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ABSTRACT

As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation
in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a
potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive
association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a
summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which
commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on
understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed
understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.

1. Introduction

Within a vertebrate embryo, blood development occurs at different
anatomical sites through a series of transient events (reviewed in [1]).
In mouse and before the onset of circulation, a primitive wave of
megakaryocytes, macrophages and nucleated erythrocytes is generated
in the extra-embryonic yolk sac starting from E7.5 (16-18.5 days post
conception in human), and serves the initial oxygen and tissue re-
quirements in the embryo [2,3]. A second extra-embryonic wave, de-
finitive in nature, starting at E8.25 generates erythro-myeloid pro-
genitors (EMPs) and immune-restricted progenitors within a functional
vascular system [4,5]. The definitive route to a functional adult blood
system is initiated at E10.5 within the intra-embryonic aorta-gonads-
mesonephros (AGM) region [6-8]. This generates the first multipotent
haematopoietic stem cells (HSCs) that are defined by their capacity to
self-renew and provide multilineage haematopoietic reconstitution
upon direct transplantation. Following this, blood progenitors circulate
and seed the foetal liver from E11, where the system proliferates and
differentiates further to establish an adult-type haematopoietic hier-
archy apparent from E12.5 (Fig. 1), before colonising the bone marrow
from E18, as the main haematopoietic site throughout adulthood [1].

For haematopoiesis, HSCs must differentiate and enter the cell cycle
to begin the production of the blood lineages through the sequential
generation and lineage-restriction of intermediate progenitor cells that
possess multipotent and unipotent capacities. This hierarchical range of
lineage potency allows for the dynamic usage of HSCs and multipotent

progenitors (MPPs) for the maintenance and regeneration of blood
during native or stressed conditions. Although far from complete,
single-cell and lineage-tracing technologies are increasingly resolving
the cellular heterogeneity within the classically defined haematopoietic
stem and progenitor (HSPC) populations. The view that haematopoiesis
occurs within an absolute hierarchical framework governed by discrete
transitions through increasingly restricted progenitors is being chal-
lenged, towards a framework where there is a continuous landscape of
differentiation towards the terminal lineages that emerges from tran-
sitionary low-primed HSPC states (reviewed in [9]).

Given the requirement for dynamic functionality, chromatin is sui-
tably poised as an amenable platform to dictate blood function. At the
nucleosome — the basic subunit of chromatin — approximately 146 base
pairs of double-stranded DNA is wrapped around an octamer of histone
proteins. Given that nucleosomes are innately inhibitory to transcrip-
tion, nucleosomal modification or displacement is required to allow for
gene expression [10,11]. This can be achieved through the action of
multi-domain proteins that respond to intrinsic and extrinsic cellular
signals to modify histones or assemble in multi-protein complexes and
configure chromatin interactions and structure, thereby facilitating cell-
specific gene expression.

In mammals, a family of six methyltransferases that can mono-, di-
or tri-methylate histone 3 on lysine 4 (H3K4) through a highly con-
served catalytic Su(var)3-9, Ezh2, Trithorax (SET) domain have be-
come notable for their role in blood function, cancer and development
[12-14]. Known as the mixed-lineage leukaemia (MLL)/SET or
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Fig. 1. Developmental haematopoiesis.

Depicted are key stages in the development of the haematopoietic system during mouse embryogenesis and how they can be differentially targeted with tissue-
specific Cre recombinases. The first blood cells are generated in the E7.5 yolk sac in blood islands highlighted in red. A day later, the yolk sac gives rise to the first
definitive haematopoietic progenitors, erythro-myeloid progenitors (EMPs) and their counterparts, immune-restricted progenitors. The first adult-type haemato-
poietic stem cells (HSCs) appear in the intra-embryonic aorta-gonads-mesonephros region, located between the forelimbs and hindlimbs of the E10.5 embryo as
shown. HSC expansion and the establishment of an adult-type haematopoietic hierarchy occurs in the foetal liver (FL) from E12.5, thus making it the most important

haematopoietic organ from midgestation.

COMPASS family, the shared catalytic domain was first purified and
characterised as a multi-protein complex in yeast S. cerevisiae as SET1,
where it is entirely responsible for H3K4 methylation [15-19]. This
singular yeast enzyme shares homology with three proteins in D. mel-
anogaster known as SET1, Trithorax (Trx) and Trithorax-related (Trr),
also responsible for H3K4 methylation [20-25]. Seminal work in the fly
showed that Trx, a part of the Trithorax protein group (TrxG), main-
tains initiated patterns of HOX gene expression that function to specify
body segment identity [20,25-27]. TrxG antagonise the repressive ac-
tion of the Polycomb protein group (PcG), allowing both systems to
control these transcriptional states over successive cell divisions during
morphogenesis [20,28,29].

The six MLL/SET paralogs in vertebrates likely reflect a historical
duplication event of ancestral SET genes [30]. The family can be split
into pairs: MLL1/MLL2 (KMT2A/B), MLL3/MLL4 (KMT2C/D) and
SETD1A/SETD1B (KMT2F/G) based on sequence conservation, which
suggests that SET containing proteins have diverged to acquire further
and distinct functionalities beyond enzymatic function [14]. Much has
been well documented about the history of discovery, structure and
distinct functions of S. cerevisiae SET1, the D. melanogaster SET family
and the mammalian MLL/SET proteins in development and disease
[13,14,20,30]. This review will aim to describe how the MLL/SET fa-
mily contribute to haematopoiesis, whilst drawing relevant information
from studies of MLL1-associated leukaemia and development, where
much work has been conducted.

2. A short guide to the structures and interactions of the MLL/SET
family

The MLL/SET family commonly share a minimal core complex re-
quired for proper histone methyltransferase (HMT) activity that con-
sists of the WD-40 repeat-containing protein 5 (WRD5),
Retinoblastoma-binding protein 5 (RBBP5), absent, small, or homeotic-
like (Drosophila) (ASH2L) and Dumpy-30 (DPY30) (WRAD) [31-35].

By building on the repertoire of possible binding modes that recon-
stituted mammalian MLL/SET and yeast COMPASS utilise when
binding the nucleosome, high-resolution structural data are beginning
to demonstrate how the WRAD scaffold functions to coordinate the
activation of the SET domain [36-40]. Nucleosomal specificity and
catalytic activation is mediated through an initial contact with a
monoubiquitinated histone at lysine 120 (H2BK120ub1) which sets in
motion a cascade of events within the catalytic module and towards the
nucleosome, that allosterically prime the SET domain to sequester the
N-terminal tail of H3 for subsequent methylation [36,40-42]. Sub-
stitution of a series of residues from MLL1 that connects WRAD to the
MLL1 SET domain markedly increased MLL3 activity, by allowing the
MLL3 chimera to assume a catalytic conformation more like MLLI,
which negated the repressive action of WRD5 usually seen in the native
MLL3 complex [36]. The catalytic efficiency of both mammalian MLL1/
3 and yeast COMPASS are markedly reduced when binding an un-
modified nucleosome [36,41]. Thus, H2BK120ub1 indirectly simulates
enzymatic activity, and differences in inter-subunit structure contribute
to the varying affinities within the MLL/SET family for HMT potential.

Whilst they all share a relatively small SET domain, all MLL/SET
members contain unique combinations of structural domains, with
domain usage being closely shared between their respective pairs
(Fig. 2). The WRAD complex also serves as a platform for the recruit-
ment of interaction partners that further multi-domain functionality.
Trx-like MLL1 and MLL2 are both cleaved by Taspase 1 [43]. For MLL1,
this generates 320 kDa N-terminal and 180 kDa C-terminal fragments,
which non-covalently dimerise via FYRN and FYRC domains to form the
first hub for multi-protein complex assembly [44-47]. Both retain all
chromatin and protein interaction functionality at the N-terminal
fragment, and catalytic SET function at the C-terminus (Fig. 2). Further
contributors to MLL1 and MLL2 function are unique interactions with
menin and, specific to MLL1, the formation of a ternary complex with
the lens epithelium-derived growth factor (LEDGF) [48-53]. Further-
more, MLL1 co-localises with transcriptionally activating lysine
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Fig. 2. MLL/SET family domain structure and interactions.

This representation shows the basic domain structure and protein interactome for all six MLL/SET family proteins. At the C-terminus, all commonly share an
interaction with the WRAD scaffold that coordinates the activation of the catalytic SET domain, responsible for H3K4 methylation. Different domains between and
within MLL/SET pairs are responsible for protein and DNA interactions. The numbers indicate the length in amino acids of the protein sequences. AT-hooks,
adenosine-thymidine-hook; CXXC, Zinc finger-CXXC domain; FYRN/C, phenylalanine and tyrosine rich region (N- and C-terminal); HMG, high mobility group; RRM,
RNA recognition motive; PHD, plant homeodomain; SET, Su(var)3-9, Ezh2, Trithorax; CFP1, CXXC finger protein 1; LEDGF, lens epithelium-derived growth factor;
NCOAG®6, Nuclear Receptor Coactivator 6; PA1, PAXIP1-associated glutamate-rich protein 1; PTIP, PAX transcription activation domain interacting protein; NCOA6,
Nuclear receptor coactivator 6; UTX, lysine-specific demethylase 6A; WDR82, WD repeat-containing protein 82; WRAD, WD-40 repeat-containing protein 5, RBB5,
Retinoblastoma-binding protein5, ASH2L (Absent, Small, Or Homeotic)-Like (Drosophila) and DPY30, Dumpy-30.

acetyltransferases and PAF1, indicating an ability to associate with
different factors to target specific functions [54-58]. Thus far, only
MLL2 interacts with AKAP95 [59]. Trr-like MLL3 and MLL4 do not bind
to menin or LEDGF, but specifically interact with p53, UTX, PA1, PTIP
and NCOAG6 (Fig. 2) [60-64]. Structurally, both SETD1A and SETD1B
are highly similar and share the interaction partners CFP1 and WDR82
(Fig. 2) [65,66]. Both lack a CXXC domain found in MLL1 and MLL2,
and exploit its presence in CFP1 to target activity to gene promoters
[67,68]. WDR82 forms a link to the C-terminal phosphorylated serine 5
on RNA polymerase II at actively transcribing genes [69,70]. For fur-
ther reading there is extensive and excellent literature on the full
spectrum of shared and unique interacting partners for MLL/SET pro-
teins [14,71].

3. MLL1 is required for foetal and adult blood

The first indication that MLL1 may be required in haematopoiesis
came from its identification in chromosomal translocations of in-
tractable mixed-lineage infant leukaemias. Subsequent sequencing by
independent groups revealed that MLL1 was functionally orthologous
to Trx in Drosophila [27,72-74]. Given that it was known that Trx
functions as a homeotic gene regulator during embryonic development,
this set the framework for a series of mouse germline knockout ex-
periments aimed at understanding how MIl1 functions in mammalian
cells.

All Mll1 mutants presented with shifted anterior-posterior body
axes, owing to MIl1 failing to maintain initiated Hox gene expression
patterns from E8.5 [75,76]. This showed that MII1 is essential for
proper axial skeleton formation in the embryo and confirmed the
functional conservation between Mll1 and Trx. Haematopoietic defects

were most prominent in null embryos, which were lethal from E10.5 to
E16.5 owing to differences in gene targeting [76-79]. Homozygous
mutants were characterised by reduced cellularity in the foetal liver and
reduced myeloid colony forming units (CFU) derived from either the
yolk sac at E10.5 or foetal liver at E12.5. MllI1~/~ HSPCs still differ-
entiate but later as compared to wild-type cells, with no abnormalities
in lineage distribution across all genotypes. Thus, the reduction in total
output and delayed onset of proliferation indicates that Mll1 acts to
mediate the generation of HSPCs and not maturation. Gene expression
analyses showed that MII1 loss is linked to reduced expression of
Hoxa7/8/10 in the foetal liver [78]. Despite HSPC loss in Mli1 /=
embryos, those that do remain can support an expansion of Ter119+
erythroid cells between E13.5-E14.5 and, phenotypically, the embryos
appear to be able to support erythropoiesis [79]. In contrast, hetero-
zygosity causes a mild anaemia and shifts HOX gene expression pos-
teriorly as compared to total loss in Mll1~/~. Haploinsufficient em-
bryos also present with anaemia, thrombocytopenia and reduced
numbers of B-lymphocytes and CFU, indicating that MLL gene dosage is
critical to blood development and may also be relevant in MLL1-rear-
ranged leukaemia, as only one wild-type allele remains when the other
one is involved in a chromosomal translocation [76-78]. In line with
previous results, MIl1 null embryonic stem cells (ESCs) are unable to
generate lymphoid or myeloid progeny in the foetal liver of chimeric
mice [80]. Injection of dissociated E11.5 whole AGM tissue into sub-
lethally irradiated recipients revealed an absence of donor contribution
from MIl1~/~ embryos, and very low-level reconstitution from het-
erozygotes, confirming that MII1 is required for the first functional
HSCs [80]. These findings showed that Mll1 is essential for the speci-
fication of functional HSPCs during embryogenesis and that hap-
loinsufficiency has a pathological role.
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As opposed to global deletion, blood-specific inducible knockout
systems of MlI1 deletion were developed and revealed a loss of severity
in observed phenotype, likely as a consequence of losing intrinsic MII1
function alone [79,81,82]. During foetal development, constitutive
haematopoietic-specific Mll1 deletion with Vav-Cre showed no changes
in the HSPC numbers between E13.5 - E15.5 or differences in blood
lineage distribution, which contrasts with the germline knockouts
[79,82]. Yet, Mil1 =/~ foetal HSPCs survive to birth, which is shortly
followed by catastrophic bone marrow failure within 3 weeks [82].
Indeed, Vav-Cre-deleted Mil1 =/~ foetal HSPCs have functionally de-
fective CFU output and are unable to reconstitute irradiated adult re-
cipients in competitive transplants. Therefore, during embryonic de-
velopment, MII1 is intrinsically required for the specification of
transplantable HSCs and plays a part in HSPC differentiation (Table 1).
The loss of severity in the conditional knockouts could result from ex-
ternal support mechanisms that do not function in the germline mu-
tants.

During adult haematopoiesis, acute Mx1-Cre MII1 deletion fol-
lowing polyinosinic:polycytidylic acid administration leads to rapid
bone marrow failure within 3 weeks as demonstrated by an overall loss
in cellularity and widespread depletion of the HSPC compartments
[81]. Less penetrant Mli1 alleles in Vav-Cre mice showed that the B-cell
and not T-cell development was especially susceptible to the loss of
MIl1. All models demonstrated a specific loss in total number of HSPCs,
defective CFU output in both myeloid and lymphoid conditions, and a
total loss of engraftment capacity [79,81,82]. Mechanistically, Mll1 loss
caused a failure to maintain quiescence in HSCs, which depleted the
pool. Excision of MIl1 via retroviral induction of Cre in adult myeloid-
erythroid progenitors resulted in a two-fold reduction in CFU. Fur-
thermore, mutant myeloid-erythroid progenitors were not able to re-
enter the cell cycle following the re-addition of cytokines. Therefore,
MII1 is required during adult haematopoiesis to maintain functional
HSCs through quiescence and it sustains cytokine-mediated prolifera-
tion of at least myeloid-erythroid progenitors.

3.1. Mll1 and B-cell development

Initially, there were conflicting reports for the requirement of MlI1
in the B-cell compartment. Vav-Cre-deleted Mil1 ~/~ mice displayed
reductions in the numbers of B-cells, much more than T-cells [82].
However, as bone marrow failure was significant, this may have im-
paired B-cell output more than T-cell output. Contrastingly, CD19-Cre
mediated MIl1 deletion in adult mice showed no change in B-cell
numbers [81]. To circumvent the previously lethal bone marrow phe-
notype, Ragl-Cre (targeting B and T lymphocytes) mice were crossed
with MIl1 floxed animals, which mediates deletion from late gestation
to adulthood [83]. Significant losses in B-cell numbers were seen in
both foetal and adult mice, in the bone marrow, spleen, blood and
lymph nodes and highest between 2 and 3 weeks. T-cell numbers re-
mained unaffected. MII1 deficiency impaired B-cell differentiation at
the pre-BCR checkpoint, thus blocking the transition from pro-B to pre-
B resulting in reduced survival. This was attributed to attenuated RAS-
MEK-ERK signalling downstream of the pre-BCR causing reduced
ERK1/2 phosphorylation. Further implicated was a network of various
mRNAs and microRNAs, and no single candidate gene could explain the
observed phenotype, suggesting that these RNA candidates act between
MII1 and RAS-MEK-ERK signalling. Further insight into M1 function
during normal B-cell development has been derived from the analysis of
MLL-AF4 patient data, where an increased MLL1 and BCL6 expression
signature was identified [84]. Virally induced Cre-mediated deletion of
MIl1 in murine pre-B and mature splenic B-cells resulted in a loss of
Bcl6 upregulation from 2 weeks. Interestingly, doxycycline-mediated
induction of Bcl6 expression in murine pre-B cells increased Mll1 ex-
pression through an indirect mechanism, where Bcl6 represses the ex-
pression of Bmil, Ctbp2 and Kdm2B, which in turn are transcriptional
repressors of MII1. This suggests that Mll1 and Bcl6 are connected

BBA - Gene Regulatory Mechanisms 1863 (2020) 194579

through a positive feedback loop, which appears to be conserved in
leukaemic cells [84].

3.2. Mechanisms of MLL1 function

To understand how MIl1 operates in cells, the effect of deleting its
catalytic SET domain was explored. Homozygous deletion of the Mll1
SET domain reduces H3K4me at Hox loci resulting in their misexpres-
sion [85]. Despite this, mice survive embryogenesis through to adult-
hood with only mild skeletal defects suggesting non-SET dependant
functionality. Mishra et al. utilised this model in HSPCs to demonstrate
that the loss of HMT activity is compatible with normal haematopoiesis
in adult mice and is dispensable for MLL-AF9-mediated transformation,
one of the most common MLL1 leukaemogenic oncofusions. The loss of
SET or even MII1 in its entirety did not affect global H3K4me levels,
suggesting this histone modification is not required to maintain MII1
target gene expression. Instead, Mll1 recruits the acetyltransferase MOF
for H4K16ac at the transcription start site (TSS) for this purpose
[54,86]. Inhibition of Sirtl, which removes H4K16Ac, recused the loss
of transcription following Mil1 deletion at MII1 target genes, indicating
that it opposes MOF activity.

In adult mice, microarray analysis of CD48- Lin- Scal + Kit+ (LSK)
HSPCs 6 days following Mx1-Cre-mediated excision showed that MII1
operates within a molecular network that extends beyond the regula-
tion of Hox genes [87]. Following deletion using both Mx1-Cre and
estrogen receptor (ER) Cre inducible knockout models, five genes,
Mecom, Prm16, Hoxa9, Pbx1 and Eyal, were identified as consistently
downregulated and found to have MII1 bound at their TSS. Over-
expression of these targets in wild-type and Mil1 =/~ LSK cells showed
that no individual protein can restore normal expression levels of the
proposed network in Mil1 =/~ cells, with the exception of Evil which
increased Prdm16 and Hoxa9, thus, these proteins are likely to function
independently as downstream effectors of Mll1 function. Transplanta-
tion of Mil1 =/~ cells that overexpress Prdm16 and Hoxa9 showed that
these direct MII1 targets are the most capable at rescuing the loss of
HSC function by restraining proliferation. These results showed that
MIl1 does not require its intrinsic methyltransferase activity to perform
its functions, and that MLL1 fusions can operate through distinct me-
chanisms.

4. MLL2 in haematopoiesis

Despite significant homology, germline MII2 deletion does not
phenocopy what is seen with Mll1. In Mil2~/~ embryos, earlier growth
retardation becomes increasingly apparent from E6.5 with no obvious
cell type-specific defects by E9.5, and the embryos die by E10.5 through
widespread apoptosis [88]. The maintenance of the mesodermal marker
Mox1 and Hoxbl was dependant on MII2. Indeed other HoxB cluster
genes were deregulated, which differs from MIl1, which mediates the
HoxA and HoxC clusters. After E10.5, Rosa26-CreERT2-mediated MII2
loss had no effect on embryogenesis, including blood development;
however, MII2 does play a non-redundant role in oocytes as the main
H3K4me2/3 HMT and in male and female fertility [89,90].

During adulthood, the use of a Rosa-CreERT2 model showed that
MII2 is required to mediate proper cytokine signalling during macro-
phage function [91]. Following lipopolysaccharide (LPS) stimulation,
MII2~/~ macrophages display attenuated intracellular NF-kB signalling
because of reduced TIr4 activation. This was a direct consequence of
Pigp loss, which functions to add glycophosphatidylinositol to trans-
membrane proteins. This caused a loss of CD14 anchoring at the cellular
membrane, which functions with Tlr4 in response to LPS. At the Pigp
gene promoter and other direct M1I2 targets, deletion led to large in-
creases in H3K27me3 suggestive of a requirement for H3K4me3 in
opposing PcG repression. Alternatively, although some did, the ma-
jority of promoters that lost H3K4me3 experienced no changes in ex-
pression, suggesting that there are loci-dependent rules that dictate the
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relationship between M112 HMT or transcriptional effector activity and
function.

5. MLL3 and MLL4 in haematopoiesis and blood disease

MLL3 and MLL4 are predominantly associated with the deposition
of H3K4mel at enhancers [92-94].This functionality is consistent with
the sole Drosophila homolog Trr [24,95]. Trr loss does not result in
embryonic HOX gene misexpression as is seen with Trx (homolog of
MLL1/2), nor can Trr mutants influence Trx or PcG mutant homeotic
phenotypes [22]. Both MLL3 and MLL4 function to prime enhancers as
coactivators with the H3K27 acetyltransferases CREB-binding protein
(CBP)/p300 which are hallmarks of active enhancers, a function that is
likely independent of the SET domain [75,94,96-98]. Individually,
MlI3-null mice die shortly after birth with no obvious morphological
defects, whilst MI14-null embryos show lethality at approximately E9.5
[94]. Corresponding to a requirement for HMT activity during embry-
ogenesis, Ml14 SET deletion causes lethality at approximately E10.5
[99]. Both perform partially redundant functions during adipogenesis
and myogenesis with Mll4 acting as the major H3K4mel/2 methyl-
transferase [94,100,101].

In the context of leukaemia, it is known that MLL3 functions as a
tumour suppressor in 7q acute myeloid leukaemia (AML), and short
hairpin RNA (shRNA) knockdown or CRISPR-Cas9-mediated deletion of
MII3 generates a transplantable and fatal leukaemia in p53-null HSPCs
[102]. Competitive transplantation of p53-null shMLL3 HSPC increases
the frequency and number of LT-HSC, whilst decreasing downstream
multipotent progenitors (MPP), suggesting a role for Mll3 in mediating
differentiation from HSCs [102]. Concordantly, transplanted mice show
reduced white blood cell and platelet counts and a decreased con-
tribution from shMIlI3-targeted HSPC to common myeloid progenitor
(CMP) and granulocyte-monocyte progenitor (GMP), although not
megakaryocyte-erythrocyte (MEP). Thus, in this context MII3 imparts a
myeloid bias and is required for progenitor differentiation.

Within the HSPC compartment, Mx1-Cre-mediated Mll4 deletion
increases overall LSK numbers that correspond to expanded LT-HSC,
MEP, CMP and myeloid (CD11b+ Grl +) cells, but not myeloid-biased
HSCs, whilst reducing common lymphoid progenitors (CLP) and B-cell
numbers [103]. Despite increased colony counts in successive rounds of
myeloid CFU, competitive transplants using whole bone marrow or
sorted LSK showed significantly reduced reconstitution ability as com-
pared to wild-type mice. Non-competitive transplants allowed for
comparable repopulation, suggesting that M114 mediates the response to
stressed haematopoiesis [103]. Transcriptome profiling of Mil4~/~ LSK
showed that Mll4 mediates the response to oxidative stress, and null
cells were characterised by increased reactive oxygen species (ROS) and
DNA damage confirming the functional defect. Interestingly, in HSPCs,
Mll4 deletion prior to transformation or knockdown following retro-
viral MLL-AF9 transduction prevented leukaemogenesis. Transcrip-
tional and functional testing of Mil4~/~ MLL-AF9 cells showed that
increased ROS, DNA breakage and DNA-damage signalling was suffi-
cient to promote myeloid differentiation. Thus, Mll4 protects HSPCs
from DNA damage and oxidative stress, which allows for proper en-
forcement of a leukaemic differentiation blockade [103]. Abrogation of
the tumour-suppressive DNA-damage response through deletion of
genes such as Brcal, Atm and Atr are crucial to maintain the differ-
entiation block caused by MLL-AF9.

In normal B-cells, Mll4 functions non-redundantly as an MLL/SET
member that can positively influence all H3K4 methylation states, and
is notably associated with H3K4mel at enhancers and H3K4me3 at the
promoters of genes that control B-cell signalling pathways [104,105].
Loss of Mll4 causes a proliferative advantage that expands the germinal
centre (GC), which is enhanced by CD40 and IL4 stimulation and re-
presents the cell type that is causative to diffuse large B-cell lymphomas
(DLBCL) and follicular lymphomas (FL). Indeed, MLL4 loss of function
mutations are especially prevalent in DLBCLs (30%) and FLs (90%)
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[106,107]. Most are monoallelic and less commonly biallelic, and
generate a truncated MLL4 protein that is unable to methylate properly
through its SET domain [105]. Mll4 deletion induced in forming GC B-
cells (via Cy1-Cre) or earlier B-cell progenitors (CD19-Cre) only results
in significant expansion of the GC B-cell compartment when induced in
the latter, and shows that Mll4 loss must be an early event that allows
for the necessary chromatin and transcriptional remodelling events
needed for transformation [105]. Cyl-Cre-mediated Mll4 deletion
combined with vav promoter-driven Bcl2 expression recapitulated the
human disease phenotypes that occur in the progression from a FL to
DLBCL. Altogether, this shows that MLL4 functions as a tumour sup-
pressor in BLBCL and FL and constrains mature B-cell expansion.

6. SETD1A and SETD1B in haematopoiesis

Despite structural similarity, the mammalian orthologs of
Drosophila SET1, SETD1A and SETD1B, fulfil distinct functions during
embryogenesis [14]. Setdla null embryos do not gastrulate following
implantation and are unable to form ESCs [108]. Setd1b loss still per-
mits the formation of the three germ layers, but severe growth re-
tardation becomes apparent at E7.5 and embryos do not survive beyond
E11.5 [108]. Correspondingly, only Setd1b loss is compatible with ESC
proliferation. Interestingly, only Setdla knockout is causative to a
global loss of H3K4mel/2/3 in ESCs, suggesting that it is the major
MLL/SET methyltransferase.

Conditional loss of Setdla through Mx1-Cre in bone marrow cells
caused a loss in B-cell numbers that corresponded to a block in differ-
entiation from the pro-B to pre-B stage [109]. The block in B-cell de-
velopment was correlated to losses in H3K4me3 at B-cell master reg-
ulators such as Pax5 and the IgH locus. Setdla is also required for
erythropoiesis [110]. Cre-mediated deletion driven by transgene ex-
pression from the erythropoietin promoter reduced the numbers of
splenic erythroblasts (CD71"/Ter119") and caused a mild anaemia.
The differentiation defect was attributed to the loss of promoter
H3K4me3 and transcription at erythroid lineage genes such as KIf1 and
Gatal, which was caused by a loss of co-location of Usfl at promoter
loci, which may recruit Setdla and cooperate to establish accessibility
for gene expression. How these proteins locate their targets and co-
operate in this context requires further investigation.

More recently, detailed analyses have demonstrated the impact of
Setdla and Setd1b deletion on HSPCs during foetal and adult haema-
topoiesis [111,112]. Vav-Cre-mediated Setdla loss during foetal de-
velopment leads to death 7 to 20 days post-birth from a significantly
depleted LSK compartment, which must have failed to establish because
of Setdla deficiency in the first definitive HSCs that did not form or
expand sufficiently [111]. Directed differentiation of ESCs to haema-
topoietic cells is often used as a model system for embryonic haema-
topoiesis in which detailed molecular mechanisms can more easily be
dissected. Using this model system, it was demonstrated that a long
intergenic non-coding RNA recruits both Setdla and MII1 to the pro-
moters of the Hoxb1-6 cluster, and enhances differentiation to Flk1 ™
mesoderm and subsequent differentiation to haemangiogenic and
CD41" c-Kit* HSPCs [113]. In this study, Setdla was the major con-
tributor to HSPC differentiation as compared to Mll1. Also, Usfl can
recruit Setdla to the Hoxb4 promoter for H3K4me3 deposition which
strongly enhances haematopoietic differentiation from ESCs [114].
Both studies showed that Mll1 does not affect Hoxb4 expression, which
may underlie the difference in ESC fate induction. In contrast, to the
phenotype for Setdla deletion, Vav-Cre-specific Setd1b™/~ null mice
survive to a median of 25 weeks, suggesting that it is dispensable for the
specification of a foetal haematopoietic system [112]. However,
Setd1b~/~ null foetal HSPCs were not tested in any functional assays.

Two studies have explored the effect of Setdla and Setd1b deletion
on HSPC numbers during steady-state adult haematopoiesis, by trans-
planting recipient mice with HSPCs and subsequently knocking out the
target gene following a latency period. Both ubiquitous Rosa26-
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CreERT2 and SCL-CreERT (HSC-specific) gene deletion had no effect on
LT-HSC numbers [111]; however, Setdla-deleted HSCs showed an in-
ability to provide reconstitution in transplants and had reduced CFU
output, confirming an intrinsic defect in these cells. Furthermore, ST-
HSCs and MPPs are expanded, and significant depletion of downstream
CMP and MEPs was seen. The loss of MEP is consistent with Setdla
regulating proper erythroid differentiation [110]. CLP and lymphoid-
primed multipotent progenitor (LMPP) numbers or lymphoid potential
in CFU following Setdla depletion was not measured, leaving the
question of Setdla involvement in B-cell development unanswered
[109]. Forced proliferation in secondary transplants with mixed bone
marrow chimeras causes LT-HSC and broad HSPC depletion, showing
that these cells become unable to compete with wild-type HSCs under
replicative stress [111]. Given the significantly reduced LSK numbers in
Vav-Cre Setdla™/~ mice, this may be consistent with a failure to ex-
pand definitive HSCs as opposed to a failure to form HSCs entirely.

Similar to the eventually lethal Vav-Cre-induced adult phenotype,
ubiquitous Setdlb deletion through Rosa26-Cre-ERT2 causes multi-
lineage dysplasia, loss of normal bone marrow and splenic tissue ar-
chitecture associated with thrombo- and lymphocytopenia, and varying
levels of splenomegaly from an accumulation of extramedullary gran-
ulocytes and myeloid precursors. Transplantations of cells derived from
both Setd1b knockout systems massively expanded the MPP compart-
ment in the bone marrow, likely causing the accumulation of myeloid
cells. Competitive transplantation of total bone marrow derived from
Setd1b~/~ Rosa26-Cre-ERT2 showed no MPP expansion from null cells
but the LT-HSC, LMPP, and LK compartments were significantly de-
pleted and, correspondingly in the spleen, B-, T- and myeloid cell
contribution from null cells was significantly reduced [112]. This ne-
gated a role for Setd1b in maintaining MPP numbers, and allowed for
the demonstration of intrinsic Setd1b function that was masked by
compensatory stress-based mechanisms that arise during defective
haematopoiesis, imposed by a non-competitive setting.

Setdlb, in contrast, is required to maintain steady-state HSC and
progenitor populations in the adult, but is not required for foetal hae-
matopoiesis, highlighting the differences between foetal and adult
blood. Transcriptionally, the inability to sustain HSPC homeostasis is
associated with a loss of mitochondrial and metabolic associated pro-
cesses indicative of reduced cellular activity. Indeed, plating of
Setdlb~/~ c-Kit* HSPCs in myeloid-supportive CFU showed a pro-
gressive reduction in output proportional to an increase in the age of
Setd1b~/~ mice, suggestive of increasing stem cell exhaustion, and they
are unable to sustain the proliferative demand imposed by MLL-ENL.
Importantly, key markers across all haematopoietic lineages such as
Mpo, Klfl and I17r were downregulated within HSPCs showing that
Setd1b is required to maintain the expression of blood fate and lineage
programming factors. Thus, Setd1b is intrinsically required to regulate
HSPCs in the adult blood system, where it maintains proper myeloid
and lymphoid differentiation.

Overall, both Setdla and Setdlb are differentially required to
maintain HSPC populations, although not all compartments were
equally analysed (Table 2). Transcriptional analysis of bone marrow
derived from Rosa26-CreERT2 Setdla™/~ reconstituted chimeras
showed that LT-HSC gene signatures, and DNA damage recognition and
repair pathways were broadly downregulated [111]. Different func-
tional assays demonstrated a ROS-independent reduction in DNA da-
mage response and repair potential. H3K4me3 as shown by ChIP-qPCR
was reduced at target genes such as Fancd2 and Orc5, and in LSK, it is
the major contributor to all forms of H3K4 methylation, indicating a
direct role for H3K4 in mediating the knockout phenotype. This sug-
gests that Setdla functions to regulate LT-HSC identity and maintains
genomic integrity especially in response to stressed haematopoiesis;
however, whether this is direct transcriptional regulation and the role
that H3K4 plays in mediating this response is unclear. In support of a
role in directly regulating a transcriptional response, a SET-independent
non-catalytic domain within SETD1A can bind Cyclin K, which
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maintains a DNA damage response through CDK12/13 to ensure the
survival of MLL-AF9 AML cells [115]. Contrastingly, methylation
mediated by SETD1A is required during replicative stress to protect
replication forks by preventing RAD51 destabilisation, which protects
nascent DNA from uncontrolled resection by the helicase/nuclease
DNA-2 [116]. Ablation of H3K4 methylation allows for CHD4 locali-
sation, which promotes fork degradation and subsequent genome in-
stability. Indeed, the loss of SETD1A sensitises cells to genomic damage
in line with what was observed in SETD1A null HSPCs, although no role
could be implicated for Cyclin K in this process [111,115,116]. In ad-
dition, the ability of SETD1A-dependent methylation to control protein
localisation and interaction has been shown to regulate the cellular
localisation of YAP, which in turn promotes transcription factor asso-
ciation and downstream expression [117]. Therefore, SETD1A can
utilise different functionalities in response to different contexts.

7. Requirement of MLL/SET proteins in MLL-rearranged
leukaemia

Following MLL1 translocation, the C-terminal HMT SET domain is
lost and the N-terminal DNA-binding and protein interaction (discussed
above) domains become fused to a partner gene. Therefore, one wild-
type MLL1 allele is lost in patient blasts. In rare circumstances, the
second allele is also lost indicating a lack of selective pressure to retain
it in leukaemia [118-120]. There are mixed reports on how MLL1
contributes to MLL-rearranged leukaemia. Initially, the prevailing
thought was that MLL1 is always required [58,121,122]. Genetically
deleting MLL1 through Cre and shRNA targeting of the C-terminal wild-
type domain in primary murine or human MLL-AF9 cells impaired
leukaemic proliferation and viability which was coupled to the loss of
Ccna2 and Hoxa9 expression [121]. In mouse embryonic fibroblasts,
this was attributed to MLL-AF9 not being able to bind the Hoxa9 locus
in the absence of MII1. Specifically, protein domain mutagenesis re-
vealed a minimal set of recruitment requirements that are fulfilled by
MlI1 through the DNA binding CXXC domain that must interact with
the PAF1 elongation complex, and the PHD3 finger domain, which is
lost in MLL1 fusions and recognises H3K4me2/3 [58]. Reintroduction
of MII1 into null cells rescued MLL-AF9 recruitment to Hoxa9 through
pre-loading of Mll1 at the locus [58]. Small molecule inhibition of the
MLL1 and WRDS5 interaction crucial for MLL1 HMT activity impaired
the growth of transformed primary murine and MLL-rearranged cell
lines, but did not impair the proliferation of normal bone marrow
progenitors in vitro [122]. This suggests that MLL1 enzymatic activity is
required for the disease, which contrasts with previous reports that
show that embryonic development, adult haematopoiesis and MLL-AF9
transformation can proceed in the absence of the SET domain [85,86].
Furthermore, conditional MII1 deletion has demonstrated a need for
M1 during adult haematopoiesis [79,81,82]. In further support,
aberrantly increased expression of BCL6 correlates with increased MLL1
expression in both paediatric and adult MLL-rearranged B-cell acute
lymphoblastic leukaemia (B-ALL) and defines a specific subset of pa-
tients with poor clinical outcome [84]. Specific to this subset of B-ALL is
a dependency on BCL6, which can operate through a positive feedback
loop with MLL1 to upregulate BCL6 (discussed above) and repress the
proapoptotic BH3-only molecule BIM.

In opposition, the use of two independent conditional Mll1 knock-
outs and CRISPR-Cas9-mediated deletion showed that Mll1 loss did not
significantly affect the self-renewal, proliferation and growth of MLL-
AF9 leukaemic progenitors and generated a fatally transplantable dis-
ease with similar kinetics to control MII1 heterozygote cells (which
show no overt phenotype) [123]. However, unlike Mll1, inducible loss
of MII2 delays leukaemogenesis in vivo, and genetic deletion reduces
leukaemic cell proliferation and viability. Interestingly, this effect was
compounded when M1 and MII2 were deleted together, indicating a
synergistic contribution to leukaemic function. Transcriptionally, M112
directly targets Magohb and Pigp, which were downregulated following
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Table 2 (continued)

Adult haematopoiesis

Ottersbach

Role in

Effect on transcription

Methyltransferase activity

required for

Required for HSPC Required by MLL fusions

Effect on

Effect on steady-state
progenitor numbers?

Effect on HSC function?

Effect on steady-state

HSC numbers?

Gene

differentiation and
mature cells?

or other blood diseases?

expansion?

progenitor

haematopoiesis?

function and
expansion?

mitochondrial

No ChIP in null HSPCs

performed

exhaust by 4th round

exhaustion in
[112]

not affected (non-

null following TAM

induction post-

transplant [112] (non-

competitive)

following TAM
induction post-

processes [112]

myeloid CFU

[112]

competitive) [112]

transplant [112]

transplant [112]
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MI12 loss, with and without simultaneous MII1 deletion [88,91,124].
This combinatorial transcriptional response following MII1/2 loss
causes deregulation of NFkB, integrin 3-3 and IL3 signalling, all major
AML survival pathways and may represent critical vulnerabilities.
Globally, M112 loss alone was the sole contributor to reductions in
H3K4me2/3 at its targets, indicating that MII2 SET function can drive
leukaemic maintenance. Mechanistically, it is unclear how MlI1 co-
operates with MII2 from this study, and despite MlI2 not maintaining
functional HSPCs during normal haematopoiesis, in MLL-rearranged
leukaemia, the context allows for differential use of these proteins once
transformation has occurred.

In HSPCs, MII1 controls a specific transcriptional programme that is
further upregulated and essential for MLL1 fusions and includes Hoxa9,
Meis1, Eyal, Mecom, with the exception of Prdm16 [87]. As opposed to
deleting M1 following transformation, further work in the Ernst lab
looked at whether MII1 deletion would impair the ability of MLL-AF9 to
initiate a leukaemia [125]. MlI1 null HSPCs were transformed by MLL-
AF9 and displayed no differences in disease latency nor CFU pro-
liferation and growth. This suggests that MLL-AF9 is able to induce the
transcriptional programme needed for transformation that is lost when
MII1 is deleted. Only Mecom was not re-activated following MLL-AF9
induction, which suggests that MLL1 is required to prime the locus for
MLL-AF9 [125]. Thus, the catalytic C-terminus of MLL1 that is not
found in MLL1 fusions is not required for target gene activation in the
context of transformation [85,86]. Therefore, MLL1 fusions can bypass
MLL1 to activate genes for transformation, likely by aberrantly re-
cruiting transcriptional activators such as the super elongation complex
(SEC) [126].

The use of different inducible MII1 alleles and the resulting differ-
ences in severities could be causative to the confounding results seen.
Chen et al. make a robust case with different conditional strains to show
that Mll1 is not required to maintain or initiate MLL-rearranged leu-
kaemia. Even though MLL1 fusions can bypass MLL1, it does appear
that MLL1 can prime loci (such as Mecom or Hoxa9) for subsequent
activation by MLL1 fusions. However, the requirement for endogenous
MLL1 usage as extrapolated from patient-derived data is compelling. As
demonstrated for MLL-rearranged B-ALL, such usage may reflect on this
particular subset of leukaemia and/or its human origin. Further extra-
polation from patient-derived data and subsequent validation in re-
levant systems will be crucial to confirming how this is the case. It is
unclear whether the catalytic domain of MLL1 is required in leukaemia.
As MLL2 does not play a role as broad as MLL1 in haematopoiesis,
MLL2 targets are a promising class for therapeutic investigation
[88,91].

8. The impact of MLL1 fusions on haematopoietic development

Within infants (0-1 years), 80% of all B-ALL and 50% of AML cases
are caused by MLL1 rearrangements [127]. These MLL1 fusion events
occur in utero [128-130], and within each AML or ALL subclass, pa-
tients can be sub-categorised based on the fusion type. Interestingly,
fusions such as MLL-AF9 can generate infant or paediatric B-ALL de-
spite only causing AML in adults, and may be influenced by the foetal
microenvironment, which imparts a lymphoid bias [127,131]. As age
increases, MLL1 fusions become less prevalent as a subclass and in-
creasingly require additional activating mutations, further highlighting
the distinct nature of the infant disease [132,133]. Indeed, within in-
fants, MLL1 rearrangements present with an effective 100% con-
cordance rate between monochorionic twins, who rapidly develop overt
leukaemia, suggesting that the fusion is sufficient for complete trans-
formation [128,130,134].

Responsible for approximately 50% of infant B-ALL is the MLL-AF4
fusion. These patients are a particularly high-risk sub-group that retain
very poor outcomes despite substantial improvements in paediatric ALL
[135,136]. Patient blasts are arrested during early B-cell development
at the pro-B stage (CD10 negative) and frequently co-express myeloid
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markers, suggesting that the transformation event is likely to occur in
an early HSPC. This disease presents with some of the lowest somatic
mutational landscapes of all sequenced cancers, they are clonal and lack
significant heterogeneity with the exception of occasional activating
mutations in RAS or FLT3, which are usually subclonal [133,137].

These patients can be further subcategorised by a lack of HOXA
expression, which is linked to worse outcomes and increased relapse
rates [138,139]. A HOXA signature correlates to significantly better
outcomes and to expression of the reciprocal fusion AF4-MLL [137].
Specific to infant MLL-AF4 patients has been the detection of the fusion
in bone marrow mesenchymal stromal cells [140]. This suggests that
the fusion arises in a prehaematopoietic precursor and that its expres-
sion in non-blood cell types within the haematopoiesis-supportive
stroma may shape the development of both the normal and leukemic
haematopoietic compartments. This would impact the first definitive
HSCs that emerge from a subset of endothelial cells known as the
haemogenic endothelium, in a process termed endothelial-to-haema-
topoietic transition (EHT) (reviewed in [141]), and especially their
further expansion and differentiation in the foetal liver.

To derive further insight into how MLL-AF4 may affect foetal hae-
matopoiesis, MLL-AF4 has been expressed in cord blood (CB)-derived
CD34+ cells and in ESCs. Indeed, viral induction of MLL-AF4 expres-
sion in human ESCs initially promotes the emergence of haema-
toendothelial precursors (CD31+ CD34+ CD45-) (HEPs), but then
skews the balance of commitment towards endothelial fate, impairing
haematopoietic output [142]. In this study, transformation was not
achieved despite the expression of canonical MLL1 fusion oncodrivers
HOXA9 and MEIS1, suggesting this is not the stage for transformation
and that the in vitro ESC system is unable to recapitulate the foetal
haematopoietic events during which transformation occurs. Upregula-
tion of genes within the HOXA (9,13) and B (2,3,4,5,6) clusters was
seen, and may play a role in regulating cell fate during the mesodermal
to haematopoietic transition, which may have a functional impact on
later leukaemia development. Furthermore, recent data from the Me-
nendez lab using human pluripotent cells, showed that expression of
both MLL-AF4 and its reciprocal fusion, AF4-MLL, strongly enhanced
the specification of haemogenic- and endothelial-primed HEPs [143].
Thus, expression of AF4-MLL balances out the endothelial bias seen
when MLL-AF4 is expressed alone, suggesting that both can cooperate
during early blood specification to modulate both endothelial and
haematopoietic cell fate. Significantly, 50% of infant MLL-AF4 patients
express AF4-MLL, which is associated with activation of the HOXA
cluster [137]. Molecularly, why this is the case is still an open question.
The current thought is that AF4-MLL can disrupt transcriptional con-
trol, in part by interacting with the SEC through AF4, and create a more
permissive environment to transcription, thereby increasing cellular
plasticity and response to treatment. [144-146].

The use of CD34+ human CB has been more instructive with re-
spect to leukaemic initiation. Initial attempts using human MLL-AF4 or
in combination with activating mutations such as KRAS or FLT3,
showed increased proliferative capacity and engraftment potential of
transduced cells, but did not generate leukaemia [147-149]. Lin et al.
showed that by replacing the human AF4 construct with the murine
equivalent, a much higher retroviral titer was produced and suggested
that human AF4 may have impeded previous studies [150]. Transduc-
tion of this hybrid in murine HSPCs generated an AML, whereas in
human CB a pro-B ALL developed that expressed myeloid markers in
xenografts. The pro-B phenotype lacked HOXA9 expression, which is
consistent with a lack of AF4-MLL expression, and expressed RUNX1,
which is correlated to poorer clinical outcome in adults [137,146].
Transduction of human CB with MLL-AF9 preferentially generated an
AML and ALL; however, the differentiation arrest occurred at the later
pre-B stage. This has been the most representative pro-B ALL model
generated thus far for MLL-AF4. Accordingly, retroviral transduction
and genetic editing of human CB with MLL-ENL and MLL-AF9 produces
ALL, AML and mixed-lineage leukaemias with the latter fusion and
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entirely ALLs with MLL-ENL in xenografts, recapitulating the pheno-
types of human disease for these two fusions [151,152].

Whilst there will be conservation in the mechanisms derived from
CB or ESC towards the molecular processing that is directed when the
fusion occurs in vivo, modelling how MLL fusions impact foetal hae-
matopoiesis with relevant timing is essential to uncovering the char-
acteristics of the infant disease. Indeed, foetal HSPCs possess distinct
molecular characteristics that are the result of foetal-specific intrinsic
and extrinsic factors, and the cell of origin for the disease is known to be
a critical determinant towards the resulting pathology
[131,144,153-158]. Accordingly, identical knock-in models of adult
MLL-AF9 and MLL-ENL leukaemia have shown that disease originates
more efficiently from different HSPC populations when comparing both
fusions, and that MLL-AF9 expression in LT-HSC causes a more ag-
gressive leukaemia as compared to disease derived from GMP
[157,159]. Important for infant leukaemia is to understand the con-
tribution of developmental processes that shape the response to the
leukaemic fusion, and may be especially important for MLL-AF4 which
still displays dismal outcomes for patients. For example, the neonatal
microenvironment can potentiate AMLs generated by retroviral trans-
duction of murine HSPC with MLL-AF9 or MLL-ENL for mixed-lineage
leukaemia output [131]. Furthermore, a MLL-ENL knock-in model
showed that leukaemia initiates more efficiently from foetal and neo-
natal cells as compared to their adult counterparts, owing to younger
HSPCs being more competent at activating the required oncogenic
programme [160].

Barrett and Malouf et al. combined the use of a conditional MLL-AF4
invertor mouse with the Vav-Cre or VEC-Cre lines to target MLL-AF4
expression to the foetal blood system. The latter Cre strain targets the
haemogenic endothelium, which is the precursor to all definitive blood
[161]. Functional testing of total AGM and foetal liver-derived cells at
E11, E12 and E14 in lymphoid CFU identified a window between E12-
E14 that causes a significant increase in total B-lymphoid output
(B220+ CD19+) relative to all other timepoints during blood devel-
opment. The colonies were also visibly larger, suggesting an increased
proliferative capacity relative to controls. E11 AGM-derived HSCs were
unable to match control reconstitution levels in transplants further re-
inforcing this window. E12-14 HSCs showed the highest levels of re-
population, which were carried through to secondary transplants in-
dicating enhanced self-renewal capacity through MLL-AF4. Indeed, at
this stage the haematopoietic system undergoes substantial expansion
and differentiation, which may provide the required context that MLL
fusions can exploit during embryogenesis for leukaemia [162]. Sorting
of HSC/MPP and LMPP revealed that it was the LMPP fraction that was
the major contributor to B-lymphoid colony output, which had a pro-B
phenotype, reflecting the developmental stage of B-cell arrest in ALL
patients. Transcriptionally, MLL-AF4-expressing LMPP display higher
levels of canonical MLL fusion oncoprotein targets such as MeisI and
Hoxa9, B-cell lineage transcription factors Ikaros and E2a, and potential
infant MLL-AF4 molecular drug targets Hmga2 and Lmo2 as compared
to MLL-AF4-expressing HSC/MPP [163]. Wild-type LMPP innately ex-
press higher levels of B-cell lineage genes II7r and Pax5, and higher
levels of MLL-AF4 direct targets such as Bcl2 and RunxI which are
further upregulated in LMPP following MLL-AF4 induction. Thus, LMPP
have the appropriate molecular characteristics to propagate MIl-AF4
pro-B ALL in this pre-leukaemic model, suggesting that it can act as the
cell of origin for the disease. The observed B-lymphoid bias translated
into a transplantable long-latency B-cell lymphoma not seen in infant
patients, which have an acute nature. Despite this, this model allowed
for the description of the necessary pre-leukaemic events needed to
initiate an infant MLL-AF4 B-ALL and demonstrated how MLL-AF4 ex-
pression subverts normal haematopoietic development. Certainly,
faithful models of B-ALL in mice have been difficult to generate, most
likely due to species differences in blood function, which commonly
manifest themselves through a myeloid bias and may be imposed by the
murine microenvironment.
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Recent work in human tissue has demonstrated the existence of a
foetal-specific CD10 negative PreProB-progenitor that demarcates the
first committed transition towards the B-cell lineage [164]. This pro-
genitor only displays B-lymphoid and not myeloid output in vitro that is
coupled with an upregulation of B-cell genes as it differentiates into
downstream pro-B cells; however, it retains stem cell, myeloid and T-
cell associated gene signatures, albeit at lower levels than multilineage
upstream LMPP or myeloid progenitors. At the level of chromatin,
PreProB cells retain accessibility at B-cell genes and in concordance
with RNA expression, chromatin is accessible at foetal stem cell
(LIN28B) and myeloid (MPO) genes. Interestingly, the PreProB pool
undergoes substantial proliferation from 10 post-conceptional weeks
(pcw), peaking at 11 in the foetal bone marrow and continues to be
significantly high by 21 pcw despite downstream pro-B and B-cell
progeny expansion. Thus, despite unilineage output in assays, this po-
pulation appears to have a transitionary transcriptional and chromatin
status. A high proliferative output in combination with a VDJ re-ar-
rangement (D-JH) and transcriptional status that is similar to that of
infant MLL-AF4 blasts, suggests that this CD10- PreProB progenitor
could be a cell of origin candidate for the infant disease. It will be in-
teresting to see how this committed progenitor responds to MLL-AF4,
and whether innate priming with stem cell and myeloid genes (as seen
with the LMPP) could be informative to any lineage switching me-
chanisms, which occur frequently at relapse [165,166].

9. Concluding remarks

It is increasingly clear that the MLL/SET family are essential to
foetal, adult and diseased blood function and distinctly contribute to
gene expression with cell type-specific behaviour. All commonly share a
SET domain and have homologous architecture especially in their re-
spective pairs, and yet can display distinct context-dependent functions.
Thus far, specificity for each MLL/SET is not easily explained by the
different ways that each protein can be recruited to chromatin, and it is
likely that further factors play a part [14,167]. As MLL/SET proteins
individually possess many domains and form multi-protein scaffolds for
function, this is consistent with the notion that chromatin proteins lo-
cate their targets through the combinatorial action of multivalent in-
teractions which come together to stabilise the final complex
[14,58,68,168]. One aspect that may dictate MLL/SET usage is stoi-
chiometric difference, which implies that their expression differs be-
tween developmental stages and tissue cell types [66].

Internally, small differences in domain structure are functionally
important. For example, MLL2 cannot interact with LEDGF as it lacks a
short series of 41 residues that are required to mediate a bridge be-
tween menin and LEDGF as seen with MLL1 (Fig. 2) [51]. Furthermore,
these differences manifest as differing affinities towards the WRAD
scaffold, which directly influence methylation capacity [35,36]. Pre-
existing histone H2BK120ub1 is a feature of MLL/SET and COMPASS
activation, which is also shared with the histone 3 lysine 79 methyl-
transferase DOT1L [36,41,169]. In MLL-rearranged leukaemia, aber-
rant recruitment of DOT1L by fusions also requires the action of the
ubiquitination machinery for DOT1L to access chromatin, where it
operates as an essential component of MLL fusion target gene activation
through the deposition of its gene-activating H3K79 methylation mark
[170-172]. Since DOT1L also plays a role in normal foetal and adult
haematopoiesis, further structural and biochemical studies will be
crucial to understand how all of these interactors and their cross-talk
come to coordinate MLL/SET functional capacities in health and disease
[169,173-175].

The role that these proteins play in coordinating cellular states in
HSPCs is not always coupled directly to methylation action. For ex-
ample, haematopoiesis and MLL-rearranged leukaemogenesis can pro-
ceed normally in the absence of the Mll1 SET domain, where Mll1 re-
cruits MOF for H4K16ac at target genes [54,86]. Interestingly, Ml14 also
co-locates with MOF and H4K16ac at a subset of its target sites [176].
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Mechanistically, Mll4 can recognise H4K16ac via its PHD6 finger do-
main, and MI13 via PHD7. As discussed above, SETD1A can function in
distinct contexts to directly recruit co-factors, or through methylation,
mediate protein access and activity with functional consequences.
Further work that explores domain functionality in haematopoietic
contexts will crystallise how much functionality is conserved across the
MLL/SET family and when HMT activity is applicable.

MLL/SET can control key HSPC programmes such as self-renewal
for HSC function (MLL1), the insurance of genomic integrity in pro-
liferating HSCs (SETD1A), mediation of differentiation from HSC to
downstream progenitors (MLL3) (Tables 1, 2). As discussed above,
MLL1 fusions are able to skew the balance between haematopoietic and
endothelial cell fate commitment, and both Setdla and MII1 have been
shown to play in role in haematopoietic specification from ESC
[113,114,177]. How MLL/SET proteins function during the establish-
ment of the haemogenic endothelium and/or early primitive haema-
topoietic progenitors remains underexplored (Table 1). Given the multi-
domain nature of MLL/SET and that foetal blood cells are distinct from
their adult counterparts, it is entirely possible that new molecular
mechanisms could be found [154,156]. As noted in Table 1, there is
much to learn about the developmental phenotypes of the MLL/SET
family.

Author statement

Eric Antunes: Writing - Original draft preparation. Katrin
Ottersbach: Writing - Reviewing and Editing.

Declaration of competing interest

The authors have no conflicts of interest to declare.
Acknowledgments

Work in the authors' laboratory is supported by grants from Cancer
Research UK, Kay Kendall Leukaemia Fund, the Wellcome Trust and
Blood Cancer UK.

References

[1] E. Dzierzak, A. Bigas, Blood development: hematopoietic stem cell dependence
and Independence, Cell Stem Cell 22 (5) (2018) 639-651.

J. Palis, et al., Development of erythroid and myeloid progenitors in the yolk sac
and embryo proper of the mouse, Development 126 (22) (1999) 5073-5084.

J. Tober, et al., The megakaryocyte lineage originates from hemangioblast pre-
cursors and is an integral component both of primitive and of definitive hema-
topoiesis, Blood 109 (4) (2007) 1433-1441.

J. Palis, et al., Spatial and temporal emergence of high proliferative potential
hematopoietic precursors during murine embryogenesis, Proc. Natl. Acad. Sci. U.
S. A. 98 (8) (2001) 4528-4533.

C. Boiers, et al., Lymphomyeloid contribution of an immune-restricted progenitor
emerging prior to definitive hematopoietic stem cells, Cell Stem Cell 13 (5) (2013)
535-548.

A.M. Muller, et al., Development of hematopoietic stem cell activity in the mouse
embryo, Immunity 1 (4) (1994) 291-301.

A. Medvinsky, E. Dzierzak, Definitive hematopoiesis is autonomously initiated by
the AGM region, Cell 86 (6) (1996) 897-906.

M.F. de Bruijn, et al., Definitive hematopoietic stem cells first develop within the
major arterial regions of the mouse embryo, EMBO J. 19 (11) (2000) 2465-2474.
E. Laurenti, B. Gottgens, From haematopoietic stem cells to complex differentia-
tion landscapes, Nature 553 (7689) (2018) 418-426.

J.A. Knezetic, D.S. Luse, The presence of nucleosomes on a DNA template prevents
initiation by RNA polymerase II in vitro, Cell 45 (1) (1986) 95-104.

G. Almouzni, A.P. Wolffe, Replication-coupled chromatin assembly is required for
the repression of basal transcription in vivo, Genes Dev. 7 (10) (1993) 2033-2047.
W. Yang, P. Ernst, SET/MLL family proteins in hematopoiesis and leukemia, Int. J.
Hematol. 105 (1) (2017) 7-16.

J.J. Meeks, A. Shilatifard, Multiple roles for the MLL/COMPASS family in the
epigenetic regulation of gene expression and in Cancer, Annu. Rev. Cancer Biol. 1
(1) (2017) 425-446.

N.T. Crump, T.A. Milne, Why are so many MLL lysine methyltransferases required
for normal mammalian development? Cell. Mol. Life Sci. 76 (15) (2019)
2885-2898.

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[91
[10]
[11]
[12]

[13]

[14]


http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0005
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0005
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0010
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0010
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0015
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0015
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0015
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0020
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0020
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0020
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0025
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0025
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0025
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0030
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0030
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0035
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0035
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0040
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0040
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0045
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0045
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0050
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0050
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0055
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0055
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0060
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0060
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0065
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0065
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0065
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0070
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0070
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0070

E.T.B. Antunes and K. Ottersbach

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

S.D. Briggs, et al., Histone H3 lysine 4 methylation is mediated by Setl and re-
quired for cell growth and rDNA silencing in Saccharomyces cerevisiae, Genes
Dev. 15 (24) (2001) 3286-3295.

A. Roguev, et al., The Saccharomyces cerevisiae Setl complex includes an Ash2
homologue and methylates histone 3 lysine 4, EMBO J. 20 (24) (2001)
7137-7148.

P.L. Nagy, et al., A trithorax-group complex purified from Saccharomyces cerevisiae
is required for methylation of histone H3, Proc. Natl. Acad. Sci. 99 (1) (2002)
90-94.

H. Santos-Rosa, et al., Active genes are tri-methylated at K4 of histone H3, Nature
419 (6905) (2002) 407-411.

T. Miller, et al., COMPASS: a complex of proteins associated with a trithorax-
related SET domain protein, Proc. Natl. Acad. Sci. U. S. A. 98 (23) (2001)
12902-12907.

J.A. Kassis, J.A. Kennison, J.W. Tamkun, Polycomb and Trithorax group genes in
Drosophila, Genetics 206 (4) (2017) 1699-1725.

Y. Sedkov, et al., Methylation at lysine 4 of histone H3 in ecdysone-dependent
development of Drosophila, Nature 426 (6962) (2003) 78-83.

Y. Sedkov, et al., Molecular genetic analysis of the Drosophila trithorax-related
gene which encodes a novel SET domain protein, Mech. Dev. 82 (1-2) (1999)
171-179.

G. Hallson, et al., dSet1 is the main H3K4 di- and tri-methyltransferase throughout
Drosophila development, Genetics 190 (1) (2012) 91-100.

M.B. Ardehali, et al., Drosophila Set1 is the major histone H3 lysine 4 trimethyl-
transferase with role in transcription, EMBO J. 30 (14) (2011) 2817-2828.

P. Ingham, R. Whittle, Trithorax: a new homoeotic mutation of Drosophila mel-
anogaster causing transformations of abdominal and thoracic imaginal segments,
Mol. Gen. Genet. MGG 179 (3) (1980) 607-614.

E.B. Lewis, A gene complex controlling segmentation in Drosophila, Nature 276
(5688) (1978) 565-570.

A.M. Mazo, et al., The trithorax gene, a trans-acting regulator of the bithorax
complex in Drosophila, encodes a protein with zinc-binding domains, Proc. Natl.
Acad. Sci. U. S. A. 87 (6) (1990) 2112-2116.

G. Struhl, M. Akam, Altered distributions of Ultrabithorax transcripts in extra sex
combs mutant embryos of Drosophila, EMBO J. 4 (12) (1985) 3259-3264.

P.A. Steffen, L. Ringrose, What are memories made of? How Polycomb and
Trithorax proteins mediate epigenetic memory, Nat. Rev. Mol. Cell Biol. 15 (5)
(2014) 340-356.

A. Piunti, A. Shilatifard, Epigenetic balance of gene expression by Polycomb and
COMPASS families, Science 352 (6290) (2016) (p. aad9780).

A.J. Ruthenburg, C.D. Allis, J. Wysocka, Methylation of lysine 4 on histone H3:
intricacy of writing and reading a single epigenetic mark, Mol. Cell 25 (1) (2007)
15-30.

Y. Dou, et al., Regulation of MLL1 H3K4 methyltransferase activity by its core
components, Nat. Struct. Mol. Biol. 13 (8) (2006) 713-719.

A. Patel, et al., On the mechanism of multiple lysine methylation by the human
mixed lineage leukemia protein-1 (MLL1) core complex, J. Biol. Chem. 284 (36)
(2009) 24242-24256.

Y. Zhang, et al., Evolving catalytic properties of the MLL family SET domain,
Structure 23 (10) (2015) 1921-1933.

S.A. Shinsky, et al., Biochemical reconstitution and phylogenetic comparison of
human SET1 family core complexes involved in histone methylation, J. Biol.
Chem. 290 (10) (2015) 6361-6375.

H. Xue, et al., Structural basis of nucleosome recognition and modification by MLL
methyltransferases, Nature 573 (7774) (2019) 445-449.

Y. Li, et al., Structural basis for activity regulation of MLL family methyl-
transferases, Nature 530 (7591) (2016) 447-452.

Q. Qu, et al., Structure and conformational dynamics of a COMPASS histone H3K4
methyltransferase complex, Cell 174 (5) (2018) (p. 1117-1126.e12).

P.L. Hsu, et al., Crystal structure of the COMPASS H3K4 methyltransferase cata-
lytic module, Cell 174 (5) (2018) (p. 1106-1116.€9).

J. Kim, et al., The n-SET domain of Setl regulates H2B ubiquitylation-dependent
H3K4 methylation, Mol. Cell 49 (6) (2013) 1121-1133.

P.L. Hsu, et al., Structural basis of H2B Ubiquitination-dependent H3K4 methy-
lation by COMPASS, Mol. Cell 76 (5) (2019) 712-723.e4.

Z.-W. Sun, C.D. Allis, Ubiquitination of histone H2B regulates H3 methylation and
gene silencing in yeast, Nature 418 (6893) (2002) 104-108.

S. Takeda, et al., Proteolysis of MLL family proteins is essential for taspasel-
orchestrated cell cycle progression, Genes Dev. 20 (17) (2006) 2397-2409.

T. Nakamura, et al., ALL-1 is a histone methyltransferase that assembles a su-
percomplex of proteins involved in transcriptional regulation, Mol. Cell 10 (5)
(2002) 1119-1128.

A. Yokoyama, et al., Leukemia proto-oncoprotein MLL is proteolytically processed
into 2 fragments with opposite transcriptional properties, Blood 100 (10) (2002)
3710-3718.

J.J.D. Hsieh, E.H.Y. Cheng, S.J. Korsmeyer, Taspasel: a threonine aspartase re-
quired for cleavage of MLL and proper HOX gene expression, Cell 115 (3) (2003)
293-303.

J.J.-D. Hsieh, et al., Proteolytic cleavage of MLL generates a complex of N- and C-
terminal fragments that confers protein stability and subnuclear localization, Mol.
Cell. Biol. 23 (1) (2003) 186-194.

A. Yokoyama, et al., Leukemia proto-oncoprotein MLL forms a SET1-like histone
methyltransferase complex with menin to regulate Hox gene expression, Mol. Cell.
Biol. 24 (13) (2004) 5639.

T.A. Milne, et al., Menin and MLL cooperatively regulate expression of cyclin-
dependent kinase inhibitors, Proc. Natl. Acad. Sci. U. S. A. 102 (3) (2005)

12

[50]
[51]
[52]
[53]

[54]

[55]

[56]
[57]
[58]
[59]
[60]
[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]

[85]

BBA - Gene Regulatory Mechanisms 1863 (2020) 194579

749-754.

A. Yokoyama, et al., The menin tumor suppressor protein is an essential oncogenic
cofactor for MLL-associated leukemogenesis, Cell 123 (2) (2005) 207-218.

A. Yokoyama, M.L. Cleary, Menin critically links MLL proteins with LEDGF on
cancer-associated target genes, Cancer Cell 14 (1) (2008) 36-46.

M.J. Murai, et al., Crystal structure of menin reveals binding site for mixed lineage
leukemia (MLL) protein, J. Biol. Chem. 286 (36) (2011) 31742-31748.

J. Huang, et al., The same pocket in menin binds both MLL and JUND but has
opposite effects on transcription, Nature 482 (7386) (2012) 542-546.

Y. Dou, et al., Physical association and coordinate function of the H3 K4 me-
thyltransferase MLL1 and the H4 K16 acetyltransferase MOF, Cell 121 (6) (2005)
873-885.

J. Paggetti, et al., Crosstalk between leukemia-associated proteins MOZ and MLL
regulates HOX gene expression in human cord blood CD34 + cells, Oncogene 29
(36) (2010) 5019-5031.

P. Ernst, et al., MLL and CREB bind cooperatively to the nuclear coactivator CREB-
binding protein, Mol. Cell. Biol. 21 (7) (2001) 2249.

A.G. Muntean, et al., The PAF complex synergizes with MLL fusion proteins at
HOX loci to promote leukemogenesis, Cancer Cell 17 (6) (2010) 609-621.

T.A. Milne, et al., Multiple interactions recruit MLL1 and MLL1 fusion proteins to
the HOXAO9 locus in leukemogenesis, Mol. Cell 38 (6) (2010) 853-863.

H. Jiang, et al., Regulation of transcription by the MLL2 complex and MLL com-
plex—associated AKAP95, Nat. Struct. Mol. Biol. 20 (10) (2013) 1156-1163.

S.R. Patel, et al., The BRCT-domain containing protein PTIP links PAX2 to a his-
tone H3, lysine 4 methyltransferase complex, Dev. Cell 13 (4) (2007) 580-592.
Y.W. Cho, et al., PTIP associates with MLL3- and MLL4-containing histone H3
lysine 4 methyltransferase complex, J. Biol. Chem. 282 (28) (2007) 20395-20406.
Y.H. Goo, et al., Activating signal cointegrator 2 belongs to a novel steady-state
complex that contains a subset of trithorax group proteins, Mol. Cell. Biol. 23 (1)
(2003) 140-149.

J.-H. Kim, et al., UTX and MLL4 coordinately regulate transcriptional programs for
cell proliferation and invasiveness in breast cancer cells, Cancer Res. 74 (6) (2014)
1705-1717.

S. Lee, et al., Crucial roles for interactions between MLL3/4 and INI1 in nuclear
receptor transactivation, Mol. Endocrinol. 23 (5) (2009) 610-619.

J.H. Lee, et al., Identification and characterization of the human Set1B histone H3-
Lys4 methyltransferase complex, J. Biol. Chem. 282 (18) (2007) 13419-13428.
R. van Nuland, et al., Quantitative dissection and stoichiometry determination of
the human SET1/MLL histone methyltransferase complexes, Mol. Cell. Biol. 33
(10) (2013) 2067-2077.

J. Wysocka, et al., Human Sin3 deacetylase and trithorax-related Set1/Ash2 his-
tone H3-K4 methyltransferase are tethered together selectively by the cell-pro-
liferation factor HCF-1, Genes Dev. 17 (7) (2003) 896-911.

D.A. Brown, et al., The SET1 complex selects actively transcribed target genes via
multivalent interaction with CpG Island chromatin, Cell Rep. 20 (10) (2017)
2313-2327.

J.-H. Lee, D.G. Skalnik, Wdr82 is a C-terminal domain-binding protein that re-
cruits the Setd1A histone H3-Lys4 methyltransferase complex to transcription start
sites of transcribed human genes, Mol. Cell. Biol. 28 (2) (2008) 609-618.

M. Wu, et al., Molecular regulation of H3K4 trimethylation by Wdr82, a compo-
nent of human Setl/COMPASS, Mol. Cell. Biol. 28 (24) (2008) 7337-7344.

A. Shilatifard, The COMPASS family of histone H3K4 methylases: mechanisms of
regulation in development and disease pathogenesis, Annu. Rev. Biochem. 81
(2012) 65-95.

Y. Gu, et al., The t(4;11) chromosome translocation of human acute leukemias
fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene, Cell 71 (4)
(1992) 701-708.

M. Djabali, et al., A trithorax-like gene is interrupted by chromosome 11q23
translocations in acute leukaemias, Nat. Genet. 2 (2) (1992) 113-118.

D.C. Tkachuk, S. Kohler, M.L. Cleary, Involvement of a homolog of Drosophila
trithorax by 11q23 chromosomal translocations in acute leukemias, Cell 71 (4)
(1992) 691-700.

B.D. Yu, et al.,, MLL, a mammalian trithorax-group gene, functions as a tran-
scriptional maintenance factor in morphogenesis, Proc. Natl. Acad. Sci. U. S. A. 95
(18) (1998) 10632-10636.

B.D. Yu, et al., Altered Hox expression and segmental identity in Mll-mutant mice,
Nature 378 (6556) (1995) 505-508.

J.L. Hess, et al., Defects in yolk sac hematopoiesis in Mll-null embryos, Blood 90
(5) (1997) 1799-1806.

H. Yagi, et al., Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice,
Blood 92 (1) (1998) 108-117.

K.A. McMahon, et al., Ml has a critical role in fetal and adult hematopoietic stem
cell self-renewal, Cell Stem Cell 1 (3) (2007) 338-345.

P. Ernst, et al., An Mll-dependent Hox program drives hematopoietic progenitor
expansion, Curr. Biol. 14 (22) (2004) 2063-2069.

C.D. Jude, et al., Unique and independent roles for MLL in adult hematopoietic
stem cells and progenitors, Cell Stem Cell 1 (3) (2007) 324-337.

T. Gan, et al., Developmentally induced MII1 loss reveals defects in postnatal
haematopoiesis, Leukemia 24 (10) (2010) 1732-1741.

T. Gan, et al., MLL1 promotes IL-7 responsiveness and survival during B cell
Ddifferentiation, J. Immunol. 200 (5) (2018) 1682-1691 (p. jil701572).

C. Hurtz, et al., Rationale for targeting BCL6 in MLL-rearranged acute lympho-
blastic leukemia, Genes Dev. 33 (17-18) (2019) 1265-1279.

R. Terranova, et al., Histone and DNA methylation defects at Hox genes in mice
expressing a SET domain-truncated form of MI], Proc. Natl. Acad. Sci. U. S. A. 103
(17) (2006) 6629-6634.


http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0075
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0075
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0075
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0080
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0080
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0080
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0085
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0085
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0085
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0090
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0090
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0095
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0095
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0095
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0100
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0100
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0105
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0105
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0110
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0110
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0110
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0115
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0115
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0120
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0120
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0125
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0125
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0125
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0130
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0130
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0135
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0135
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0135
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0140
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0140
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0145
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0145
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0145
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0150
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0150
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0155
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0155
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0155
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0160
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0160
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0165
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0165
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0165
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0170
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0170
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0175
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0175
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0175
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0180
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0180
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0185
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0185
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0190
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0190
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0195
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0195
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0200
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0200
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0205
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0205
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0210
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0210
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0215
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0215
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0220
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0220
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0220
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0225
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0225
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0225
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0230
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0230
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0230
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0235
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0235
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0235
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0240
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0240
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0240
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0245
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0245
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0245
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0250
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0250
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0255
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0255
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0260
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0260
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0265
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0265
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0270
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0270
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0270
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0275
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0275
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0275
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0280
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0280
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0285
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0285
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0290
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0290
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0295
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0295
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0300
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0300
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0305
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0305
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0310
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0310
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0310
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0315
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0315
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0315
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0320
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0320
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0325
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0325
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0330
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0330
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0330
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0335
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0335
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0335
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0340
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0340
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0340
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0345
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0345
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0345
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0350
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0350
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0355
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0355
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0355
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0360
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0360
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0360
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0365
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0365
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0370
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0370
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0370
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0375
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0375
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0375
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0380
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0380
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0385
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0385
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0390
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0390
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0395
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0395
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0400
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0400
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0405
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0405
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0410
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0410
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0415
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0415
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0420
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0420
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0425
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0425
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0425

E.T.B. Antunes and K. Ottersbach

[86]
(871
[88]

[89]

[90]

[911

[92]

[93]
[94]

[95]

[96]

[971
[98]
[99]

[100]

[101]

[102]
[103]

[104]

[105]
[106]
[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

B.P. Mishra, et al., The histone methyltransferase activity of MLL1 is dispensable
for hematopoiesis and leukemogenesis, Cell Rep. 7 (4) (2014) 1239-1247.

E.L. Artinger, et al., An MLL-dependent network sustains hematopoiesis, Proc.
Natl. Acad. Sci. 110 (29) (2013) 12000-12005.

S. Glaser, et al., Multiple epigenetic maintenance factors implicated by the loss of
M2 in mouse development, Development 133 (8) (2006) 1423-1432.

S. Glaser, et al., The histone 3 lysine 4 methyltransferase, MlI2, is only required
briefly in development and spermatogenesis, Epigenetics Chromatin 2 (1)

(2009) 5.

C.V. Andreu-Vieyra, et al., MLL2 is required in oocytes for bulk histone 3 lysine 4
trimethylation and transcriptional silencing, PLoS Biol. 8 (8) (2010).

L. Austenaa, et al., The histone methyltransferase Wbp7 controls macrophage
function through GPI glycolipid anchor synthesis, Inmunity 36 (4) (2012)
572-585.

D. Hu, et al., The MLL3/MLL4 branches of the COMPASS family function as major
histone H3K4 monomethylases at enhancers, Mol. Cell. Biol. 33 (23) (2013)
4745-4754.

M.U. Kaikkonen, et al., Remodeling of the enhancer landscape during macrophage
activation is coupled to enhancer transcription, Mol. Cell 51 (3) (2013) 310-325.
J.-E. Lee, et al., H3K4 mono- and di-methyltransferase MLL4 is required for en-
hancer activation during cell differentiation, eLife 2 (2013) e01503.

H.M. Herz, et al., Enhancer-associated H3K4 monomethylation by Trithorax-re-
lated, the Drosophila homolog of mammalian M113/MIll4, Genes Dev. 26 (23)
(2012) 2604-2620.

K.M. Dorighi, et al., MlI3 and Mll4 facilitate enhancer RNA synthesis and tran-
scription from promoters independently of H3K4 monomethylation, Mol. Cell 66
(4) (2017) (p. 568-576.e4).

J. Yan, et al., Histone H3 lysine 4 monomethylation modulates long-range chro-
matin interactions at enhancers, Cell Res. 28 (2) (2018) 204-220.

C. Wang, et al., Enhancer priming by H3K4 methyltransferase MLL4 controls cell
fate transition, Proc. Natl. Acad. Sci. 113 (42) (2016) 11871-11876.

Y. Jang, et al., H3K4 methyltransferase activity is required for MLL4 protein sta-
bility, J. Mol. Biol. 429 (13) (2017) 2046-2054.

B. Lai, et al., MLL3/MLL4 are required for CBP/p300 binding on enhancers and
super-enhancer formation in brown adipogenesis, Nucleic Acids Res. 45 (11)
(2017) 6388-6403.

Y. Jang, et al., H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/
MLL4 and impairs adipose tissue development, Nucleic Acids Res. 47 (2) (2018)
607-620.

C. Chen, et al., MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid
leukemia, Cancer Cell 25 (5) (2014) 652-665.

M.A. Santos, et al., DNA-damage-induced differentiation of leukaemic cells as an
anti-cancer barrier, Nature 514 (7520) (2014) 107-111.

A. Ortega-Molina, et al., The histone lysine methyltransferase KMT2D sustains a
gene expression program that represses B cell lymphoma development, Nat. Med.
21 (10) (2015) 1199-1208.

J. Zhang, et al., Disruption of KMT2D perturbs germinal center B cell development
and promotes lymphomagenesis, Nat. Med. 21 (10) (2015) 1190-1198.

R.D. Morin, et al., Frequent mutation of histone-modifying genes in non-Hodgkin
lymphoma, Nature 476 (7360) (2011) 298-303.

L. Pasqualucci, R. Dalla-Favera, The genetic landscape of diffuse large B-cell
lymphoma, Semin. Hematol. 52 (2) (2015) 67-76.

A.S. Bledau, et al., The H3K4 methyltransferase Setdla is first required at the
epiblast stage, whereas Setd1b becomes essential after gastrulation, Development
141 (5) (2014) 1022-1035.

B.K. Tusi, et al., Setd1a regulates progenitor B-cell-to-precursor B-cell develop-
ment through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrange-
ment, FASEB J. 29 (4) (2015) 1505-1515.

Y. Li, et al., Setdla and NURF mediate chromatin dynamics and gene regulation
during erythroid lineage commitment and differentiation, Nucleic Acids Res. 44
(15) (2016) 7173-7188.

K. Arndt, et al., SETD1A protects HSCs from activation-induced functional decline
in vivo, Blood 131 (12) (2018) 1311-1324.

K. Schmidt, et al., The H3K4 methyltransferase Setd1b is essential for hemato-
poietic stem and progenitor cell homeostasis in mice, Elife 7 (2018).

C. Deng, et al., HoxBlinc RNA recruits Setl/MLL complexes to activate Hox gene
expression patterns and mesoderm lineage development, Cell Rep. 14 (1) (2016)
103-114.

C. Deng, et al., USF1 and hSET1A mediated epigenetic modifications regulate
lineage differentiation and HoxB4 transcription, PLoS Genet. 9 (6) (2013)
€1003524.

T. Hoshii, et al., A non-catalytic function of SETD1A regulates cyclin K and the
DNA damage response, Cell 172 (5) (2018) (p. 1007-1021.e17).

M.R. Higgs, et al., Histone methylation by SETD1A protects nascent DNA through
the nucleosome chaperone activity of FANCD2, Mol. Cell 71 (1) (2018) (p. 25-
41.e6).

L. Fang, et al., SET1A-mediated mono-methylation at K342 regulates YAP acti-
vation by blocking its nuclear export and promotes tumorigenesis, Cancer Cell 34
(1) (2018) (p. 103-118.e9).

K. Ohyashiki, J.H. Ohyashiki, A.A. Sandberg, Cytogenetic characterization of pu-
tative human myeloblastic leukemia cell lines (ML-1, -2, and -3): origin of the
cells, Cancer Res. 46 (7) (1986) 3642-3647.

G. Tang, et al., Homozygous inv(11)(q21q23) and MLL gene rearrangement in two
patients with myeloid neoplasms, Int. J. Clin. Exp. Pathol. 7 (6) (2014)
3196-3201.

J.H. Lim, et al., FISH analysis of MLL gene rearrangements: detection of the

13

[121]
[122]
[123]

[124]

[125]
[126]
[127]

[128]

[129]

[130]
[131]

[132]

[133]
[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]
[145]

[146]

[147]

[148]

[149]

[150]
[151]
[152]

[153]

[154]

BBA - Gene Regulatory Mechanisms 1863 (2020) 194579

concurrent loss or gain of the 3’ signal and its prognostic significance, Int. J. Lab.
Hematol. 36 (5) (2014) 571-579.

A.T. Thiel, et al., MLL-AF9-induced leukemogenesis requires coexpression of the
wild-type Ml allele, Cancer Cell 17 (2) (2010) 148-159.

F. Cao, et al., Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage
leukemia, Mol. Cell 53 (2) (2014) 247-261.

Y. Chen, et al., MLL2, not MLL1, plays a major role in sustaining MLL-rearranged
acute myeloid leukemia, Cancer Cell 31 (6) (2017) (p. 755-770.€6).

V. Ladopoulos, et al., The histone methyltransferase KMT2B is required for RNA
polymerase II association and protection from DNA methylation at the MagohB
CpG island promoter, Mol. Cell. Biol. 33 (7) (2013) 1383-1393.

Y. Chen, P. Ernst, Hematopoietic transformation in the absence of MLL1/KMT2A:
distinctions in target gene reactivation, Cell Cycle 18 (14) (2019) 1525-1531.
F.X. Chen, E.R. Smith, A. Shilatifard, Born to run: control of transcription elon-
gation by RNA polymerase II, Nat. Rev. Mol. Cell Biol. 19 (7) (2018) 464-478.
C. Meyer, et al., The MLL recombinome of acute leukemias in 2017, Leukemia 32
(2) (2018) 273-284.

H.J. Gill Super, et al., Clonal, nonconstitutional rearrangements of the MLL gene in
infant twins with acute lymphoblastic leukemia: in utero chromosome re-
arrangement of 11q23, Blood 83 (3) (1994) 641-644.

K.B. Gale, et al., Backtracking leukemia to birth: identification of clonotypic gene
fusion sequences in neonatal blood spots, Proc. Natl. Acad. Sci. U. S. A. 94 (25)
(1997) 13950-13954.

AM. Ford, et al., In utero rearrangements in the trithorax-related oncogene in
infant leukaemias, Nature 363 (6427) (1993) 358-360.

R.G. Rowe, et al., The developmental stage of the hematopoietic niche regulates
lineage in MLL-rearranged leukemia, J. Exp. Med. 216 (3) (2019) 527-538.

H. Bolouri, et al., The molecular landscape of pediatric acute myeloid leukemia
reveals recurrent structural alterations and age-specific mutational interactions,
Nat. Med. 24 (1) (2018) 103-112.

AX. Andersson, et al., The landscape of somatic mutations in infant MLL-rear-
ranged acute lymphoblastic leukemias, Nat. Genet. 47 (4) (2015) 330-337.

M.F. Greaves, et al., Leukemia in twins: lessons in natural history, Blood 102 (7)
(2003) 2321-2333.

R. Pieters, et al., A treatment protocol for infants younger than 1 year with acute
lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre
randomised trial, Lancet 370 (9583) (2007) 240-250.

J.M. Hilden, et al., Analysis of prognostic factors of acute lymphoblastic leukemia
in infants: report on CCG 1953 from the Children’s oncology group, Blood 108 (2)
(2006) 441-451.

A. Agraz-Doblas, et al., Unravelling the cellular origin and clinical prognostic
markers of infant B-cell acute lymphoblastic leukemia using genome-wide ana-
lysis, Haematologica 104 (6) (2019) 1176-1188 (p. haematol.2018.206375).
R.W. Stam, et al., Gene expression profiling-based dissection of MLL translocated
and MLL germline acute lymphoblastic leukemia in infants, Blood 115 (14) (2010)
2835-2844.

L. Trentin, et al., Two independent gene signatures in pediatric t(4;11) acute
lymphoblastic leukemia patients, Eur. J. Haematol. 83 (5) (2009) 406-419.

P. Menendez, et al., Bone marrow mesenchymal stem cells from infants with MLL-
AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene, J. Exp. Med.
206 (13) (2009) 3131-3141.

K. Ottersbach, Endothelial-to-haematopoietic transition: an update on the process
of making blood, Biochem. Soc. Trans. 47 (2) (2019) 591-601.

C. Bueno, et al., A human ESC model for MLL-AF4 leukemic fusion gene reveals an
impaired early hematopoietic-endothelial specification, Cell Res. 22 (6) (2012)
986-1002.

C. Bueno, et al., Enhanced hemato-endothelial specification during human em-
bryonic differentiation through developmental cooperation between AF4-MLL and
MLL-AF4 fusions, Haematologica 104 (6) (2019) 1189-1201.

C. Malouf, K. Ottersbach, Molecular processes involved in B cell acute lympho-
blastic leukaemia, Cell. Mol. Life Sci. 75 (3) (2018) 417-446.

R. Marschalek, Another piece of the puzzle added to understand t(4;11) leukemia
better, Haematologica 104 (6) (2019) 1098-1100.

A.C. Wilkinson, et al., RUNX1 is a key target in t(4;11) leukemias that contributes
to gene activation through an AF4-MLL complex interaction, Cell Rep. 3 (1) (2013)
116-127.

R. Montes, et al., Enforced expression of MLL-AF4 fusion in cord blood CD34 +
cells enhances the hematopoietic repopulating cell function and clonogenic po-
tential but is not sufficient to initiate leukemia, Blood 117 (18) (2011) 4746-4758.
R. Montes, et al., Ligand-independent FLT3 activation does not cooperate with
MLL-AF4 to immortalize/transform cord blood CD34 + cells, Leukemia 28 (3)
(2014) 666-674.

C. Prieto, et al., Activated KRAS cooperates with MLL-AF4 to promote extra-
medullary engraftment and migration of cord blood CD34+ HSPC but is in-
sufficient to initiate leukemia, Cancer Res. 76 (8) (2016) 2478-2489.

S. Lin, et al., Instructive role of MLL-fusion proteins revealed by a model of t(4;11)
pro-B acute lymphoblastic leukemia, Cancer Cell 30 (5) (2016) 737-749.

C. Buechele, et al., MLL leukemia induction by genome editing of human CD34 +
hematopoietic cells, Blood 126 (14) (2015) 1683-1694.

F. Barabé, et al., Modeling the initiation and progression of human acute leukemia
in mice, Science 316 (5824) (2007) 600-604.

C. Benz, et al., Hematopoietic stem cell subtypes expand differentially during
development and display distinct lymphopoietic programs, Cell Stem Cell 10 (3)
(2012) 273-283.

M.I. Mascarenhas, et al., Analysis of Jak2 signaling reveals resistance of mouse
embryonic hematopoietic stem cells to myeloproliferative disease mutation, Blood


http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0430
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0430
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0435
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0435
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0440
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0440
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0445
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0445
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0445
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0450
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0450
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0455
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0455
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0455
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0460
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0460
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0460
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0465
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0465
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0470
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0470
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0475
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0475
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0475
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0480
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0480
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0480
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0485
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0485
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0490
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0490
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0495
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0495
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0500
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0500
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0500
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0505
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0505
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0505
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0510
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0510
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0515
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0515
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0520
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0520
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0520
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0525
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0525
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0530
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0530
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0535
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0535
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0540
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0540
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0540
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0545
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0545
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0545
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0550
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0550
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0550
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0555
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0555
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0560
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0560
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0565
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0565
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0565
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0570
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0570
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0570
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0575
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0575
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0580
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0580
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0580
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0585
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0585
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0585
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0590
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0590
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0590
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0595
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0595
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0595
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0600
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0600
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0600
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0605
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0605
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0610
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0610
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0615
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0615
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0620
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0620
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0620
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0625
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0625
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0630
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0630
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0635
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0635
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0640
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0640
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0640
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0645
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0645
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0645
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0650
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0650
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0655
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0655
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0660
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0660
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0660
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0665
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0665
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0670
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0670
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0675
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0675
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0675
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0680
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0680
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0680
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0685
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0685
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0685
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0690
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0690
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0690
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0695
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0695
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0700
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0700
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0700
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0705
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0705
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0710
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0710
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0710
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0715
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0715
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0715
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0720
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0720
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0725
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0725
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0730
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0730
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0730
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0735
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0735
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0735
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0740
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0740
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0740
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0745
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0745
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0745
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0750
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0750
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0755
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0755
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0760
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0760
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0765
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0765
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0765
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0770
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0770

E.T.B. Antunes and K. Ottersbach

[155]

[156]

[157]

[158]
[159]

[160]

[161]
[162]

[163]

[164]

[165]

127 (19) (2016) 2298-2309.

T.A. Milne, Mouse models of MLL leukemia: recapitulating the human disease,
Blood 129 (16) (2017) 2217-2223.

M. Jassinskaja, et al., Comprehensive proteomic characterization of ontogenic
changes in hematopoietic stem and progenitor cells, Cell Rep. 21 (11) (2017)
3285-3297.

V. Stavropoulou, et al., MLL-AF9 expression in hematopoietic stem cells drives a
highly invasive AML expressing EMT-related genes linked to poor outcome, Cancer
Cell 30 (1) (2016) 43-58.

A.V. Krivtsov, et al., Cell of origin determines clinically relevant subtypes of MLL-
rearranged AML, Leukemia 27 (4) (2013) 852-860.

V. Stavropoulou, et al., A novel inducible mouse model of MLL-ENL-driven mixed-
lineage acute leukemia, HemaSphere 2 (4) (2018) e51.

T. Okeyo-Owuor, et al., The efficiency of murine MLL-ENL-driven leukemia in-
itiation changes with age and peaks during neonatal development, Blood Adv. 3
(15) (2019) 2388-2399.

M.J. Chen, et al., Runx1 is required for the endothelial to haematopoietic cell
transition but not thereafter, Nature 457 (7231) (2009) 887-891.

C. Gekas, et al., The placenta is a niche for hematopoietic stem cells, Dev. Cell 8 (3)
(2005) 365-375.

C. Malouf, K. Ottersbach, The fetal liver lymphoid-primed multipotent progenitor
provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia,
Haematologica 103 (12) (2018) e571-e574 (p. haematol.2018.191718).

S. O’Byrne, et al., Discovery of a CD10-negative B-progenitor in human fetal life
identifies unique ontogeny-related developmental programs, Blood 134 (13)
(2019) 1059-1071.

E. Jacoby, et al., CD19 CAR immune pressure induces B-precursor acute lym-
phoblastic leukaemia lineage switch exposing inherent leukaemic plasticity, Nat.

14

[166]

[167]

[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]

[177]

BBA - Gene Regulatory Mechanisms 1863 (2020) 194579

Commun. 7 (2016) 12320.

R. Gardner, et al., Acquisition of a CD19-negative myeloid phenotype allows im-
mune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy, Blood 127
(20) (2016) 2406-2410.

A. Bochynska, J. Liischer-Firzlaff, B. Liischer, Modes of interaction of KMT2 his-
tone H3 lysine 4 methyltransferase/COMPASS complexes with chromatin, Cells 7
(3) (2018) 17.

A.J. Ruthenburg, et al., Multivalent engagement of chromatin modifications by
linked binding modules, Nat. Rev. Mol. Cell Biol. 8 (12) (2007) 983-994.

E.J. Worden, C. Wolberger, Activation and regulation of H2B-ubiquitin-dependent
histone methyltransferases, Curr. Opin. Struct. Biol. 59 (2019) 98-106.

E. Wang, et al., Histone H2B ubiquitin ligase RNF20 is required for MLL-rear-
ranged leukemia, Proc. Natl. Acad. Sci. 110 (10) (2013) 3901-3906.

Kathrin M. Bernt, et al., MLL-rearranged leukemia Is dependent on aberrant
H3K79 methylation by DOT1L, Cancer Cell 20 (1) (2011) 66-78.

Scott R. Daigle, et al., Selective killing of mixed lineage leukemia cells by a potent
small-molecule DOT1L inhibitor, Cancer Cell 20 (1) (2011) 53-65.

A.T. Nguyen, et al., Essential role of DOT1L in maintaining normal adult hema-
topoiesis, Cell Res. 21 (9) (2011) 1370-1373.

Y. Feng, et al., Early mammalian erythropoiesis requires the Dot1L methyl-
transferase, Blood 116 (22) (2010) 4483-4491.

S.Y. Jo, et al., Requirement for Dotll in murine postnatal hematopoiesis and
leukemogenesis by MLL translocation, Blood 117 (18) (2011) 4759-4768.

Y. Zhang, et al., Selective binding of the PHD6 finger of MLL4 to histone H4K16ac
links MLL4 and MOF, Nat. Commun. 10 (1) (2019) 2314.

W. Yang, et al., Enhancing hematopoiesis from murine embryonic stem cells
through MLL1-induced activation of a Rac/rho/integrin signaling Axis, Stem Cell
Rep. 14 (2) (2020) 285-299.


http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0770
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0775
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0775
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0780
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0780
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0780
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0785
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0785
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0785
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0790
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0790
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0795
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0795
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0800
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0800
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0800
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0805
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0805
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0810
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0810
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0815
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0815
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0815
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0820
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0820
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0820
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0825
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0825
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0825
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0830
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0830
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0830
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0835
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0835
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0835
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0840
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0840
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0845
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0845
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0850
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0850
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0855
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0855
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0860
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0860
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0865
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0865
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0870
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0870
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0875
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0875
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0880
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0880
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0885
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0885
http://refhub.elsevier.com/S1874-9399(20)30162-0/rf0885

	The MLL/SET family and haematopoiesis
	Introduction
	A short guide to the structures and interactions of the MLL/SET family
	MLL1 is required for foetal and adult blood
	Mll1 and B-cell development
	Mechanisms of MLL1 function

	MLL2 in haematopoiesis
	MLL3 and MLL4 in haematopoiesis and blood disease
	SETD1A and SETD1B in haematopoiesis
	Requirement of MLL/SET proteins in MLL-rearranged leukaemia
	The impact of MLL1 fusions on haematopoietic development
	Concluding remarks
	Author statement
	Declaration of competing interest
	Acknowledgments
	References




