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A B S T R A C T

Gene prediction has been increasingly important in genome annotation due to advancements in sequencing
technology. Genome annotation further helps in determining the structure and function of these genes. Trans-
lation initiation site prediction (TIS) in human genomic sequences is one of the fundamental and essential steps in
gene prediction. Thus, accurate prediction of TIS in these sequences is highly desirable. Although many
computational methods were developed for this problem, none of them focused on finding these sites in human
genomic sequences. In this paper, a new TIS prediction method is proposed by incorporating global sequence
based features. Support vector machine is used to assess the prediction power of these features. The proposed
method achieved accuracy of above 90% when tested for genomic as well as cDNA sequences. The experimental
results indicate that the method works well for both genomic and cDNA sequences. The method can be integrated
into gene prediction system in future.
1. Introduction

The process of translation is responsible for converting mRNAs into
protein. The whole process is carried out in three different steps namely:
initiation, elongation of polypeptide chain and termination. Translation
initiation site is the position where this process initiates and it terminates
at the first in-frame codon downstream. The non-coding sequences that
present around coding sequences are known as 50 and 30 untranslated
regions. The problem of translation initiation site prediction is to accu-
rately recognize this site in genomic sequences (i.e mRNA, cDNA and
uncharacterized DNA). By knowing the exact location of TIS in genomic
sequences, the corresponding protein can be easily identified. Therefore,
recognition of TIS is a central problem in gene prediction which further
helps in understanding the gene structure and its product. Usually, a TIS
consists of a tri-nucleotide ATG (in DNA or cDNA) and AUG (in mRNA)
and used as a start codon. Translation can also occur at other codons,
such as ACG and CTG, however, this is a rare event reported in eukary-
otes and is not considered here.

The scanning model states that the ribosome, firstly, binds to the 50

end of mRNA then migrates along the 50-30 end and stop at first AUG
codon where a favorable context for initiating translation is present.
Although the scanning model hypothesis of first AUG occurs in 90% of
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the cases, there are notable exceptions also. Some mechanism explaining
these exceptions are: leaky scanning where the translation initiates from
a downstream ATG after bypassing the first AUG codon due to the
presence of poor context, reinitiation where a small open reading frame
causes ribosome to continue with the scanning until another ATG is
found to make the protein, internal initiation where the ribosome
directly attaches near the actual ATG without scanning and this fact is
reported in a number of viral mRNAs.

With the help of new technologies, more and more TISs have been
verified experimentally. However, it has been reported that 40 % of the
mRNAs taken from GenBank database include upstream AUGs. The
problem turns out to be more difficult when unannotated genomic se-
quences or ESTs (small sequences derived from cDNAs) which usually
contain more errors, are used. Moreover, the experimental approaches
are very costly and time-consuming. Thus, prediction of correct TIS is a
complex problem because the sequences are not complete, can contain
errors and their underlying mechanisms are not fully understood.
Therefore, efficient and accurate computational methods that automati-
cally try to solve this problem are needed for TIS prediction. Moreover,
the computational recognition of TISs is an important component of
every gene prediction system and thus plays a crucial role in genome
annotation projects. In past, several computational methods are
gust 2020
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developed to predict TIS in transcript data i.e. mRNA, EST, and cDNA.
However, in gene prediction system, the TIS need to be predicted at
genomic level. This makes the problem of TIS prediction even more
challenging because at the genome level the number of false TIS is much
more as compared to true TIS. Also, the prediction of TIS in genomic
sequences is different from transcript sequences due to the following
reasons: transcripts usually contain zero or one TIS which aid the pre-
diction process; scanning models of translation cannot be applied to
genomic sequences because of the presence of large number of candidate
TISs; genomic sequences contain introns which disrupt the coding
sequence downstream the TIS. The focus of this paper is to predict TIS in
genomic sequences.

This section addresses the problem of TIS prediction in genomic se-
quences and its importance in gene prediction. The remaining of the
paper is outlined as follows: The next section describes related work for
TIS prediction. Thereafter, the datasets and the methods used in this
work are presented. In section 4, the results of the proposed method are
illustrated along with evaluation measures. The last section includes the
discussion and conclusion of this work.

2. Related work

A TIS is dependent on the position and context of the ATGs. Kozak
used probabilistic methods and gave the consensus motif GCCRCCatgG
around TIS [1]. In this motif, the most highly conserved nucleotides were
purine (usually, A) found at -3 position and G found at þ4 position.
Although the motif was frequently used in biological experiments for
initial scanning to identify TIS, the consensus is only a rough guide and
cannot predict TIS alone. Later, Kozak used the first AUG rule postulated
by the ribosome scanning model to predict TIS [2]. However, in eu-
karyotes, the process of translation does not always initiate at the first
AUG codon suggesting that context information also plays an important
role in the prediction of TISs. Therefore, different methods based on
biological approaches, machine learning, soft computing, and statistical
models have been extensively studied for TIS prediction.

Pedersen and Nielsen, in 1997, proposed a method based on artificial
neural networks to predict which AUG is the actual start codon [3]. The
network used both local context around start codon and global sequence
information. The method did not require any knowledge of the positions
of start codons in relation to mRNA's end and can be useful in case of EST
data and genome sequences. Though the method attained an accuracy of
85% on the vertebrate sequences dataset, did not optimally utilize the
local information around TIS. A method based on a statistical model was
developed by Salzberg et al. in 1997 [4] and considered the dependencies
of adjacent bases in contrast to other techniques which treated each base
independently. This method was appropriate for locating signals in
uncharacterized genomic DNA and was showing better results than
conventional matrices. It was further enhanced by using interpolated
context Markov model to capture the coding potential of the region
present downstream ATG and resulted in the overall improvement of 5%
when incorporated in the gene finding system [5].

Another method based on a linear discriminant approach was
developed by Salamov et al. in 1998 [6]. The probability of each ATG
being the true initiation codon was determined on DNA sequences. Later
on, Nishikawa et al. improved the accuracy of this method by combining
statistical information with similarity to protein sequences [7]. A statis-
tical model which generalized existing methods and took into account
higher order dependencies of base position was given by Agarwal and
Bafna [8]. The technique employed here is generalized second-order
profile (GSP). The main problem with GSP is its less informative con-
tent which leads to false positives. To resolve this issue, the ribosome
scanning model was investigated, which reduces the search space and
accounts for its effectiveness [9].

The problem of TIS prediction can be treated as a classification task.
Support Vector Machine (SVM)was used for classification in a number of
biological problems and have the capability to ameliorate the prediction
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performance. Zien et al. manifested how to integrate biological knowl-
edge in SVM by engineering a suitable kernel function [10]. Another
attempt, where artificial neural networks were utilized to provide a
performance guaranteed prediction was made by Hatzigeorgiou et al.
[11]. Themethod used a modular approach, with one module sensitive to
conserved sequences and other to coding/non-coding regions present
around ATG. Also, it made use of ribosome scanning model and 94 %
accuracy was achieved.

In a different approach, better performance was achieved by using
feature generation and correlation-based feature selection with a variety
of machine learning algorithms [12]. The method gave an overall accu-
racy of 90 % when only 7 features were selected and it increased to 94 %
when selected features were retrained using ribosome scanning model.
The same approach was repeated and features were generated from the
translation of mRNA into the corresponding protein sequences rather
than directly from mRNAs [13]. This method obtained better sensitivity
than existing methods. This work was further enhanced by selecting top
100 features which were integrated using different methods including
C4.5, SVM, and Naive Bayes and an accuracy of more than 92% was
attained with SVM [14].

The presence of shorter first exon in eukaryotic genes makes the
problem of TIS prediction more difficult. Thus, to deal with this problem
Wang et al. developed a method where significant characteristics of
shorter flanking fragments around TIS were analyzed and the
expectation-maximization (EM) algorithm based on incomplete data was
applied to recognize TISs [15]. The accuracy reported was 87.8% with a
6-fold cross-validation test. In 2004, five computational methods namely
first_AUG, ESTScan, Diogenes, NetStart, and ATGpr were compared to
find the most accurate method for TIS recognition [16]. The results of
this study indicated that ATGpr is the best method to predict TISs.

Low-order Markov models are not able to capture hidden and com-
plex features which are present in the proximity of TISs. To deal with this
fact, Ho et al. proposed a neural network approach in which biological
knowledge based lower-order models were combined with non-linearity
to represent higher-order nucleotide dependencies at TISs and in the
surrounding coding/non-coding regions [17]. With a 3-fold
cross-validation test, the method attained 93.8 % of sensitivity and
96.9 % of specificity. Most of the efforts discussed above make use of
local information for feature extraction.

The data encoding method greatly affects the performance of TIS
prediction in genomic sequences. Moreover, Pederson and Nielsen
advised that global information could improve the accuracy of predic-
tion. In 2005, Li et al. presented a TIS prediction method where features
based on both local and global information were used to produce nu-
merical data from biological sequences [18]. Then, mixture Gaussian
models were applied for TIS prediction. The method outperformed many
existing methods in sensitivity while maintaining specificity high. In the
same year, Li and Jiang introduced a class of sequence similarity kernels
based on the concept of string edit distance [19]. The property of edit
kernels is their simplicity and they have important statistical and bio-
logical interpretations. A discriminative approach was used in this
method where SVM was applied to predict TISs. The results indicated
that both these ideas can improve the accuracy of prediction and this
method performed better than those methods based on SVM with the
polynomial kernel or Salzberg kernel and neural networks.

The similar methodology of feature generation and selection was
employed by Tzanis et al. for TIS prediction [20]. A combination of
features was used in this study, some of them were taken from the pre-
vious work and some new were proposed. A number of classifiers were
used here, namely C4.5, RIPPER, Naive Bayes. The experimental results
indicate that the use of this new combination of features helps in
improving the prediction accuracy. The work was further enhanced by
combining this novel feature set with some proposed features and ribo-
some scanning model [21]. Further, some new features were proposed
and combined with old features used in their previous studies [22]. The
evaluation of this new feature set showed better prediction accuracy.



Figure 1. Methodology used.
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Ma et al. analyzed the effect of Cþ G content surrounding ATG codon
on the features used for TIS prediction and they have found that some TIS
and non-TIS features are heavily dependent on Cþ G content [23]. Based
on this fact, 10 models were constructed and all were built using SVM
with 11 basal features as input. A prediction program named TISKey was
developed based on these models. In 2007, Tzanis et al. proposed a
component-based data mining methodology named MANTIS for TIS
prediction [24]. The methodology was modular in nature and contained
three major components: a consensus component which was based on
Markov-chain, a coding region classification component and a new
component based on ATG location which taken into consideration the
advantages of ribosome scanning model and surmounts its limitations.
All these components were incorporated into a meta-classifier using a
technique called stack generalization.

In 2007, Saeys et al. assessed the performance of several TIS predic-
tion methods at the genomic level and compared them with other
existing methods for TIS recognition in transcript data [25]. The results
indicated that the proposed model obtained a sensitivity of 80% on a
well-annotated human chromosome. Most of the algorithms to predict
TIS were designed around the sequence context. These algorithms often
failed if the sequence context is not present i.e. a purine at -3 position and
guanine atþ4 position. In 2008, Tikole et al. developed a neural network
method to identify TIS in mRNA sequences that missed the preferred
nucleotide at position -3 and þ4 around the start site [26]. Sparks et al.
developed a packageMetWAMer to predict TIS in eukaryotes of non-viral
origin [27]. All the methods implemented in METWAMer utilized a
specific weight array matrix based on a start-methionine signal which
contains base transition frequencies in protein coding sequences. The
results demonstrated that improvements in the accuracy of TIS prediction
can be attained by taking start-methionines into consideration and the
software can be integrated into gene prediction systems with minor
modifications.

The simple approach of feature generation and selection was used by
Gao et al. with the aim of improving the performance of TIS prediction
models [28]. Instead of applying the standard machine learning algo-
rithm on selected features, a new pattern classification algorithm Uni-
versum SVMwas used here. The highest accuracy achieved with this new
algorithm was 96.51% and it was comparable to the best results obtained
in the past. The similar approach was also used by Kongmanee et al. and
the values of features were calculated using TF-IDF approach [29]. The
proposed model showed better performance with less computation time.

Another attempt of predicting TIS, where the context conditions are
in weak positions, was made by Husin et al. in 2011 [30]. The main focus
of this research effort was to optimize the supervised learning methods to
correctly predict TIS in a weak context with a minimal error of rates. The
Bayesian model developed in this work outperformed Tikole model by
increasing the sensitivity with 10% and specificity with 26%. The focus
of previous research efforts for TIS prediction was on mRNA or cDNA
sequences. Identifying DNA motifs in genomic sequences which corre-
spond to actual TISs are much more difficult than identifying them in
mRNA or cDNA sequences. Mora et al. developed a prediction tool to
predict TIS in genomic sequences of plants [31]. Using the information of
Arabidopsis thaliana (A. t.), the tool required only the genomic sequences,
not expressed sequence tags. The accuracy of this TIS prediction method
resulted in a sensitivity of 90.75% and specificity of 90.77%.

Although many computational methods were developed for TIS pre-
diction, none of them taken into account global or long-range sequence-
order effects of DNA due to which their prediction accuracy was limited.
To deal with this kind of effects, Chen et al. developed new software,
called iTIS-PseTNC by merging the physicochemical properties into the
pseudo trinucleotide composition (PseTNC) [32]. The predictor has
shown the overall success rate of 97% when its performance is evaluated
using the jackknife test. In a similar attempt, three sequence represen-
tation methods namely dinucleotide composition (DNC),
pseudo-dinucleotide composition (PseDNC) and trinucleotide composi-
tion (TNC) were used to obtain important sequence features in the form
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of numerical descriptors [33]. The evaluation results showed that this
combined feature extraction method with SVM outperformed existing
TIS prediction methods reported in the literature. Recently, several at-
tempts are made to predict TIS using ribosome profiling data in both
eukaryotes and prokaryotes [34, 35, 36, 37, 38, 39, 40].

Most of the methods developed in the past have focused on the pre-
diction of TISs in cDNA or mRNA sequences. A method which can predict
TISs in genomic sequences (i.e. uncharacterized DNA) can be used in the
annotation of new genomes. Therefore, in this study, a method is pro-
posed to predict TISs in both genomic as well as in cDNA sequences.

3. Materials and methods

To develop a TIS prediction system, first, the dataset is prepared then
the features are extracted from the acquired dataset. The methodology
used in the proposed method is given in Figure 1. The details of the
dataset and the features used are discussed in the below subsections.

3.1. Dataset

One of the important steps for training and testing the prediction
model is to prepare a suitable dataset. For this study, two different
datasets are prepared out of them one is used for training and the other is
used for the testing the proposed model. Both training and testing dataset
includes human genomic sequences. All these sequences are taken from
GenBank (a publically available database for nucleotide sequences which
is created and maintained by National Centre of Biotechnology Infor-
mation (NCBI)). The human genomic sequences are searched in GenBank
and their Fasta file is downloaded. Among all the sequences downloaded
from GenBank, the sequences having 150 bp upstream and downstream
the true TIS are considered only. In this way, 755 genomic sequences are
selected to form the training set. Then, more number of nucleotide se-
quences is downloaded from GenBank. After discarding the sequences
having length <150 bp surrounding true TIS, 52 sequences are selected
to form the testing set. In genomic sequences, false initiation sites are
more prevalent than true initiation sites. For this reason, experiments
were performed using a different number of randomly selected false
initiation sites and two datasets are formed namely balanced and un-
balanced. The balanced training dataset consists of 1510 sequences of
TISs. Out of these, 755 sequences were taken as true TIS sequences and an
equal number of sequences were taken as false TIS sequences. On the
other side, the unbalanced training dataset consists of 3020 sequences of
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TISs. Out of these, 755 sequences were taken as true TIS sequences and
2265 sequences were taken as false TIS sequences.

To further validate the performance of the proposed model on mRNA
or cDNA sequences a benchmark dataset is taken which was used by two
previous studies [32, 33]. The dataset consists of a total of 2318 se-
quences of TISs. Out of these, 1159 were true TIS sequences and 1159
were false TIS sequences. This dataset can be represented by the
following equation:

Sbench ¼ Sþ U S� (1)

where Sþ contains only true TIS sequences and S� includes only false TIS
sequences. The union of these two sets Sþ and S� is denoted using symbol
U. All these sequences were taken from the human genome and genome
coordinates of their initiation sites were obtained from the TIS database.
3.2. Feature extraction

The fundamental step in designing a predictor is feature extraction
from biological sequence so as to train and test the model in an effective
manner. One of the most important and difficult tasks in bioinformatics is
to extract useful features from the sequence with a feature vector. This is
because most of the existing classifiers like SVM and neural networks
make use of feature vector instead of taking the biological sequence
directly.

A number of useful features were reported by previous studies in the
sequence surrounding the ATG site for predicting TIS [14, 18, 22, 23, 25].
Most of these features were local due to their ability to take into account
the context of the sequences surrounding TIS. In this study, the local
feature set is extended by adding global features which are affected by
nucleotides up to 150bp from the ATG site. Some of these global features
were introduced byMora et al. in a study done in 2013 [31]. In this study,
the length of 150 bp upstream and 150 bp downstream the TIS are
considered. The same length of 300bp is considered in the proposed work
with ATG appearing at location 150–152 when counted in 50-30 direction.
The length of 300 bp is suitable for extracting global features from the
genomic sequences.

The features used in this study fit to several broad categories. The first
of these is based on successive k-mers of nucleotides of TIS surrounding
sequences and scores generated from position weight matrices (PWMs).
The second class of features was formed using statistics related to codon
biases. Information gain is also taken as a feature surrounding TIS se-
quences which form another important class of features used in this
study. Finally, a number of motifs are identified in TIS surrounding re-
gions by using Dragon Motif Finder, a tool that identifies groups of
similar polynucleotide patterns from a set of genomic sequences and
builds various families of short motifs from them [41]. Out of all the
features considered, a total of 53 were chosen to design the TIS predictor.
The important features employed in this work are described below:

� K-mer Frequencies: These represent the frequency of nucleotides and
dinucleotides in TIS sequences. Both the regions surrounding TIS sites
i.e. upstream and downstream are considered for generating these
features.

� Position Weight Matrices: Here, two features represented as Pscore and
Nscore are introduced, which are calculated in the following manner:
By taking the frequencies of 16 dinucleotides i.e. the combinations of
A, C, G, and T, two PWMs are created (one from positive samples and
another from negative samples) which results in generating two
features per sample. The values of Pscore and Nscore from these
PWMs are calculated as follows:
Let S (cj) is a sequence of length L and P (pij) is a PWM of L-1 columns
and 16 rows (r1, r2,............r16). The Nscore from negative data and
Pscore from positive data are computed using the equation given
below:
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�
P
�
Score¼

X16 XL�1

log2

�
Pij � cjcjþ1

�
(2)
N i¼1 j¼1 Pbi

Pij � cjcjþ1 ¼
�
Pij; cjcjþ1 ¼ ri
1; cjcjþ1 6¼ ri

where Pbi denotes the background probability from a uniform
distribution.

� Kozak's Feature: The Kozak's consensus sequence proposed in 1987 [1]
is utilized for this feature. The feature was based on the observation
that in TIS surrounding regions the probability of finding an A or G at
position -3 and a G þ4 at position is high. For each sequence in the
training set, it is checked that if the sample sequence matches with the
regular expression GCC [A/G]CCatgG then assign this binary feature
value of one. Otherwise, a value of zero is assigned to it. Though the
feature is important, it is not sufficiently discriminative alone to make
an accurate prediction of TIS. In addition to this binary feature, based
on Kozak consensus, the score based on this consensus is also used
which represents the number of positions that coincide with the
Kozak's consensus sequence. For the sample sequence GCCTCAatgG,
the score would be 5 as the nucleotides which are underlined are not
expected at their position as per Kozak's rule.

� ATG Frequencies: The following two features were derived from ATG
frequencies:
1. Total number of ATG nucleotide triplets in the entire sample

sequence
2. A number of ATG in-frame triplets of non-overlapping nucleotides

upstream i.e. the number of occurrences of ATG triplets at posi-
tions that are aligned inframe. The inframe triplets can appear only
downstream of the ATG signal, but to compute the value of this
feature, the upstream equivalents are taken as in-frame. With
reference to ATG signal starting at position 1, these would be the
occurrences of ATG triplets at positions -3, -6,-9 and so on. To-
wards the 50 end of the sample sequence counting the A in ATG as
position zero.

� Putative Coding Sequence: This binary feature designates whether the
sample sequence contains an in-frame stop codon (TGA, TAA or TAG)
or not. The main idea behind including this feature is that most of the
protein sequences are longer than 50 amino acids so it is very rare that
a positive sample would contain a stop codon in-frame downstream of
ATG. For a similar reason, the probability of finding stop codon in
negative samples is higher.

� G-quadruplets Frequencies: The probability of having G-quadruplets in
the downstream region for positive TIS sequences is high. This gen-
erates two features, one corresponds to the number of G-quadruplets
in-frame and the other corresponds to the number of G-quadruplets
out-frame both aligned to ATG segment.

� Information Gain: The analysis of the frequency of nucleotides at
specific locations in 300 long positive and negative sequences
was done and it was found that a higher level of entropy in
negative sequences is more common than in positive sequences. In
order to utilize this fact, the entropy is calculated for a given po-
sition P and nucleotide N in the training sequences by the following
formula:

E(P,N) ¼ -p/(p þ n) log2(p/(p þ n))-n/(n þ p)log2(n/(n þ p)) (3)

where p refers to the number of occurrences of nucleotide N at position P
in positive sequences and n refers to the number of occurrences of the
same nucleotide at the same position in negative sequences.

Another entropy measure at position P is also utilized in this work to
adjust the proportion of positive and negative sequences and it is
computed as follows:
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E(P) ¼ -p/(p þ n) log2(p/(p þ n))-n/(n þ p)log2(n/(n þ p)) (4)
where p and n represent the number of positive and negative sequences
in the training set.

The information gain for position P is defined by the following
equation:

Gain(P) ¼ E(P)-E(A,P)-E(C,P)-E(G,P)-E(T,P) (5)

The sum of information gain of complete sequence i.e. maximum
information gain is then taken as a feature for classification.

� C and G Frequencies: Another observation from the analysis was that
the frequency of C and G nucleotides is higher in the upstream region
of the positive sequences. In this study, C and G frequencies are taken
from twenty positions that have the highest information gain result-
ing in two features i.e. frequencies of C and G.

� In-frame Nucleotides Score: This category of features was inspired by
the position-specific k-gram approach. We first determined the in-
frame triplets and within each of these triplets, we computed the
number of As, Cs, Gs, and Ts that are present in each of three positions
within these triplets. After this, we sum up for each nucleotide the
number of its occurrences in positions 1, 2 and 3 within triplets which
are then taken as feature values. There are four nucleotides and three
positions so 12 features are formed in this way. Since these features
are calculated separately for upstream and downstream in-frames, the
total numbers of features generated from this process are 24. Out of
these, 14 features are considered for this study. For example, by
considering the sequence ATGattgcc we can identify two in-frame
triplets i.e. att and gcc as it is downstream and then count the num-
ber of occurrences of each of the nucleotides at three different posi-
tions. At position 1, we have 1 a, 0 c, 1 g, and 0 t. For position 2, we
have 0 a, 1 c, 0 g, 1 t. Similarly, for the last position, we have 0 a, 1 c,
0 g, 1 t. Thus, the feature value corresponding to the referenced
sequence would be 1,0,1,0,0,1,0,1,0,1,0,1.

� Motifs Present: The dragon motif finder tool is used to identify a
number of motif families of various lengths which are present in the
upstream, downstream and central regions surrounding the TIS site in
positive samples. The above-mentioned regions are defined as fol-
lows: the upstream region includes 150 nucleotides from the 50 end of
the sequence to the ATG triplet, the downstream region includes 147
nucleotides between ATG and 30 end of the sequence and the central
region includes 50 nucleotides upstream ATG and 50 nucleotides that
exist in the downstream of ATG. The accumulative count of the
presence of the sequences of these motif families is then taken as a
feature in the prediction model. In this work, 3 features are consid-
ered i.e. for upstream, downstream and central region respectively.

A total of 53 features are selected for the proposed model. The
procedure used to extract the above mentioned features is as follows:
Initially, the genomic sequences are searched for true TIS sites. Then,
the sequences surrounding true TIS sites having length 300bp are
extracted. Thereafter, for all these sequences, the features mentioned
above are computed one by one and stored in a feature metric of size
755 � 53. Here, 755 is the number of genomic sequences and 53 is the
number of features considered. The same procedure is applied again to
extract the features for false TIS sites. As mentioned earlier, the false TIS
sites are more prevalent than true TIS sites in genomic sequences.
Therefore, in this work false TIS sites are randomly selected to form
balanced and unbalanced dataset. The selected false TIS sites are then
used for extracting the above mentioned features one by one. Then, all
the features extracted using above procedure are simply added to form
the feature vector. The feature vector formed in this way is used further
to train the proposed model. In this work, SVM is used to train the
selected features and to predict TIS in genomic as well as in cDNA
sequences.
5

3.3. Support Vector Machine (SVM)

SVM is one of the most popular machine learning methods which was
introduced in 1995 by Vapnik and his group [42]. It is being used in
various domains of machine learning, bioinformatics and speech recog-
nition due to its powerful classification ability. Initially, SVM was
designed for binary class prediction but after that, it was enhanced for
multi-class prediction. In bioinformatics, classification and prediction
problems are very common and many of these problems contain noisy
data. SVM has been successfully used to handle such type of data.

The SVM aims to find the maximum margin between classes by
transforming the data into high dimensional feature space. The kernel
functions are used for mapping data into high dimensional space and for
learning non-linearly separable functions [43]. The various kernel
functions used in SVM are the linear kernel, polynomial kernel, radial
based function kernel, and sigmoid kernel. The prediction accuracy of
SVM is highly dependent on the kernel chosen and the value of its pa-
rameters. Researchers have proposed new kernels for solving specific
problems but most of the problems are still solved using radial based
function and polynomial kernel. In this work, SVM is designed using
LIBSVM package and the polynomial kernel is utilized for mapping. The
class label specifies a value yes for the true site and no for the false site.

4. Experimental setup and results

4.1. Performance evaluation measures

In this study Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), Area
Under the ROC Curve (AUC), F-measure and Mathew's correlation coef-
ficient (Mcc) have been used as performance measuring parameters. A
large value of these parameters indicates better performance of the
classification algorithm. The parameters are defined by the following
equations:

Snð%Þ¼ TP
TPþ FN

� 100 (6)

Spð%Þ¼ TN
TN þ FP

� 100 (7)

Accð%Þ¼ TPþ TN
TPþ FPþ FN þ TN

� 100 (8)

Mcc¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½TPþ FP�½TPþ FN�½TN þ FP�½TN þ FN�p (9)

F�measure ¼ 2�
TP

TPþFP � Sn
TP

TPþFP þ Sn
(10)

where TP, FP, FN, TN denotes the number of true positives, false posi-
tives, false negatives and true negatives respectively. In receiver oper-
ating characteristic (ROC) curve, sensitivity is plotted against 1-
specificity to see the performance of a binary classifier. The area under
the ROC curve (AUC) is generally used to recapitulate the performance in
a single number. The larger value of AUC indicates the accurate perfor-
mance of the model.
4.2. Results

The 10-fold cross-validation has been used to evaluate the perfor-
mance of the proposed method. For this, the dataset is divided into 10
equal sized parts (folds). Out of these, 9 of the folds are used as a training
set and the fold which is left used as a testing set. This process is repeated
10 times with different testing set each time and the average of 10 in-
dependent testing set is taken as evaluation results.



Table 1. Performance evaluation of the proposed method on the balanced and unbalanced training dataset.

Dataset Sn (%) Sp (%) Acc (%) AUC F-measure

Balanced Training 90.00 91.50 90.99 90.90 90.60

Unbalanced Training 82.10 95.80 92.35 88.90 84.20

Table 2. Performance evaluation of proposed method on unbalanced testing dataset.

Dataset Sn (%) Sp (%) Acc (%) AUC F-measure

Highly Unbalanced Testing 76.92 97.88 97.76 88.30 28.90

Table 3. Performance evaluation of the proposed method on benchmark dataset.

Dataset Sn (%) Sp (%) Acc (%) AUC F-measure Mcc

Benchmark 97.67 98.18 97.92 97.80 97.80 0.958
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Due to the existence of a large difference between true and false sites,
two datasets namely balanced (1:1) and unbalanced (1:3) are created
from the training set. The balanced dataset is created by taking all the
true sites and by randomly choosing an equal number of false sites. On
the other hand, for the unbalanced dataset, the number of false sites
taken is three times the number of true sites. Here, the unbalanced
dataset used for training is not critically imbalanced. In case of critically
imbalanced dataset the ratio can be 1: 100 to 1:1,000 or 1: 10,000. The
ratio between balanced and unbalanced class varies from one problem to
other. This unbalanced dataset is only considered to analyze the effect of
imbalance class on the evaluation parameters. The 10-fold cross-
validation has been run on both balanced and unbalanced dataset. The
independent dataset used for testing is critically imbalanced because the
ratio between balanced and unbalanced class is 1:167. This ratio is in
case of genomic sequences and it may vary for complete human
chromosomes.

As mentioned before, SVM is used in this study for classification and
for its implementation the LIBSVM package is used. In this work, C-SVC
with the polynomial kernel is employed for TIS prediction. First, the
experiments were performed using different values for cost and gamma
on the balanced dataset. The optimal values obtained for cost and gamma
are 2 and 1 respectively. Then, the experiments were performed using
different values for cost and gamma on the unbalanced dataset. The
values obtained for cost and gamma, in this case, are 4 and 0.5. The re-
sults of both balanced and unbalanced datasets are given in Table 1.

From the results given in Table 1, it is clear that the performance of
the proposed method is better on the balanced dataset as compared to the
unbalanced dataset. In case of balanced dataset, the values obtained for
Sn, Sp, Acc, AUC, and F-measure are 90%, 91.5%, 90.99%, 90.90 and
90.60 respectively. On the other hand for the unbalanced dataset, these
values are 82.1%, 95.8%, 92.35%, 88.9 and 84.2 respectively. The value
for Sp and Acc is higher in case of unbalanced training dataset. In un-
balanced training dataset, the number of false TIS sites is three times
more than true TIS sites. These results show that the prediction of false
sites dominates the prediction of true sites due to large number of false
sites. However, in genome annotation the aim is to obtain high value of
both sensitivity (Sn) and specificity (Sp) at the same time. Both these
values are higher in case of balanced dataset. Also, the value of accuracy
Table 4. Performance evaluation of existing methods on benchmark dataset.

Method Sn (%)

StartScan [25] 95.32

iTIS-PseTNC [32] 97.49

iTIS-PseKNC [33] 99.31

Proposed Method 97.67
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depends on both Sn and Sp and due to large value of Sp this value is
higher in case of unbalanced dataset. But the value of AUC and F-measure
is better in case of balanced dataset which demonstrates that the overall
performance is better in case of balanced dataset. It is evident from the
above discussion that the ratio between balanced and unbalanced dataset
largely affects the performance of TIS prediction model.

After this, the experiments are conducted on the independent test
dataset. The dataset contains a total of 8718 sites, out of these 52 are true
sites and 8666 are false sites. The testing dataset is highly unbalanced
due to the presence of a large number of false TIS sites. The ratio of true
and false TIS sites is 1:167 approximately. Also here, the experiments are
repeated using different values for cost and gamma. The optimal values
obtained for cost and gamma on the testing set are 1 and 0.5. The eval-
uation results of the testing set are given in Table 2.

From the results, it is evident that the performance of the proposed
method on testing set is not as good as it is for the training set and this is
due to its highly unbalanced composition. The values for Sn, Sp, Acc,
AUC, and F-measure, in this case, are 76.92%, 97.88%, 97.76%, 88.30
and 28.90 respectively.

An additional evaluation is performed on the benchmark dataset
consisting of cDNA sequences to analyze the consistency of the proposed
method for both cDNA as well as for genomic sequences. The dataset
contains an equal number of true and false splice sites. After performing
the experiments with different values of cost and gamma, the best results
were obtained with values 2 and 1 respectively. The results are sum-
marized in Table 3.

The proposed method has given promising results on the benchmark
dataset. The values for Sn, Sp, Acc, AUC, F-measure, andMcc, in this case,
are 97.67%, 98.18%, 97.92%, 97.80, 97.80 and 0.958 respectively. The
results of some existing methods for TIS prediction on benchmark dataset
is taken from one published paper [33]. All of the methods considered
here are designed to predict TIS in mRNA or cDNA sequences. The main
purpose of including these results is to compare the performance of the
proposed method with some popular and recent TIS prediction methods.
The methods taken for comparison are StartScan [25], iTIS-PseTNC [32]
and iTIS-PseKNC [33]. These results are shown in Table 4.

The prediction results of StartScan method were 95.32% of sensi-
tivity, 96.43% of specificity, 96.02% of accuracy and 0.921 of Mcc. The
Sp (%) Acc (%) Mcc

96.43 96.02 0.921

98.42 97.92 0.958

99.48 99.40 0.988

98.18 97.92 0.958
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prediction results of iTIS-PseTNC were 97.49% of sensitivity, 98.42% of
specificity, 97.92% of accuracy and 0.958 of Mcc. One method named
iTIS-PseKNC was proposed recently and its prediction results were
99.31.49% of sensitivity, 99.48% of specificity, 99.40% of accuracy and
0.988 of Mcc.

The overall performance of the proposedmodel suggests that it can be
used in the annotation of new genomes. The proposed model only needs
genomic sequences to make predictions not expressed sequences. The
results of the proposed model are promising in case of genomic se-
quences. Also, in case of cDNA sequence the model shown comparable
performance among recent TIS predictors. The accurate prediction of
TISs can help in finding new protein-coding genes and improve annota-
tion of new and existing genomes. Identifying TIS in genomic sequences
that corresponds to actual TIS signals is more challenging than identi-
fying them in cDNA/mRNA sequences and the proposed model addresses
this challenge.

5. Discussions and conclusion

Identifying TIS is important for successful genome annotation. In this
paper, a method is proposed for predicting TIS locations in human
genomic DNA sequences by taking into consideration both local and
global sequence features. The proposed method is based on SVM classi-
fier. The performance results of the proposed method suggest that it can
be used with good success for annotating TIS in eukaryotes. However, the
data used in this work is not precisely comparable with those provided by
previous studies [10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27,
28, 29, 30, 32, 33]. For this reason the results of these studies are
incomaparable as well. This is due to differing experimental designs as
most of these studies focused on cDNA sequences and some studies used
genomic sequences of other genomes like Arabidopsis thaliana, Vitis
vinifera, Populus trichocarpa etc. [31]. The comparison of proposed
method with these published studies is often not practical.

We are only able to utilize StartScan [25], iTIS-PseTNC [32] and
iTIS-PseKNC [33] to compare against the proposed method and that too
on benchmark dataset of cDNA sequences. Among all these methods,
StartScan is the only tool designed to work on genomic sequences. The
proposed method demonstrates improved prediction accuracy over the
reported TIS predictor which is achieved by 10-fold cross validation. The
comparison of proposed method with iTIS-PseTNC and iTIS-PseKNC also
helps in finding the best feature extraction technique when SVM is used
for classification. Most of the feature extraction techniques adopted by
previously published methods were suitable for TIS prediction in mRNA
or cDNA sequences only. The comparison demonstrates that the features
used in this study are appropriate for TIS prediction in both genomic as
well as in cDNA sequences. Although, the proposed method is trained for
human genomic sequences, it can be used to predict TIS in other
eukaryotic genomes as well. Also, it overcomes the weakness of current
TIS predictors to deal with high class imbalance between true and false
TISs.

We hope that the proposed method will find its use in annotation of
human genome and may provide insight to understand the biological
mechanism of translation initiation. On the other line, the proposed
method can be incorporated into existing gene prediction systems and
can play a complementary role to existing methods in this field. In the
future, it can also be used to predict TISs in newly sequenced genomes.
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