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The common ancestor of all Metazoa (Urmetazoan) was a nerveless animal (Mackie, 1970, 1990;
Moroz, 2009). This hypothetical Urmetazoan likely used electrical and chemical communications
for behavioral control as in the present-day placozoans or sponges. In placozoans, non-synaptic
signaling is mediated by small secretory peptides and low molecular weight transmitters, including
NO, ATP, glutamate, glycine, GABA (Nikitin, 2015; Varoqueaux et al., 2018; Moroz et al., 2020a,b,
2021b; Romanova et al., 2020a,b).

Emerging evidence suggests that neurons evolvedmore than once from secretory cells (reviewed
by Moroz, 2014, 2021). Such events might independently occur about 550–540 million years ago
in ancestors of three basal metazoan lineages: ctenophores, cnidarians, and bilaterians (Moroz
et al., 2021b). The separations of each of five basal metazoan lineages likely happened within a
relatively short geological interval, perhaps, even <10 million years. Thus, the outcome of the
highly debated topic—the identification of the sister lineage for all Metazoa (i.e., ctenophore-first
or sponge-first hypotheses, see details in Whelan et al., 2015, 2017; Halanych et al., 2016; Telford
et al., 2016; Kapli and Telford, 2020; Redmond and McLysaght, 2021)—does not challenge the fact
of extensive parallel evolution of neural organization within the majority of animal phyla. It also
does not challenge the hypothesis of the independent origins of neurons considering remarkably
different molecular toolkits for neural cell types across basal metazoans (Moroz et al., 2014) and the
broadening definitions of neural systems (Miguel-Tomé and Llinás, 2021).

The surprising corollary of the neural polygeny hypothesis is independent origins of synapses
(Moroz and Kohn, 2016; Moroz et al., 2021b). But how had the synaptic organization from
secretory cells happened in early animal evolution? What were the selective advantages of synaptic
vs. paracrine secretory communications? Some particular “benefits” of synapses are apparent,
and some are not. We think that the extension of the endoplasmatic reticulum and growing
lipids’ diversity in early secretory cells paved the way to versatile and divergent neuronal and
synaptic evolution.

ADVANTAGES OF SYNAPSES IN NEURAL EVOLUTION

First, both speed and more localized, faster delivery of intercellular signals are probably among the
most prominent selective advantages of synapses in evolution compared to volume transmission.
Consequentially, selective “benefits” of shorter and anatomically restricted transmission enabled
more precise control [and homeostasis] of transmitter concentrations. There is always a trade-off
between the chemical stability vs. the rate of transmitter’s chemical inactivation in given
microenvironments [e.g., oxidation for monoamines (Burbulla et al., 2017; Riessland et al., 2017),
hydrolysis of acetylcholine, or proteolysis for peptides].

Second, both the exocytosis and regulation of chemical transmission within small contained
volumes would require fewer resources and might be energetically more favorable than
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producing and releasing a larger pool of transmitters into
extracellular spaces to compensate for their diffusion.

Third, many transmitters are common cellular metabolites

or directly derived from cellular metabolites. In this

FIGURE 1 | Non-synaptic vs. synaptic transmission: extreme cases of alternative integrative systems. Three remarkable examples of cells involved in the behavioral

integrations are illustrated: the placozoan fiber cell (A,C), unique ctenophore tripartite chemical synapse (B, modified from Hernandez-Nicaise, 1991, see text), and the

pyramidal human neuron (E). (A) Details of ultrastructural organization of the fiber cell in Hoilungia hongkongensis (modified from Romanova et al., 2021, Figure 5).

Inside fiber cells, an extended endoplasmic reticulum entwined all cell compartments, especially mitochondria complex (formed presumed mitochondrial contact

site—red asterisk), nucleus, and bacteria. Black arrows indicate specialized contact sites (Dumoux and Hayward, 2016) to the nucleus with encapsulated bacteria

within ER-type structures with ribosomes (dotted areas). (C) The left image shows the organization disk-shaped nerveless placozoan, Trichoplax, which contains no

recognized neurons, muscles, or sensory organs but displays coordinated behaviors and action potentials (Smith et al., 2015, 2019; Senatore et al., 2017; Armon

et al., 2018; Varoqueaux et al., 2018; Fortunato and Aktipis, 2019; Romanova et al., 2020b). The middle image shows the schematic reconstruction of a placozoan

fiber cell with prominent sites (blue dots) of putative secretory/paracrine (non-synaptic) regions (modified from scanning and transmission electrom microscopy

datasets (Romanova et al., 2021). The right image (D) shows the microcavities (asterisks) (Romanova, 2019) as suggested regions of non-synaptic communications

and integration in placozoans (Moroz et al., 2021b). (E) The reconstruction of a pyramidal neuron (modified from https://ai.googleblog.com/2021/06/a-browsable-

petascale-reconstruction-of.html and Riessland et al., 2017; Shapson-Coe et al., 2021). Red dots are exemplar synapses on the pyramidal neuron. Blue dots are

recognized vesicles and exosomes around the fiber cell (C). Scale bars: Fiber cell—20µm; Neuron—50µm.

capacity, signal molecules can also be food/energy sources
(Moroz et al., 2021a), (e.g., amino acids such as glutamate
and aspartate or small peptides) for specialized cells and
symbionts or endoparasites. Thus, more compartmentalized
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[synapse-type] communication provided potential “protections”
of signaling molecules from their consumption by other cells
or symbionts/parasites. In the nerveless Trichoplax (Figure 1),
the fiber cells seem to contribute to neuroid integrative,
phagocytotic, immune, regenerative, and contractile functions
(Grell and Ruthmann, 1991; Romanova et al., 2021). They also
contain intracellular symbionts (Gruber-Vodicka et al., 2019;
Kamm et al., 2019). But, in placozoans, highly localized signaling
might occur without classical synapses.

There are also “disadvantages” of the highly localized
synaptic transmission related to spatial limitations of integrative
functions. Slow diffusion of signal molecules to other (more
distant) targets could be “compensated” by the growth of
neuroid processes, energetically very costly mechanisms. In
complex, relatively large, and mobile animals, there was a parallel
development of different systems for long-distance signalings,
such as circulatory and immune systems. The predation and
larger body sizes were essential factors (Monk and Paulin, 2014),
triggering the origins and rapid evolution of the neural and
synaptic organizations.

As a result, we might envision multiple trade-offs between
speed, efficiency, and associated energy cost of non-synaptic
volume transmission vs. highly localized synapses in the
early evolution of animal communication systems. These
two communication systems always co-exist in most extant
animals. But how had chemical synapses evolved? There are
three aspects to this question. (i) combinatorial selection of
molecular components [modules], including recruitments of
various adhesive molecules to bring presynaptic and postsynaptic
complexes together, and/or cooption of gap junctions proteins
for the same purposes (Ovsepian and Vesselkin, 2014; Ovsepian,
2017; Ovsepian et al., 2020); (ii) reorganization of intracellular
and extracellular membrane domains in secretory cells and their
targets to enhance signaling and communication efficiency; and
(iii) preferential selection of chemically different transmitter
classes for paracrine vs. synaptic communications. Below,
we will briefly discuss these interconnected components of
synaptic evolution.

The Versatility of Secretory and Receptive
Modules Is the Core of the Synaptic Origins
Natural selection might take advantage of several
“preadaptations” to “build” synapses using a broad array
of modular exocytosis machinery and adhesive molecules
(cadherins, neurexins, neuroligins, immunoglobulins, complex
receptive scaffolds from unicellular eukaryotes, etc.)—all these
components were previously selected for other functions rather
than to make synapses. It perfectly fits the definition of the
exaptation as “characters evolved for other uses. . . , and later
co-opted for their current role.” (Gould and Vrba, 1982).
However, we must view a knot of such exaptations within
contexts and constraints of each phyletic lineage of animals,
their bodyplans, and their development. Equally important
would be modeling the energetic cost of synapse formation,
growth, and the maintenance of long neural processes (which
consume a lot of energy to sustain their homeostasis, propagate

electrical signals and secretory events). These factors, plus
ecologies and behaviors of particular species, provide additional
constraints to synaptic recruitments, synaptic architecture, and
even preferential selection of “available” transmitters in one or
another type of neural system.

Limited comparative, cell-specific molecular and
physiological data from early-branching metazoan lineages
prevent making final conclusions about the combinatorial
logic and the scope of modularity within different synaptic
architectures. However, we can state that most core molecular
machinery, sufficient for synapse formation (secretory
presynaptic and postsynaptic receptive modules), predated
the origin of animals and their neural systems (Ryan and Grant,
2009; Moroz and Kohn, 2015, 2016; Ovsepian, 2017; Ovsepian
et al., 2020). In unicellular and colonial eukaryotes, paracrine
secretion is widely used for other functions, different from
(neuro)transmitter signaling, such as digestion, phagocytosis,
defense, immunity, and injury-regenerative responses, control of
cell divisions and differentiation, etc.

ENDOPLASMIC RETICULUM IN
PROTONEURONAL SECRETORY CELLS
MIGHT PROMOTE SYNAPTOGENESIS IN
EVOLUTION

Over 60 years, scientists put forward the idea that neurons
evolved from secretory cells (reviewed Moroz, 2014, 2021).
But what kind of preadaptations in secretory cells (apart from
exocytosis itself) might facilitate synaptogenesis?We hypothesize
that the endoplasmic reticulum (ER) specialization toward
enhanced secretion capabilities and associated dramatic increase
of intercellular membranous structures could be essential factors
that triggered and shaped early neuronal and synaptic evolution.
Three outcomes of enhanced secretory functions relevant to
synaptic evolutionary selection are summarized below.

Increased Intracellular Membrane Space in
Secretory Cells Drives Organelles’
Interactions and Lipid Complexity
ER comprises more than half of the total cell membranes and
occupies about 35% of cytoplasmic volume (Valm et al., 2017).
However, the intracellular membranous space is more extensive
in secretory cells and cells with extended neural processes such
as axon-type terminals, which have elaborated ER even in distant
neurites (Ozturk et al., 2020). Increased synthesis of peptides and
other secretory molecules, their accumulation in ER and vesicles,
and Ca2+- dependent vesicular release—all require a dramatic
expansion of ER and its tightly coupled interactions with
mitochondria, Golgi apparatus, and other organelles (Sassano
and Agostinis, 2019). The expanded and highly heterogeneous
lipid space (Harayama and Riezman, 2018; Santos and Preta,
2018) facilitates complex phase transitions among biomolecules,
organelles (Bag et al., 2020; King et al., 2020), and synaptic
vesicles (Rohrbough and Broadie, 2005). Lipid synthesis occurs
in ER, and the current estimates suggest that more than
38,000 different identified lipids composed cellular membranes
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(Liebisch et al., 2020). The theory predicts∼180,000 lipid species
distributed among eight major lipid categories (Brugger, 2014),
supporting astonishing diversity of functions. Considering both
enrichment of neural systems in lipids and the fact the ∼75%
of lipid diversity is found in the brain, we can say: neuronal
evolution is the lipid revolution. The molecular diversity of
synapses (Rohrbough and Broadie, 2005) and neurons based on
lipidomics can be even greater than described using scRNA-seq,
and the plasma lipid composition is a neuron-/cell-type-specific
feature (Neumann et al., 2019; Fitzner et al., 2020). The most
imperative are the data illustrating that the differences in lipid
composition between cell-type plasma membranes are smaller
than differences between organellar membranes in a given cell
(Symons et al., 2021). In other words, each organelle might
have its unique lipidome (Symons et al., 2021), and cell-to-cell
communications by extracellular vesicles is a little-explored route
of lipid signaling (Barber and Raben, 2019; Skotland et al., 2020).

Different Fates of Lipophilic vs. Lipophobic
Transmitters
Increased lipid diversity of plasma and intracellular membranes
shaped evolutionary recruitments of different transmitters in
synaptic architectures. Small transmitters directly interact with
membranes and can be broadly divided into two groups.
Lipophilic transmitters (i.e., melatonin, serotonin, histamine,
dopamine, noradrenaline, adrenaline, and adenosine) had high
lipid partition coefficients (Wang et al., 2011; Postila et al., 2016;
Engberg et al., 2020; Josey et al., 2020; Parkkila and Viitala,
2020) and can operate in receptor-independent mechanisms by
changing lipid dynamics (Dey et al., 2021). They accumulated
within surface membrane layers (e.g., postsynaptic membranes)
with enhanced planar 2D diffusions. In other words, they act
according to the 3D → 2D diffusion scheme (Postila and
Rog, 2020). In contrast, glutamate, aspartate, glycine, and GABA
are primarily lipophobic molecules. Accordingly, they work as
classical transmitters in 3D diffusion space, but this situation can
be changed in the presence of Ca2+ (Perez-Isidoro and Ruiz-
Suarez, 2016). Acetylcholine has an intermediate position in its
interactions with lipids (Postila et al., 2016; Postila and Rog,
2020).

Consequently, there are selection constraints in the synaptic
receptor architecture designs (Postila et al., 2016; Postila and
Rog, 2020). In many G-protein coupled receptors for lipophilic
transmitters, the ligand-binding sites are predominantly
(but not exclusively) hidden in the membrane (Postila and
Rog, 2020). In contrast, the binding sites are primarily in
the extracellular space for lipophobic transmitter receptors
(e.g., iGluRs, mGluRs or nicotinic receptors). These physical
properties of signal molecules might contribute to the fact that
the first synapses utilized lipophobic transmitters (Glu, Asp,
GABA), in addition to neuropeptides, as in extant ctenophores
and cnidarians (Moroz et al., 2021a,b). The recruitments of
lipophilic transmitters in neural systems and synapses seemingly
occurred later in evolution, only in bilaterians (Moroz et al.,
2021b). Furthermore, glutamate and acetylcholine were recruited
primarily as fast excitatory neurotransmitters in the neocortex

and neuromuscular junctions of vertebrates, respectively. The
reverse situation occurred in insects, where glutamate was
recruited as a fast neuromuscular transmitter (Jan and Jan,
1976). More likely, it is a reflection of evolutionary recruitment
games under similar physical and chemical constraints for
fast transmission in different evolutionary lineages. Together
with their chemical stability and fast uptake/inactivation
and coupling to bioenergetic, the lipophobic properties of
transmitters might provide selective advantages for rapid
synaptic communication dynamics.

Integrative Functions of ER as a Hub of
Neuronal/Synaptic Innovations
ER physically and chemically interacts with cellular organelles
using vesicular and non-vesicular lipid transport (Holthuis and
Menon, 2014) at specialized membrane contact sites (MCS,
Levine, 2004; Phillips and Voeltz, 2016; Ruiz-Lopez et al.,
2021). MCS support complex interactions with mitochondria
(Schlattner et al., 2014; Kannan et al., 2017; Wong et al., 2019)
via tethered regions of ER known as mitochondria-associated

membranes or MAM (Allen et al., 1989; Helle et al., 2013).
Specialized lipid chaperons can control Ca-dependent

regulations and dynamic composition of lipid rafts at MCS [e.g.,
Sigma 1 receptor (Zhemkov et al., 2021a)], also acting as hubs
of inter-organelle communications and signaling (Zhemkov
et al., 2021c). Not surprisingly that such regulations at MCS and
mitochondria do control neuropeptide asymmetric distribution
and secretion (Valadas et al., 2018; Zhao et al., 2018), cell death
(Prudent et al., 2015) and contribute to mechanisms underlying
neurological disorders (Schon and Area-Gomez, 2013; Zhemkov
et al., 2021b) and synaptopathies (Di Miceli et al., 2020).

ER is major calcium storage and the system for Ca2+

homeostasis (Berridge, 1998). A continuous, highly extended ER
network is viewed as an “intracellular highway” or a much faster
route for Ca2+ tunneling over long distances due to little Ca2+

buffering in the ER lumen in secretory cells (Petersen et al., 2017)
and, perhaps, in neurons too.

In other words, ER has been termed a “neuron within a

neuron” (Berridge, 1998, 2002). Boosted ER-Ca2+/MCS/MAM
systems in early secretory cells [or protoneurons] were ideally
suited for developing a polarized release of all classes of
transmitters with versatile preadaptations for divergent synaptic
evolution in later Precambrian animals.

MAMs could also be viewed as an ancestral prototype of
intracellular communication at the synapse. Cellular stress

and immunity responses form dynamic tethering of signaling
synapses between ER and MAM (Horner et al., 2011). MAM
could be further co-evolved to support cell-cell synaptic
interactions with high bioenergetic “demands” by coupling the
same components [mitochondria (energy) and ER (secretion)] in
presynaptic (and even postsynaptic) membranes.

The tripartite synapses in ctenophores (Figure 1B),
with layered arrangements of secretory vesicles, ER, and
mitochondrion (Hernandez-Nicaise, 1991), are the perfect
examples of the membranous structural organization in one of
the earliest synapse designs (Moroz, 2015). These asymmetrical
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synapses contained three distinct layers of organelles, forming
a so-called “presynaptic triad” (Hernandez-Nicaise, 1973,
1974, 1991): (i) a single layer of synaptic vesicles lining the
presynaptic membrane, (ii) a cistern of agranular endoplasmic
reticulum just above the row of vesicles, followed by (iii) one
or several mitochondria with presumed MAM type contacts.
The postsynaptic density and active zones, however, are
less prominent in ctenophore synapses. ER-mitochondria
relationships can also be noted in some cnidarian synapses
(Anderson, 1985; Anderson and Grunert, 1988; Anderson and
Spencer, 1989).

Mitochondria complexes and elaborated ER structures are
characteristics of the fiber cells of placozoans (Figures 1A,C).
These tetraploid cells can coordinate several interrelated
functions such as systemic feeding with bacterial phagocytosis
and immunity responses. As a result, we view a meshwork
of fiber cells [and associated small star-like cells (Romanova
et al., 2021)] as an organism-scale integrative or homeostatic
system, potentially involved in systemic injury and regeneration
responses, perhaps even in morphogenesis. This type of system
can be close to the hypothetical protoneuronal organization,
which initially evolved to control morphogenesis in first nerveless
metazoans (Fields et al., 2020).

QUESTIONS AND PERSPECTIVES

We only scratched the surface of the problem of synaptic
selection. Early interdependence and ancestral relationships of
innate immune and neural systems is another poorly investigated
layer in the evolution of intercellular communications. The
landscape for developing immune functions is similar to neural
control due to many shared secretory products, lipid and ER
rearrangements and conceptually shared features of neuronal
and immune synapses with similar adhesive molecules. In due
course, both systems (co-)evolved as responses to stress/injury
factors and recognition of self vs. foreign RNA, DNA, protein,
and cell invasions. Remarkably, ER-MAMs signaling also plays
an essential role in innate immunity against RNA virus
infection: as a platform for inducing an immune response and

regulating viral replication. MAM tethering ER to mitochondria
and peroxisome(s) form immune synapses during RNA virus
invasion (Horner et al., 2011, 2015). Thus, it would be
intriguing to think that some architectures of neural systems
evolved as a branch of immune communications. Injury-induced
regeneration signaling can be a universal exaptation for immune
and neural systems, both adopted for faster responses. The
growing diversity and compartmentalization of lipids and ER
further promoted cell plasticity, forming more localized immune
and neural synapses, often recruiting the same transmitters (e.g.,
histamine and serotonin, glutamate, and GABA), as well as
multiplicity of small signaling peptides. Ultimately, as all things
in nature, membrane-membrane and cell-cell communications
should be physically closer to be efficient.
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