinformatics          (2022) 23:262 

Unsupervised transfer learning

This section evaluates the performance of unsupervised transfer learning on cancer pre-
diction tasks. We consider a small target labeled dataset ( N ≤ 500 ) and a large source of 
unlabeled dataset ( N ′ = 10000 for microarray and N ′ = 3000 for TCGA). Each layer of 
the NN is successively trained through a denoising autoencoder (DAE) with the source 
dataset. Then, the model is fine-tuned with a subset of N target examples. The accuracy 
of this model to predict the presence of cancer is evaluated and compared with the base-
line model trained directly from the N target examples. Figures 9 and 10 show the differ-
ence of accuracy between the baseline and fine-tuned model for each type of tissue. In 
these figures, we show only the performance of the pre-training procedure, i.e., no layer 
has been frozen during the fine-tuning step. For all types of tissue, the accuracy of fine-
tuned models is never higher than the baselines. We identify two types of results. In the 
first one, the accuracy of fine-tuned and baseline model is similar whatever the number 
of training labeled examples (HNSC, LUSC, PRAD, UCEC for TCGA and leukemias, 
bone marrow, brain, breast, colon, kidney, ovary, uterus for microarray). The pre-train-
ing has no impact on the model training. We reach the same performance as the base-
line model with random initialization of the hidden layers. In the second type of results, 
the performance of fine-tuned models is worse than the baselines for very small N and 
increases with N to reach the performance of the baseline (BRCA, KIRC, LUAD, THCA 
for TCGA and liver, lung, prostate, skin for microarray). The pre-training has a negative 
transfer effect and damages the model’s training. A minimum number of target examples 
is needed to put back the gradient descent on the right way and reach the performances 

Fig. 9  Unsupervised transfer for TCGA data. Accuracy difference between pre-trained model and baseline 
model in function on the training set size
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of the baseline. We also tested the unsupervised transfer learning by freezing some hid-
den layers during the fine-tuning step. In this setting, the negative transfer effect cannot 
be fixed, and the accuracy of the fined-tuned models is therefore much lower than the 
baseline models. In conclusion, we identify no advantage of unsupervised transfer learn-
ing in our experiments.

Discussion
The training of a NN is more complex than with the other machine learning mod-
els because of the large number of hyper-parameters to optimize. Although the opti-
mal value of the hyper-parameters depends on the data, the results of our extensive set 
of experiments lead to some general recommendations. We recommend using a small 
batch size and SGD as the optimizer, which is more stable than ADAM or RMSprop. 
Since the architecture of the network has few impacts on the performance, it seems not 
necessary to spend many resources to optimize it. Note, this flexibility can be exploited 
to make the NN interpretable by constraining its architecture with biological knowledge 
like in [10]. Surprisingly, the regularization methods do not reduce overfitting. We rec-
ommend focusing on the optimization of the learning rate and batch normalization.

The comparison with the state-of-the-art shows that a well-tuned NN is competitive 
with the other machine learning methods if the training set contains hundreds of exam-
ples ( N > 300 in our experiments). For small datasets, classical methods are more accu-
rate. The NN shows its advantages only for very large datasets ( N > 3000 ). Since most 
of the current gene expression datasets are far from this size, the usefulness of NN in 

Fig. 10  Unsupervised transfer for microarray data. Accuracy difference between pre-trained model and 
baseline model in function on the training set size
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this context can be discussed. However, the genomics data are considered as a pillar of 
the future precision medicine [23] and the production of data is strongly increasing over 
the world. In the next ten years, the size of the gene expression datasets will gain one or 
more orders of magnitude, potentially making NN the method of reference. Note that 
this is what happened in image analysis and natural language processing, where with 
the increasing of the training sets size, the NN over-performed the other methods and 
became the state-of-the-art. We may expect the same phenomenon in genomics data 
analysis.

The results on transfer learning are particularly interesting and promising. We show 
that it is possible to transfer a cancer signature from one condition to another. The most 
efficient transfer is between cell lines and patient data. Even if the distribution of cell 
lines and patient data is different, the signature of the presence of cancer is related and 
can be transferred between these two conditions. All successful transfers use a pre-train-
ing approach, i.e., all layers must be fine-tuned. This means that a signature identified in 
one condition cannot be directly used in another one; the model must be adjusted on 
the distribution of the target data through fine-tuning. We also note that the transfer 
from patient to cell lines is more efficient than from cell lines to patient. An explana-
tion could be that since the patient data are more complex and diverse than cell lines, 
the NN trained from cell lines cannot capture all relevant expression patterns and make 
the generalization to patient data more complex. Since the production of cell line data is 
much easier than patient data, transfer learning may be a promising approach to develop 
quickly reliable predictive models. For a given disease, we could produce a large number 
of cell line data to construct a NN, and then the model would be fine-tuned on a smaller 
patient dataset to obtain an accurate predictive model of the disease.

The transfer between a pan-cancer model to a specific cancer model is also possible, 
even if there are no samples of specific cancer in the pan-cancer data. This means that 
the NN can identify a general signature of the presence of cancer from pan-cancer data. 
It is important not to over-interpret this result. We do not claim that the NN finds a 
common biological signature shared by all cancers. The different types of cancer are 
very heterogeneous and may be biologically very different. We claim that the NN finds 
a common informative signature of cancer in the gene expression data. That is differ-
ent from a common biological signature since the NN (or all other machine learning 
models) identifies only correlations between gene and output and no causalities. How-
ever, this informative signature can be transferred to produce an accurate classifier with 
a very small dataset. This transfer is less robust than in the cell line/patient conditions. 
The transfer does not improve performance for some cancers and can even produce a 
negative effect. For the moment, we do not identify the conditions that make the trans-
fer successful or not; this point will be investigated in future works. Even if we cannot 
ensure the transfer efficiency for all tissues, it should be possible to get rid of the nega-
tive effect with domain adaptation methods [24]. The transfer from pan-cancer data may 
particularly help for rare cancers. Even with the rise of the capacity of genomics data 
production, the datasets of rare cancers will still be small. With this approach, we could 
transfer signatures from pan-cancer data to small rare cancer data.

The transfer from a given cancer to another one does not work. We assume that the NN 
identifies a signature that is too specific to the source cancer. Since the biology between 
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two cancers may be very different, the signature cannot be transferred to another one. 
In pan-cancer data, the NN analyses a wide variety of cancer and may identify a general 
signature. That is not the case here.

Our results show that unsupervised transfer learning does not improve the perfor-
mances of the baseline. This conclusion is in opposition with previous studies that claim 
that the embeddings learned by autoencoder from unlabeled data improve the accuracy 
of the NN after fine-tuning [25]. We can explain this difference because only the pro-
cedure, including unsupervised pre-training and fine-tuning, is tested in most articles. 
There is no comparison to a model learned without pre-training. We assume that drop-
ping the pre-training would not affect the model’s accuracy. Another explanation is that 
a sub-optimal model may benefit from unsupervised pre-training. We observe in our 
experiments that models trained with no optimal hyper-parameters may improve their 
accuracy with unsupervised pre-training. If we use the optimal hyper-parameters, the 
unsupervised pre-training may not ensure the increasing of the accuracy of the baseline. 
The conclusion is that if we use a well-optimized NN, there is no benefit to unsupervised 
transfer learning.

Conclusion
In this study, we evaluated the performance of the deep learning approach for cancer 
prediction from gene expression data based on an exhaustive set of experiments. We 
provided several recommendations to optimize the NN construction and training. Given 
the size of the current gene expression datasets, NN is competitive with other machine 
learning methods but not significantly better. However, with the increase in the size of 
the datasets, NN will likely become a reference method in the next years.

We showed that transfer learning is possible for gene expression data, mainly between 
cell lines and patient data, and from pan-cancer to specific cancer. The approach is very 
promising to develop accurate models, especially for rare cancers where large datasets 
will never be available. It is important to perform complementary experiments in order 
to confirm these results and identify efficient transfer conditions. In this paper, we focus 
on transfer learning based on pre-training and fine-tuning; however, it could also be 
interesting to investigate more sophisticated transfer learning methods. We could use 
the domain adaptation approach that aligns the distribution of the source and target data 
in the hidden layers to make the transfer more efficient [24]. The integration of domain 
knowledge could also be a solution to control and focus the transfer on the most critical 
information for the prediction task.

Methods
Deep neural network

Given a classification task with K classes, a classifier is a function that associates a class 
to an input vector: F : x �→ y . In our work, x ∈ R

p is a gene expression profile, 
y ∈ {c1, . . . , cK } is the predicted class corresponding to the phenotype, and F  is a deep 
neural network. In the context of gene expression data, we use a MLP architecture with 
L layers. In this architecture, the neurons are organized in layers, where each neuron is 
connected to all neurons of the previous layer and all neurons of the next layer. The input 
layer receives a gene expression profile, each neuron takes the expression of one gene. 
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The output layer returns the probabilities to belong to each class (one neuron for each 
class). The activation of the i-th neuron of the layer l can be expressed as: 
a
(l)
i = g

(

∑nl−1

j=1
a
(l−1)
j w

(l)
ji + b

(l)
i

)

 , where w(l)
ji  is the weight of the connection from the j-th 

neuron of the layer ( l − 1 ) to the i-th neuron of the layer l, b(l)i  is the bias of the i-th neu-
ron of the layer l and nl the number of neurons in the layer l. We denote 
z
(l)
i =

nl−1

j=1
a
(l−1)
j w

(l)
ji + b

(l)
i  the input of the i-th neuron of the layer l. The activation 

function, g, in this work, corresponds to the rectified linear unit function (ReLU) 
g(z) = max{0, z} for the hidden layers and the softmax 
g(z(L))k = exp(z

(L)
k )/

∑K
j=1 exp(z

(L)
j ) , where z(L) = {z

(L)
1

, . . . , z
(L)
K } , for the output layer. 

The expression profile representing a patient at the input of the network is noted a(0) , the 
posterior probability of each class ck estimated by the network is noted as a(L)k = g(z(L))k 
and the prediction of the neural network is F(x) = argmaxk{a

(L)
k }.

The loss function to minimize during the training is the weighted cross-entropy 
defined by Loss = −

∑N
i=0

∑K
k=0 αk I(yi = k)log(a

(L)
k ,i ) where I is the indicator function 

returning 1 when yi = k and 0 otherwise, αk is the weight of each class that is inversely 
proportional to the proportion of the class in the training set. It is common to add drop-
out or L1/L2 penalty to reduce the overfitting of NN. Dropout consists of switching off a 
random subset of the inputs or hidden neurons, i.e. set their output to 0; the proportion 
of neurons is a hyper-parameter to set [26]. The L1/L2 regularization consists of adding 
a penalty that corresponds to the L1 or L2 norm of the weights of the NN. This penalty 
is controlled by a hyper-parameter to set. Another simple method to reduce overfitting 
is the use of early stopping. The loss function on a validation set is monitored at each 
epoch; the gradient descent stops when the validation loss increases.

Transfer learning

Transfer learning aims to deal with the problem of small size training datasets. It con-
sists of transferring information from the source domain to the target domain in order 
to perform a target task [22].

A domain D = {X ,P(X)} is defined by the feature space X and a probability distri-
bution associated to this space P(X). A task T = {Y ,F(X)} is composed of two parts: 
the label space Y and the target prediction function F(X) . F(X) can be considered as 
a conditional probability function P(Y|X). Given a target learning task Tt = {Yt ,Ft(X)} 
based on a target domain Dt = {Xt ,Pt(X)} and a source task Ts = {Ys,Fs(X)} based on a 
source domain Dt = {Xs,Ps(X)} , the transfer leaning goal is to improve the performance 
of the model that learns the task Tt in Dt using the knowledge in Ds and Ts . Based on the 
above definition of the transfer learning, a small number of labeled data in the target 
domain is required to induce the target predictive function.

In our experiments, we define different target tasks (presence of cancer or type of can-
cer) using the same feature space (same features) with different distributions. We apply 
different transfer learning approaches using the deep neural network classifier described 
in Sect. 5.1 as a target classifier:

•	 Supervised transfer learning: source domain labels are used in the construction of 
the source model. The NN model is first trained using the source training set. Then, 
the first F layers are frozen ( F ∈ {0, . . . , L− 1} ), i.e., the weights of these layers are 
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kept fixed. Finally, a second network training, called fine-tuning, is performed using 
a target dataset. Note that during the fine-tuning procedure, the unfrozen layers are 
not reinitialized, the weights from the first training step are kept (see Fig. 11A).

•	 Unsupervised transfer learning: labels of the source domain are not used. The hid-
den layers of the model are pre-trained by an AE in using the source data. The AE 
is a model that tries to compress the input information in the middle layer and 
reconstruct the input at the output. For more stability, we add Gaussian noise to the 
input. The objective of the model is to reconstruct the denoising input data. Its loss 
fonction is Loss =

∑N
i=0 ||G(xi + ǫ)− xi||2 where G is the model and ǫ is a random 

Gaussian noise. This model is called denoising autoencoder (DAE). There are two 
ways to pre-train a model with a DAE. The first one is to train a DAE whose encoder 
copies the architecture of the model (see Fig. 11B). The second one consists to train 
each hidden layer independently and successively with a DAE (see Fig. 11C). After 
the pre-training, the model is fine-tuned with the target data, and eventually the first 
F layers may be frozen. In our experiments, both approaches have been tested.
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