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How do we understand the complex patterns of neural responses that underlie scene
understanding? Studies of the network of brain regions held to be scene-selective—the
parahippocampal/lingual region (PPA), the retrosplenial complex (RSC), and the occipital
place area (TOS)—have typically focused on single visual dimensions (e.g., size), rather
than the high-dimensional feature space in which scenes are likely to be neurally
represented. Here we leverage well-specified artificial vision systems to explicate a
more complex understanding of how scenes are encoded in this functional network.
We correlated similarity matrices within three different scene-spaces arising from: (1)
BOLD activity in scene-selective brain regions; (2) behavioral measured judgments of
visually-perceived scene similarity; and (3) several different computer vision models.
These correlations revealed: (1) models that relied on mid- and high-level scene
attributes showed the highest correlations with the patterns of neural activity within
the scene-selective network; (2) NEIL and SUN—the models that best accounted for
the patterns obtained from PPA and TOS—were different from the GIST model that
best accounted for the pattern obtained from RSC; (3) The best performing models
outperformed behaviorally-measured judgments of scene similarity in accounting for
neural data. One computer vision method—NEIL (“Never-Ending-Image-Learner”), which
incorporates visual features learned as statistical regularities across web-scale numbers
of scenes—showed significant correlations with neural activity in all three scene-selective
regions and was one of the two models best able to account for variance in the PPA
and TOS. We suggest that these results are a promising first step in explicating more
fine-grained models of neural scene understanding, including developing a clearer picture
of the division of labor among the components of the functional scene-selective brain
network.
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INTRODUCTION
The past several decades have given us an unprecedented view of
the inner workings of the human brain, allowing us to measure
localized neural activity in awake, behaving humans. As cognitive
neuroscientists, our challenge is to make sense of this rich source
of data, connecting the activity we observe to mental mechanisms
and behavior. For those of us who study high-level vision, making
this connection is particularly difficult—vision scientists have not
yet articulated any clear theories about what constitutes a “vocab-
ulary” of intermediate visual features or what are the underlying
building blocks of scene or object representation. Here we begin
to address this issue by taking a different path to articulating a
candidate set of features for visual representation: using a variety
of extant computer vision models that make different commit-
ments as to what counts as a visual feature as proxies for models

of biological vision. We suggest that, to the extent that computer
vision models and biological vision systems have similar end
goals, the two domains will overlap in both their representations
and processing assumptions.

To explore this issue, we had participants view 100 differ-
ent scenes while we measured their brain activity, using func-
tional Magnetic Resonance Imaging (“fMRI”), in regions that are
known to be preferentially involved in scene processing. In partic-
ular, we hold that meaningful information can be extracted from
the reliable patterns of activity that occur within scene selective
regions: the parahippocampal/lingual region (the parahippocam-
pal place area, “PPA”), the retrosplenial complex (“RSC”), and the
occipital place area (also referred to as the transverse occipital sul-
cus, “TOS”). However, due to a lack of any fine-grained theories
of scene understanding, it is unclear as to how one goes about
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interpreting the complex meaning inherent in these neural pat-
terns. As alluded to above, we turn to models of computer vision
to help us unravel how the human brain encodes and represents
visual scenes, directly comparing the representations of scenes
within these artificial vision systems to our obtained patterns of
BOLD activity as measured by fMRI. The application of models
derived from computer vision has one significant advantage: the
models are well specified. As such, any particular model makes
clear and explicit assumptions regarding representation and cor-
respondence between a model and human neural responses or
behavior allows us to infer that the two work similarly. Hence
our emphasis on comparing a large number of models that all
work somewhat differently from one another. In adopting mod-
ern computer vision models, we also note that these systems
are built to understand the same complex visual world we deal
with everyday (i.e., in contrast to earlier models that relied on
“toy” worlds or highly-restricted visual domains). In particular,
some of the models we include leverage large-scale/“web-scale”
image datasets that may more accurately learn informative visual
regularities embedded in the natural environment.

In that we have no strong a priori knowledge as to which of
several very different models might be most effective with respect
to accounting for neural data, our primary goal is to test whether
we observe some correspondence between the patterns of neural
activity elicited in high-order visual scene regions (i.e., PPA, RSC,
and TOS) and the patterns of scene similarity as defined by these
varying artificial vision models, and, specifically, which of these
models does the best job at accounting for the neural data. We are
also interested in the correspondence between artificial and bio-
logical vision systems, as well as the correspondence between the
patterns of similarity obtained from neural responses and from
behaviorally-measured explicit perceptual ratings.

We should note that our focus on accounting for neural
responses in three specific brain regions of interest—the PPA,
RSC, and TOS—is based on several decades of research describ-
ing the neural responses of these particular regions. Each has
been shown to be selectively responsive to and optimized for
processing scenes as compared to other visual stimuli, for exam-
ple, single objects, faces, and meaningless visual patterns. It is
also the case that all three of these regions are involved both
in scene perception and spatial navigation; however, the PPA
tends to be preferentially involved in scene recognition and the
RSC tends to be preferentially involved in processing the larger
spatial environment (Epstein and Higgins, 2007). These regions
have also been sensitive to scene parts: both objects and spa-
tial relations (Harel et al., 2013; Park et al., 2014); as well as
more global properties of a scene such as the spatial bound-
ary (Kravitz et al., 2011; Park et al., 2011; Watson et al., 2014).
Finally, PPA, RSC and TOS have been shown to carry informa-
tion regarding the statistical significance of objects occurring with
specific scene categories (Stansbury et al., 2013) and the PPA has
been shown to be sensitive to mid-level visual features, for exam-
ple, recurring textures (Cant and Goodale, 2011; Cant and Xu,
2012). However, despite this array of empirically-demonstrated
sensitivities to properties of the visual world, the specific com-
putations that give rise to these functional responses are not well
understood.

Here we use models originating from the field of computer
vision to help reveal the computational processes that may be real-
ized within these scene-selective brain regions. Given that scenes
are complex visual stimuli that carry useful information within
low-level visual features (e.g., oriented lines, edges, junctions,
etc.), mid-level features (e.g., groupings and divisions of features
that are superordinate to the low-level features), and high-level
features (e.g., semantic meaning, categorization) we apply sev-
eral different computer vision methods to capture these multiple
levels. In particular, we attempt to account for variation in our
neuroimaging data collected while participants are viewing a wide
variety of different scenes using both high-level semantic feature-
based models (e.g., SUN semantic attributes; Patterson and Hays,
2012) and low-level visual feature-based models (e.g., SIFT, HOG;
Lowe, 2004; Dalal and Triggs, 2005). We predict that low-level fea-
tures will be encoded in brain areas that selectively process scenes,
but are also encoded in non-scene-selective regions such as early
visual areas. In contrast, as discussed below, mid- and high-level
features that capture the inherent meaning of a scene are pre-
dicted to be specifically encoded in scene-selective brain regions
exclusively.

In studying scene or object understanding, the field faces a sig-
nificant challenge: between visual input and semantics there is a
significant gap in knowledge with respect to any detailed account
of the mid- and high-level visual features that form the represen-
tation of visual information. That is, almost all theories of mid-
and high-level visual representation rest on human intuition,
providing little formal method for articulating the features under-
lying visual semantics or its precursors: mid-level visual features
that are compositional in nature (Barenholtz and Tarr, 2007). For
example, for us, distinguishing between a manmade and a nat-
ural scene is trivial and we typically account for our judgments
by referring to semantic features within a scene (e.g., trees, build-
ings). However, there are also mid-level features (e.g., rectangular
shapes) that are highly correlated with a scene’s high-level seman-
tics that may provide some insight into how the visual system can
so readily understand the difference between manmade and nat-
ural. As one example, recent work suggests that the PPA responds
preferentially to both simple rectilinear features and objects com-
prised of a predominantly rectilinear features (Nasr et al., 2014).
This and other results hint that focusing on high-level semantics
exclusively may miss critical elements of how scenes are selectively
processed in the human brain. Relying on human intuition also
suffers from the Titchenerian problem that introspection alone
does not have access to the unconscious processing that makes
up the bulk of our cognition. Thus, theories based largely on
intuition almost surely miss identifying the bulk of visual fea-
tures (or parts) that are critical in the neural representation of
scenes. To address the need for mid-level, non-intuition-based
visual features, one of the primary (and most interesting) com-
puter vision models we apply is NEIL, the “Never Ending Image
Learner” (www.neil-kb.com; Chen et al., 2013). NEIL is a large-
scale (“web-scale”) image-analysis system that, using only “weak
supervision,” automatically extracts underlying statistical regular-
ities (e.g., both mid-level and high-level visual attributes) from
natural scene images and constructs intuitively-correct scene cat-
egories. In doing so, NEIL both limits the need for the application
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of human intuition and allows for the simultaneous exploration
of features at multiple levels of scene representation (i.e., low- to
high-level). In applying NEIL, we asked whether the attributes
that NEIL learns to characterize scenes give rise to a scene similar-
ity space that correlates with a neurally-derived scene similarity
space. Good correspondence between the two domains repre-
senting the same scenes would suggest that cortical vision is
sensitive to some of the same statistical regularities—at a variety
of levels—NEIL extracts to build a category structure for scenes.

In the past few years, a small number of studies have applied
models drawn from computer vision to the question of neural
representation in visual cortex. For the most part, this approach
has focused on object recognition and examined a wide region
of visual cortex, including low-level regions, V1–V3, mid-level
regions, V4, and high-level regions, IT (Baldassi et al., 2013; Leeds
et al., 2013; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014). However, to our knowledge, only one study has com-
bined computer vision methods with neural scene understanding.
In particular, Watson et al. (2014) examined how well low-level
scene features derived from GIST, a descriptor that analyzes orien-
tation energy at different spatial frequencies and spatial positions
(Oliva and Torralba, 2001), might account for the fMRI-derived
neural patterns associated with scene processing in the human
ventral stream. They found that scene-specific regions (PPA, RSC,
TOS) elicited patterns of activity that were better accounted for by
low-level (GIST) properties as compared to semantic categories
for scenes. However, Watson et al.’s study is limited by its “jump”
from very low-level features (GIST) to very high-level semantic
categories and their use of only four scene categories. Here we
build on this result by looking at different metrics at different lev-
els of representation and expanding the space of stimuli to 100
different scenes across 50 different scene categories, asking how
well this range of computationally-motivated metrics can account
for the complex neurally-derived scene space we measure in PPA,
RSC, and TOS.

At the same time we explore representational metrics derived
from computer vision, we also consider human behavior directly,
examining the scene space derived from how humans judge two
visually-presented scenes as similar. A priori, if two scenes are
judged as similar, we might expect that the two scenes would elicit
similar neural response patterns in scene selective brain regions.
Of course, as noted earlier, explicit intuitions about cognitive
processing are unreliable indicators of the complex underlying
mechanisms supporting such processing. As such, it is unclear as
to whether conscious behavior is a good predictor of neural repre-
sentation. Thus, models of representation arising from computer
vision may actually reveal more subtle information about neural
encoding that cannot be inferred using behavioral methods. This
empirical question—how well does behavior explain the neural
activity elicited by scene understanding—is included in our study
as a benchmark against which we can measure the performance
of the computer vision models we apply to our data.

More generally, it is worth considering what we might be able
to infer from our present methods. Particularly given our back-
ground emphasis on explicating better-specified accounts of mid-
and high-level features, we might hope that a fine-grained analysis
of our results would reveal the specific nature of representational

features (e.g., a catalog of some sort). Unfortunately, such a
detailed account is beyond what is realistically possible in our
present study given: (1) the power limitations arising from the
low number of observations we can collect from individual par-
ticipants in an fMRI session; (2) the low SNR of BOLD responses;
and (3) the middling spatial and poor temporal resolution of
fMRI. To be clear, we view our present study as a first step in
working toward such detailed accounts, but, realistically, such an
account is not obtainable without many refinements in meth-
ods and theories. That being said, we hold that our present study
does allow important inferences about the neural representation
of scenes. More specifically, as discussed earlier, each of the com-
puter vision models employed here makes assumptions regarding
how it encodes visual scene information. Although the similarity
metrics we use do not allow us to break down these assumptions
to the level of specific features, they do help us choose between
different models. Such model selection is common in some areas
of science, but less so in the cognitive neurosciences where there
are often few options from which to select (which is our point
about the current state of knowledge regarding mid- and high-
level visual representation). Our approach is to adopt a range of
models from computer vision to enable a more comprehensive
search space that encompasses a wider range of representational
assumptions, including assumptions that might not be inferred
through intuition. In the end, we learn something about which
representational assumptions appear most promising for fur-
ther investigation, thereby laying the groundwork for studies in
which we specifically manipulate features derived from the most
effective models.

A separate concern relates to a potential confound between
receptive field (RF) size and feature complexity. At issue is the fact
that more complex features tend to encompass more of the visual
field and, therefore, are more likely to produce responses in the
extrastriate scene-selective regions that are known to have larger
RF sizes. However, we are less than certain as to how one would
tractably partial out RF size from feature complexity. For exam-
ple, if more complex features are more complex precisely because
they are more global and reflect the relations between constituent
parts, then—by definition—they are also captured in larger RFs.
This is similar to the confound in the face recognition literature
between RF size and “holistic” or “configural” processing (see for
example, Nestor et al., 2008). Researchers argue that a particular
effect is holistic, when, in fact, it is also the case that it is captured
by larger RFs. Indeed, it may be that much of what we think of
in the ventral pathway with respect to complexity is reasonably
equivalent to RF size. We view trying to tease these two dimen-
sions apart as an important question, but one that is beyond our
present study.

More concretely, our study empirically examines human visual
scene processing by way of scene similarity across three differ-
ent domains: neuroimaging data, behavior, and computer vision
models. In particular, we used fMRI with a slow event-related
design to isolate the patterns of neural activity elicited by 100
different visual scenes. Using a slow event-related design we
were able to analyze the data on a trial-by-trial/scene-by-scene
basis, therefore allowing us to associate a specific pattern of
BOLD activity with each individual scene. We then constructed a
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correlation matrix representing “scene-space” based on this neu-
ral data, performing all pairwise correlations between measured
neural patterns within the brain regions of interest. This neurally-
defined scene-space was then correlated with scene-spaces arising
from a range of computer vision models [see Section Computer
Vision (CV) Metrics]—each one providing a matrix of pairwise
scene similarities of the same dimensionality as our neural data.
At the same time, to better understand how the neural rep-
resentation of scenes relates to behavioral judgments of scene
similarity, we also ran a study using Amazon Mechanical Turk
in which participants rated the similarity, on a seven-point scale,
between two visually-presented scenes (4950 pairwise similarity
comparisons).

MATERIALS AND METHODS
STIMULI
Scene stimuli were 100 color photographs from the NEIL database
(www.neil-kb.com) (Chen et al., 2013) depicting scenes from 50
different scene categories as defined by NEIL—two exemplars
from each category were used. Categories ranged from indoor
to outdoor and manmade to natural in order to achieve good
coverage of scene space. See Supplemental Material for a list of
categories and Figure S1 for images of stimuli used. Scene images
were square 600 × 600 pixels, and were presented at a 7◦ × 7◦
visual angle.

fMRI EXPERIMENT
Localizer stimuli
Stimuli used in the independent scene “localizer” consisted of
color photographs of scenes, objects, and phase-scrambled pic-
tures of the scenes. The objects used were not strongly associated
with any context, and therefore were considered weak contextual
objects (e.g., a folding chair) (Bar and Aminoff, 2003). Pictures
were presented at 5◦ × 5◦ visual angle. There were 50 unique
stimuli in each of the three stimulus conditions.

Participants
Data from nine participants in the fMRI portion of the study
were analyzed (age: M = 23, 20–29; two left handed; five female).
One additional participant (i.e., N = 10) was excluded from the
data analysis due to falling asleep and missing a significant num-
ber of trial responses. Data from one other participant only had
half the dataset included in the analysis due to severe movement
issues in one of the two sessions. All participants had normal, or
corrected-to-normal vision, and were not taking any psychoac-
tive medication. Written informed consent was obtained from all
participants prior to testing in accordance with the procedures
approved by the Institutional Review Board of Carnegie Mellon
University. Participants were financially compensated for their
time.

Procedure
Each individual participated in two fMRI sessions in order to
acquire sufficient data to examine the responses associated with
individual scenes. Both sessions used the same procedure. The
average time between the two sessions was 3.6 days, ranging from
1 to 7 days. Each fMRI session included six scene processing runs,

a high resolution mprage anatomical scan run after the third scene
processing run, and at the end of the session, one or two runs of a
functional scene localizer.

During fMRI scanning, images were presented to the partic-
ipants via 24 inch MR compatible LCD display (BOLDScreen,
Cambridge Research Systems LTD., UK) presented at the head of
the bore and reflected through a head coil mirror to the partici-
pant. Each functional scan began and ended with 12 s of a white
fixation cross (“+”) presented against a black background. For the
scene processing runs, there were 50 picture trials—one exemplar
from each of the 50 categories. The paradigm was a slow event-
related design and order of the stimuli were random within the
run. Two runs were required to get through the full set of 100
scenes, with no scene category repeating within the run. There
were three presentations of each stimuli in each session (i.e., six
functional runs) and across the two sessions, there were data for a
total of six trials per a unique stimulus. Stimuli were presented for
1 s, followed by 7 s of fixation. On a random eight of the 50 trials
of a run, the image rotated a half a degree to the right and then
back to center, which took a total of 250 ms. Participants were
asked to press a button when a pictured “jiggled.” Participants
performed on average 96% correct.

After all six of the scene processing runs, a functional scene
localizer was administered in order to independently define scene
selective areas of the cortex (PPA, RSC, and TOS). The localizer
was a block design such that 12 stimuli of the same condition
(either scenes, objects, or phase scrambled scenes) were presented
in row. Each stimulus was presented for 800 ms with a 200 ms ISI.
Between stimuli blocks, there were 8 s of a fixation cross presen-
tation. There were six blocks per condition, and 18 blocks across
conditions per run. The participant’s task was to press a button if
the picture immediately repeated (1-back task), of which there
were two per block. Thus, in each block there were 10 unique
stimuli presented, with two stimuli repeated once. Based on time
of the scan session and energy of the participant, either one or two
localizer runs were administered.

Before the participant went into the MRI scanner, they were
told to remember the images as best as possible for a memory
test. Once the participant concluded the fMRI portion of the ses-
sion they performed a memory test outside the scanner. In the
memory test, there were two trials for each of the 50 scene cate-
gories, with one trial presenting an image from the MRI session
and the other trial presenting a new exemplar. For each trial, the
participant had a maximum of 3 s to respond, with the picture
on the screen for the entire time. The picture was removed from
the screen as soon as the participant responded and the next trial
began. Participants were 81% correct on average. The memory
test was used to motivate the participants to pay attention, and
was not used in any of the analyses.

fMRI data acquisition
Functional MRI data was collected on a 3T Siemens Verio MR
scanner at the Scientific Imaging and Brain Research Center
at Carnegie Mellon University using a 32-channel head coil.
Functional images were acquired using a T2∗-weighted echo-
planar imaging pulse sequence (31 slices aligned to the AC/PC,
in-plane resolution 2 × 2 mm, 3 mm slice thickness, no gap, TR
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= 2000 ms, TE = 29 ms, flip angle = 79◦, GRAPPA = 2, matrix
size 96 × 96, field of view 192 mm, reference lines = 48, descend-
ing acquisition). Number of acquisitions per run was 209 for the
main experiment, and 158 for the scene localizer. High-resolution
anatomical scans were acquired for each participant using a T1-
weighted MPRAGE sequence (1 × 1 × 1 mm, 176 sagittal slices,
TR = 2.3 s, TE = 1.97 ms, flip angle = 9◦, GRAPPA = 2, field of
view = 256).

fMRI data analysis
All fMRI data were analyzed using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/) and in-house Matlab scripts. Data across the two
sessions were realigned to correct for minor head motion by
registering all images to the mean image.

Functional scene localizer. After motion correction, the data of
the scene functional localizer was smoothed using an isotropic
Gaussian kernel (FWHM = 4 mm). The data was then analyzed
as a block design using a general linear model and a canon-
ical hemodynamic response function. A high pass filter using
128 s was implemented. The general linear model incorporated a
robust weighted least squares (rWLS) algorithm (Diedrichsen and
Shadmehr, 2005). The model simultaneously estimated the noise
covariates and temporal auto-correlation for later use as covari-
ates within the design matrix. The six motion parameter estimates
that output from realignment were used as additional nuisance
regressors. Data were collapsed across all localizer runs, with each
run used as an additional regressor. The design matrix mod-
eled three conditions: scenes, weak contextual objects, and phase
scrambled scenes. The main contrast of interest was examining
the differential activity that was greater for scenes as compared
with objects and phase-scrambled scenes.

Event-related scene data. After motion correction, the data from
the scene task runs were analyzed using a general linear model.
Motion corrected data from a specific region of interest was
extracted and nuisance regressors from the realignment were
applied. The data was subjected to a 128 s high pass filter and
was subjected to correction from rWLS, as well as a regressor
represented each of the different runs. The data for the entire
event window (8 s) was extracted for each scene stimulus, for
each voxel within the region of interest, and averaged across the
number of repetitions. Data in the 6–8 s time frame was used
for all further analysis. This was the average peak activity in the
time course across all trials for all participants. All six presen-
tations of the stimulus were averaged together, including those
that “jiggled” for the 250 ms. A similarity matrix of all the scenes
(100 × 100) was then derived by cross-correlating the data for
each scene across the voxels in the brain regions of interest within
each individual. R-values from each of the cells in the similar-
ity matrix were then averaged across participants for a group
average.

Region of interest (ROI) analysis
All regions of interest analyzed were defined at the individual
level using the MarsBaR toolbox (http://marsbar.sourceforge.net/
index.html). Scene-selective regions (PPA, RSC, and TOS) were
defined using the localizer data in the contrast of scenes greater

than objects and phase-scrambled scenes. Typically, a threshold of
FWE p < 0.001 was used to define the set of voxels. Size of ROIs
were a priori chosen to have a goal of 100–200 voxels, or as close
to that as possible. Two control non-scene selective ROIs were also
chosen. One was a region in very early visual cortex along the left
hemisphere calcarine sulcus defined in the localizer data as phase-
scrambled greater than objects. The right hemisphere dorsolateral
prefrontal cortex (DLPFC) was also chosen as a control region,
which was defined using the localizer data in an all task (collapsed
across all three conditions) greater than baseline comparison.
Typically the threshold for the DLPFC ROI was lower than the
other ROIs—FWE p < 0.01, or p < 0.00001 uncorrected, if not
enough voxels survived the correction. Control ROIs were defined
in all participants.

AMAZON MECHANICAL TURK (MTurk)
Behavioral judgments of similarity for each pairwise comparison
of scenes were acquired through the use of study administered on
MTurk.

Participants
Participants were voluntarily recruited through the human intel-
ligence task (HIT) directory on MTurk. Enough individuals were
recruited to satisfy reaching 20 observations for each of the 4950
pairwise scene comparisons. This resulted in 567 individuals par-
ticipating in at least one HIT (10 scene pairs). An individual
participated in an average of 17.2 HITs, and the range was from
1 to 174. All participants reported they were over the age of 18,
with normal or corrected to normal vision, and located within
the United States. Participants were financially compensated for
each HIT completed. Participants read an online consent form
prior to testing in accordance with the procedures approved by
the Institutional Review Board of Carnegie Mellon University.

Procedure and data analysis
Each HIT contained 11 comparisons. Pairs of scenes were pre-
sented side-by-side, and the participant was asked to rate the
similarity of the two scenes on 1–7 scale (1 = completely differ-
ent; 7 = very similar), there was also an option of 8 for identical.
The scale was presented below the pair of images with both the
number and the description by each response button. In each
HIT there was one pair that was identical for use as a catch trial.
Participants were encouraged to use the entire scale. A partic-
ipant’s data were removed from the analysis if he/she did not
respond correctly on the catch trials. If the participant missed a
number of catch trials (over the course of several HITs) and exclu-
sively used only 1 and 8 on the scale, that participant’s entire data
was removed from the analysis due to ambiguity as to whether
she/he was actually completing the task, or just pressing 1 and 8.
All valid data was then log transformed due to a preponderance
of different judgments relative to any other response; skewness
of 2.67 (SE = 0.04) and kurtoisis of 8.76 (SE = 0.07). The data
were then used to construct a similarity matrix of the scenes
(100 × 100) with the value of each cell determined by the average
response for the pairwise comparison across the ∼20 observa-
tions. Some comparisons had missing responses due to removal
of ambiguous data.
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COMPUTER VISION (CV) METRICS
Each of the 100 scenes was analyzed by several different com-
puter vision methods. The vector of features for each scene within
each model was cross-correlated across all pairwise scene correla-
tions to generate the similarity matrix defining the scene-space
for that technique. We chose a wide variety of computer vision
models that implement features that can roughly be divided
in two categories: mid- and high-level attribute-based (NEIL,
SUN semantic attributes, GEOM) and low-level (GIST, SIFT,
HOG, SSIM, color). The former, attribute-based features, capture
semantic aspects in the image, for example, highways, fountains,
canyons, sky, porous etc. Low-level features such as GIST, SIFT,
and HOG capture distributions of gradients and edges in the
image. Gradients are defined as changes/derivatives of pixel val-
ues in the X and the Y direction in the image and edges are
obtained after post-processing of these gradients. Note that for
the purposes of this paper, we will use the terms gradients and
edges interchangeably. Finally, models such as SSIM encode geo-
metric layout of low-level features and shape information in the
image. Local self-similarities in edge and gradient distributions
complement low-level features such as those in SIFT. Critically,
all of these models have a proven track record for effective scene
classification (Oliva and Torralba, 2006; Vedaldi et al., 2010; Xiao
et al., 2010). We now describe each of these models in more
detail.

NEIL
The Never-Ending Image Learner (Chen et al., 2013) is a system
that continuously crawls the images on the internet to automat-
ically learn visual attributes, objects, scenes and common sense
knowledge (i.e., the relationships between them). NEIL’s strength
comes from the large-scale data it analyzes in which it learns
this knowledge; and by using commonsense relationships in this
knowledge base to constrain its classifiers. NEIL’s list of visual
attributes were generated using the following mechanism (Chen
et al., 2013): first, an exhaustive list of attributes used in the com-
puter vision community were compiled, which included semantic
scene attributes (SUN) (Patterson and Hays, 2012; Shrivastava
et al., 2012), object attributes (Farhadi et al., 2009; Lampert
et al., 2013) and generic attributes used for multimedia retrieval
(Naphade et al., 2006; Yu et al., 2012). This exhaustive list was
then pruned to only include attributes that represented adjectival
properties of scenes and objects (e.g., red, circle shape, vertical
lines, grassy texture). At the time of our study, the scene clas-
sifiers learned by NEIL were based on a scene space defined by
84 of these visual attributes, encompassing low-, mid- and high-
level visual information of the scenes. For each scene there is a
vector of scores, one for each attribute, of how confidently that
attribute can be identified in that scene image. For each attribute
classifier, we computed the variance of its scores across all scene
categories used within the experiment, and used exponentiated
variance for re-weighing the scores of each attribute individu-
ally. This normalization increases the weights on attributes that
are more effective for distinguishing between scene categories and
down weights the attributes that are less effective. The similarity
matrix for NEIL was constructed as a cross-correlation of these
scores.

Semantic scene attributes (SUN)
We use the set of 102 high-level SUN attributes as proposed in
Patterson and Hays (2012), which were originally defined through
crowd-sourcing techniques specifically intended to character-
ize scenes. These attributes were classified under five different
categories: materials (e.g., vegetation), surface properties (e.g.,
sunny), functions or affordances (e.g., biking), spatial envelope
(e.g., man-made), and object presence (e.g., tables). For each
attribute, we have a corresponding image classifier as trained in
Patterson and Hays (2012). The scores of these 102 classifiers
were then used as features. These scores represent the confidence
of each classifier in predicting the presence of the attribute in
the image. The similarity matrix for SUN was constructed as a
cross-correlation of these semantic attribute scores.

GEOM
Geometric class probabilities (Hoiem et al., 2007) for image
regions—ground (gnd), vertical (vrt), porous (por), sky, and all
were used. The probability maps for each class are further reduced
to 8 × 8 matrix, where each entry represents the probability of the
geometric class in a region of the image (Xiao et al., 2010). The
similarity matrix for GEOM for each subset definition (e.g., vrt)
was constructed as a cross-correlation of the probability scores for
each region of the picture.

GIST
GIST (Oliva and Torralba, 2006) captures spatial properties of
scenes (e.g., naturalness, openness, symmetry etc.) using low-
level filters. The magnitude of these low-level filters encodes
information about horizontal and vertical lines in an image, thus
encoding the global spatial structure. As a byproduct, it also
encodes semantic concepts like horizon, tall buildings, coastal
landscapes etc., which are highly correlated with distribution of
horizontal/vertical edges in an image. The GIST descriptor is
computed using 24 Gabor-like filters tuned to 8 orientations at
4 different scales. The squared output of each filter is then aver-
aged on a 4 × 4 grid (Xiao et al., 2010). The similarity matrix
for GIST was constructed as a cross-correlation of these averaged
filter outputs (512 dimensions).

HOG 2 × 2 (L0–L2)
Histogram of oriented gradients (HOG) (Dalal and Triggs, 2005)
divides an image into a grid of 8 × 8 pixel cells and computes his-
togram statistics of edges/gradients in each cell. These statistics
capture the rigid shape of an image and are normalized in differ-
ent ways to include contrast sensitive, contrast insensitive and tex-
ture distributions of edges. For HOG 2 × 2 (Felzenszwalb et al.,
2010; Xiao et al., 2010), the HOG descriptor is enhanced by stack-
ing spatially overlapping HOG features, followed by quantization
and spatial histograms. The spatial histograms are computed at
three levels on grids of 1 × 1 (L0), 2 × 2 (L1) and 4 × 4 (L2) (see
Xiao et al., 2010, for details). The similarity matrix for HOG 2 × 2
(L0–L2) was constructed as a cross correlation of these histogram
features at different image regions and spatial resolutions.

SSIM (L0–L2)
Self-similarity descriptors (Shechtman and Irani, 2007) capture
the internal geometric layout of edges (i.e., shape information)
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using recurring patterns in edge distributions. The descriptors
are obtained by computing the correlation map of a 5 × 5 patch
in a window with 40 pixels radius, followed by angular quantiza-
tion. These SSIM descriptors are further quantized into 300 visual
words using k-means (see Xiao et al., 2010, for details). The sim-
ilarity matrix for SSIM was constructed as a cross correlation of
these histograms of visual words at different spatial resolutions.

Finally, we included a variety of local image features based on
image gradient/texture and color. Following the standard Bag-of-
Words approach (vector quantization of features using k-means),
we generated a fixed-length representation for each image. We
used various dictionary sizes (k = 50, 250, 400, 1000) for each
feature. For implementation, (van de Sande et al., 2011) was
used for feature extraction and (Vedaldi and Fulkerson, 2010)
for k-means quantization of features. As suggested by Vedaldi
and Fulkerson (2010), we also L2 normalized each of the his-
tograms. The similarity matrix for each of the local image features
below was constructed as a cross correlation of these histograms
of visual words for each local feature. The local features used were
as follows:

• Hue histogram (50, 250, 400, 1000): A histogram based
on the hue channel 1 of the image in the HSV color
space representation. Roughly speaking, hue captures the
redness/greenness/blueness etc. of the color.

• SIFT (50, 250, 400, 1000): Scale invariant feature transform
(SIFT) (Lowe, 2004) characterizes each image based on local
edge features. For each point in the image, it captures the gradi-
ent distribution around it, generally by computing histograms
of edge feature in local neighborhood/patch and normalizing
these histograms to make the descriptor rotationally invariant
(even if the patch of pixels is rotated, the computed SIFT fea-
ture is the same). Standard SIFT works on grayscale images,
and we use dense-SIFT (see Xiao et al., 2010; van de Sande et al.,
2011).

• Hue-SIFT (50, 250, 400, 1000): SIFT computed only on the hue
channel of the HSV representation of the input image.

• RGB-SIFT (50, 250, 400, 1000): SIFT computed on each color
channel (R, G, and B) independently, and then concatenated.

CORRELATIONS ACROSS MEASURES
The similarity matrix arising from each method was converted
into a vector using data from one side of the diagonal. This
data were then fisher corrected for all analyses. First, a cross
correlation analysis was performed to acquire the Pearson’s r cor-
respondence between each method. The p-values in this cross
correlation are assumed to survive a Bonferroni correction cor-
recting for 4950 pairwise correlations of scenes (p < 0.00001).
For the regression analysis, p-values were corrected against 39
correlations (All ROIs, behavior, CV measures). To test the sig-
nificance between model fits, a bootstrapping method was imple-
mented. Testing across 1000 iterations of samples with replace-
ment, a 95% confidence interval between model fits (r2) was
defined. The confidence interval reflected a p < 0.05 correcting
for multiple comparisons. If the difference between the model
correlations exceeded the confidence interval, the models were

considered significantly different from each other (Wasserman,
2004).

RESULTS
We examined scene encoding in the human visual cortex by
defining ROIs in the brain that preferred scene stimuli to weak-
contextual objects and phase-scrambled scenes. This gives rise
to three ROIs: the PPA, RSC, and TOS where the BOLD sig-
nal was found to be significantly greater when viewing scenes as
compared to objects or phase-scrambled scenes. Additional two
brain regions were defined, an early visual region and a region
in the dorsolateral prefrontal cortex (DLPFC, see Materials and
Methods). These regions were chosen as control regions to com-
pare the scene ROIs (PPA, RSC, and TOS) to regions of the brain
involved in visual processing or in a cognitive task involving visual
stimuli, but that are not believed to be specific to scene process-
ing. Data for each of the 100 scenes were then extracted on a voxel
by voxel basis for each ROI. To examine the encoding of scenes
each pairwise correlation of the scenes was computed to deter-
mine how similar the patterns of activity across the voxels of an
ROI were from scene to scene. The resulting data were used to
create a similarity matrix describing the scene space in each ROI,
see Figure S3 for the similarity matrices of each ROI.

A separate behavioral study asking for an explicit judgment of
scene similarity was performed to examine the perceived similar-
ity between the 100 scenes. Using this data a similarity matrix was
derived that was representative of scene space as defined by per-
ceived similarity (see Figure S2). The data was split in half to test
reliability of the scores, and similarity measures across the two
halves correlated with an r = 0.84.

Finally, feature spaces defined through 30 different computer
vision (CV) techniques were used to construct a scene space for
each CV method. The features were cross-correlated for each pair-
wise correlation of the 100 different scenes to obtain a measure of
similarity, which resulted in each similarity matrix or scene-space.
Data were Fisher corrected, or log transformed (behavioral data),
and correlated across the different scene-spaces to determine the
similarity between these different scene representations (Figure 1;
Table 1).

One of the clearest results within the similarity matrix across
methods shown in Figure 1 is how much more similar the scene-
selective brain regions are to themselves as contrasted with any
other measure, and how similar subsets of the computer vision
methods are to themselves as contrasted with either the brain or
behavioral methods. One of the implications of this pattern is
that we still have a ways to go in accounting for the consistent
patterns of neural encoding for visual stimuli. This work-to-be-
done notwithstanding, the average correlation across scene ROIs
not including hemisphere correlate (e.g., LH PPA × LH RSC; LH
PPA × RH TOS) was r = 0.34, SD = 0.07. The greatest simi-
larities resulted from comparing across hemisphere of the same
region (e.g., LH PPA × RH PPA); mean r = 0.58, SD = 0.11. The
correlations between brain regions was considerably lower when
comparing a scene ROI with a control region, mean r = 0.16,
SD = 0.07, demonstrating the similarity specific to scene selec-
tive regions. CV measures were similar with themselves, r = 0.37,
SD = 0.29. And the least similarity was when comparing scene
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FIGURE 1 | Similarity matrix across different methods for constructing a

scene space. Each cell is the r -value computing the correlation between the
similarity of one scene space (e.g., voxel space in LH PPA) with another (e.g.,
attribute space in NEIL). Scene ROIs include the PPA, RSC, and TOS for each

hemisphere, and two control brain regions—an early visual region as well the
DLPFC. Computer vision methods are grouped according to their nominal
level of representation—e.g., GEOM is mid-level (purple); and HOG is
low-level (red).

brain ROIs with CV measures r = 0.04, SD = 0.06, however the
correlations did get as high as r = 0.22, p < 1.5 × 1048 found
between the RH PPA and the SUN measures. Similarity matrices
derived from low-level features such as SSIM and HOG were
either non-significant or negatively correlated with voxel space
from scene regions, but found to be positively correlated with the
early visual ROI. In general, the high-level CV methods (NEIL,
SUN) significantly correlated with the scene ROIs, where, the low-
level CV methods showed little correlation (although some did
reach significance, see Table 1). Suffice it to say, there is a great
deal of room for improvement in using CV measures to explain
brain encoding of scenes. Critically, this is not due to noise in the
signal—as already mentioned, there are strong correlations across
the scene-selective ROIs, supporting the assumption that there is
a meaningful code being used to process scenes, it just has yet to
be cracked. However, that we observe significant correlations with
some CV measures suggests we are making progress in explicat-
ing this code, and that the continued search for correspondences

between computer vision models and patterns of brain activity
may prove fruitful.

A more surprising result from our study is that correlations
with brain regions was stronger with CV models (especially those
with high- and mid- level features; average of SUN, NEIL, and
GEOM All r = 0.11, SD = 0.05) than with behavioral similarity
judgments (average r = 0.05, SD = 0.01). From these results we
infer that perceived similarity between scenes is based on different
visual and semantic parameters than those encoded in scene-
selective ROIs. From an empirical point of view, the fact that
our neurally-derived scene spaces do correlate more with some of
the scene spaces derived from CV models suggests that methods
drawn from computer vision offer a tool for isolating specific, and
perhaps more subtle, aspects of scene representation as encoded
in different regions of the human brain.

Beyond examining the general correspondence between CV
metrics and the neural encoding of scenes, we were interested in
the nature of the CV metrics offering the best correspondence and

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Aminoff et al. Scene-space in PPA, RSC, TOS

Table 1 | Pearson’s r-values for the correlations between similarity matrices.

Behavior LH+PPA RH+PPA LH+RSC RH+RSC LH+TOS RH+TOS Early+Visual DLPFC

Behavior 0.050 0.030 0.061 0.044 0.051 0.050 0.055 −0.044

NEIL 0.182 0.136 0.190 0.066 0.092 0.140 0.111 0.322 0.080

SUN 0.319 0.188 0.215 0.086 0.111 0.140 0.109 0.139 0.061

GEOM_All 0.107 0.067 0.085 0.055 0.070 0.089 0.077 0.111 0.042

GEOM_Gnd 0.078 0.038 0.048 0.045 0.059 0.053 0.054 0.133 0.015

GEOM_Por 0.094 0.079 0.115 0.043 0.067 0.058 0.060 0.100 0.054

GEOM_Sky 0.059 0.040 0.018 0.074 0.050 0.062 0.038 0.082 0.019

GEOM_Vrt 0.113 0.080 0.102 0.041 0.077 0.073 0.066 0.101 0.048

GIST 0.064 0.101 0.095 0.171 0.141 0.050 0.072 −0.057 0.032

SSIM_L0 0.182 −0.053 −0.071 0.005 0.006 −0.008 −0.028 0.088 −0.014

SSIM_L1 0.178 −0.070 −0.096 0.008 0.012 −0.019 −0.039 0.073 −0.024

SSIM_L2 0.175 −0.069 −0.093 0.011 0.018 −0.017 −0.036 0.087 −0.021

HOG_L0 0.201 −0.099 −0.131 −0.001 −0.015 −0.041 −0.074 0.108 −0.047

HOG_L1 0.193 −0.116 −0.151 0.014 0.000 −0.050 −0.075 0.085 −0.068

HOG_L2 0.198 −0.115 −0.157 0.025 0.005 −0.050 −0.072 0.072 −0.076

HueSIFT_50 0.151 0.105 0.105 0.013 0.038 0.083 0.066 0.154 0.025

HueSIFT_250 0.145 0.078 0.087 0.023 0.043 0.068 0.057 0.139 0.024

HueSIFT_400 0.151 0.096 0.100 0.028 0.045 0.076 0.064 0.128 0.021

HueSIFT_1000 0.153 0.087 0.090 0.035 0.049 0.066 0.057 0.116 0.014

RGBSIFT_50 0.156 0.007 0.029 0.011 0.033 0.009 −0.017 0.175 0.066

RGBSIFT_250 0.178 0.014 0.028 0.048 0.050 0.015 0.011 0.154 0.046

RGBSIFT_400 0.188 0.046 0.054 0.066 0.060 0.025 0.025 0.167 0.039

RGBSIFT_1000 0.188 0.077 0.087 0.083 0.076 0.046 0.052 0.153 0.048

SIFT_50 0.155 −0.002 0.025 0.018 0.043 0.006 −0.012 0.173 0.066

SIFT_250 0.173 0.018 0.037 0.045 0.048 0.010 0.005 0.136 0.058

SIFT_400 0.180 0.030 0.044 0.050 0.051 0.016 0.014 0.123 0.052

SIFT_1000 0.173 0.070 0.089 0.072 0.065 0.036 0.043 0.099 0.065

HueHist_50 0.137 0.061 0.055 0.001 0.029 0.068 0.045 0.093 0.003

HueHist_250 0.127 0.057 0.041 0.043 0.053 0.060 0.044 0.012 −0.017

HueHist_400 0.123 0.052 0.032 0.053 0.059 0.053 0.042 −0.012 −0.024

HueHist_1000 0.114 0.044 0.022 0.058 0.060 0.044 0.038 −0.033 −0.032

Gray values indicate p >0.05; and bolded values indicate survived correction for multiple correlations.

what this might reveal about the kind of information encoded in
scene-selective brain regions. Interestingly, we find that CV met-
rics that consider high-level visual attributes, that is, SUN and
NEIL, have the strongest correlation with the scene-selective ROIs
(Figure 2A). In general, the lower-level CV metrics performed
the worst (e.g., SSIM and HOG) and the mid-level features as
defined through the GEOM faired reasonably well and were sig-
nificantly correlated with scene-selective ROIs. This latter result
was not unexpected in that the GEOM feature space is designed
to divide a scene into those visual properties that define major fea-
tures of scenes (e.g., sky). Of particular note, GEOM Por, which
emphasizes material properties was significantly correlated with
the responses of the PPA, a result consistent with previous studies
in which it was found that the PPA is sensitive to both textures
and material information (Arnott et al., 2008; Cant and Goodale,
2011). GIST was the low-level CV model that most strongly cor-
related with scene ROIs—primarily RSC. This result in general
was not unexpected as GIST has previously been shown to be
correlated with scene ROIs (Watson et al., 2014) and with scene
recognition (Oliva and Torralba, 2006).

Helping validate the significance of our results, we note that
the hierarchy of correlations, with decreasing correlations pro-
gressing from high- to mid- to low-level visual features was
observed only in the scene-selective ROIs, but not in the two con-
trol regions (early visual and DLPFC; Figure 2A). More specif-
ically, although NEIL produced a strong correlation in both
control regions, the other high-level model, SUN, and mid-level
model, GEOM, were not the most significant correlations when
compared to low-level feature models (e.g., SIFT). That low-level
feature models resulted in higher-ranked correlations in early
visual regions as compared to high- and mid-level feature models
is consistent with the central role of these brain regions in early
visual processing.

To examine the consistency of this hierarchy of feature sen-
sitivity within the six scene-selective ROIs, we examined each
ROI separately and plotted the six CV metrics that showed the
best correlations (Figure 2B). Both SUN and NEIL (except for
the LH RSC) consistently resulted in close to the strongest cor-
relations with our neuroimaging data. To test the significance of
the model fits, a bootstrapping method was used to test for a
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FIGURE 2 | Strength of correlation between the similarity matrix of

computer vision (CV) metrics and the similarity matrix of patterns of

brain activity across voxels in each ROI. (A) The average correlation across
each CV metric and each of the scene ROIs is shown by the black bars. The
X-axis is ordered by the strength of this correlation. By way of comparison,
the correlations between the CV metrics and the two control regions are
illustrated by the light gray bars (early visual region) and the dark gray bars
(DLPFC). Error bars indicate standard error across the six scene ROIs (LH and

RH of the PPA, RSC, TOS). Note that font color indicates the approximate
level of featural analysis implemented in each specific CV metric: blue and
green are high-level; purple is mid-level; and red is low-level. Numbers
indicate the top 6 correlations in the early visual regions (light gray font,
above light gray bars) and in the DLPFC (dark gray front, above dark gray
bars). (B) The top-ranked 6 CV metrics that correlated with the
neurally-derived similarity matrix in each of the 6 scene-selective ROIs. The
Y-axis is Pearson’s r -value.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Aminoff et al. Scene-space in PPA, RSC, TOS

p < 0.05 correcting for multiple correlations. For a full plot of all
correlations, see Figure S4. Only in the LH PPA did the SUN fea-
tures significantly account for more variance in brain data than
NEIL features, in the other ROIs they were statistically equiva-
lent. The PPA and the TOS both had SUN and NEIL fitting the
data the best, performing significantly better than behavior, low
level features such as HueHist, SIFT, RGBSIFT. In some cases the
variances accounted for by HOG and SSIM, which was negatively
correlated, did not significantly differ from SUN and NEIL (LH
PPA, RH PPA, RH TOS). However, it is hard to interpret the
significance of a negative correlation, so we provide this result
with caution. Interestingly, color also seemed to be an impor-
tant feature in encoding scene space. Hue SIFT, which takes into
account scale invariant local features with respect to different
hue maps, gave rise to scene spaces that were correlated with the
neural responses measured in both TOS and demonstrated sig-
nificance above a number of other models in the PPA. Although
numerically midlevel features—GEOM—correlated better than
low level features, significance was only reached for GEOM_por
and GEOM_sky in the RH PPA, and GEOM_all in the LH
TOS. On the other hand, the RSC had a different pattern of
correlations. GIST showed the strongest correlation with our neu-
roimaging data within the RSC, fitting significantly better than all
other models in the LH RSC, and all models except for the SUN
features in the RH RSC. This is consistent with previous results
demonstrating a correspondence for GIST with the responses
of this region (Watson et al., 2014). In the LH RSC and RH
RSC SUN features and RGB SIFT correlated at levels significantly
over other models, and within the RH RSC NEIL also correlated
significantly over and above other models. Overall, high-level
feature models produced the scene spaces most consistently cor-
related with the scene spaces derived from scene-selective ROIs
in the PPA and TOS, whereas GIST correlated the best, and
the high-level SUN and NEIL features correlated next best in
the RSC.

To investigate the reliability of this dataset we split the data
in two (one for each session) and tested the consistency of the
results. We found the correlations between the brain data with
the CV measures and behavioral judgments were very consistent
over the two sessions, resulting in an average r = 0.76, SD = 0.19;
where the strongest consistency was in the PPA and early visual
regions r = 0.94, SD = 0.02, and the lowest consistency was in
the RH RSC (r = 0.43) and the DLPFC (r = 0.63). In addition,
we examined the effect of including the trials that “jiggled” on
the analysis, until this point all analyses include the rotated trials.
We performed the analyses with and without the rotated trials,
showing very little effect of including all trials in the average, the
average r-value obtained across all ROIs with the CV measures
and behavioral data across the two analyses was 0.97, SD = 0.02.
The most notable difference in the analysis that did not include
the rotated trials was an increase in the correlation with GIST.
This result provides some insight into the nature of the correla-
tion between GIST and scene ROIs, one that may be less stable
than the others and therefore may not allow theoretical inference
about the nature of scene representations in these brain regions.

Finally, we were especially interested in examining the simi-
larity between NEIL-derived scene-space and our neuroimaging

data. The web-scale nature of how NEIL learns about regulari-
ties across scene categories is appealing in that it seems to best
capture both the evolutionary history of our visual systems and
the kind of neural statistical learning that seems to emerge over
a lifetime of experience. NEIL’s features capture the visual regu-
larities that give rise to semantic information, helping to define
the visual features that give rise to scene understanding. Table 1
shows that the scene space derived from NEIL’s attributes is sig-
nificantly correlated with our neurally-derived scene space within
each scene-selective ROI. However, the question remains about
how well does NEIL do over and above all the other CV mea-
sures. To address this, we ran a hierarchical regression for each
ROI (Figure 3). In this regression the first input was the low-level
CV metrics (Hue Histogram, SIFT, HOG, SSIM) and the second
input was to separately add GIST, to see what variance was left
over when the low-level visual features were removed. Next we
entered the GEOM metrics, followed by the SUN attributes, fol-
lowed by NEIL, and, finally, the last block being our behavioral
data. This regression demonstrates that NEIL accounts for a sig-
nificant amount of the variance in defining the neurally-derived
scene space over and above any of the other CV metrics in both
the PPA and the TOS, as well as in early visual regions. As such,
it appears as if NEIL is capturing something unique about scene
representation within the PPA, TOS, and early visual regions that
is not captured by any of the other models. The behavioral data
only accounted for unique variance above that already accounted
for in the LH RSC and the DLPFC.

DISCUSSION
We started with the challenge of specifying the “language” of mid-
and high-level features supporting object and scene recognition.
Given the large space of possible answers to this question, we
attempted to constrain the possible answers by applying a vari-
ety of computer vision models that make somewhat different
assumptions regarding the nature of this language. To evaluate
the effectiveness of these different assumptions, we explored the
degree to which each model accounted for patterns of neural data
arising from scene processing by scene-selective brain regions. We
found that:

• The NEIL and SUN models—both of which rely on mid-
and high-level visual features—were best at accounting for
variation in the neural responses of both the PPA and the
TOS. The fact that NEIL was equivalent to SUN indicates that
statistically-derived features offer a viable model of scene rep-
resentation that may, ultimately, reveal non-intuitive coding
principles for scenes.

• The GIST model—a model which relies on global spatial prop-
erties of scenes—was best at accounting for variations in the
neural responses of the RSC. Additional unique variance in the
RSC was accounted for by our behaviorally-obtained similarity
ratings.

• Given points (1) and (2), there is support for a model of scene
processing in which PPA and TOS are coding scene informa-
tion differently from RSC, with the former coding for the visual
attributes within scenes and the latter coding for higher-order,
scene categories.
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FIGURE 3 | Hierarchical regression. Data in the bottom row of the table is
the initial R-value yielded from the low-level CV measures. Each row above
indicates the change in R-value when the variables listed were added. Order
of blocks are (1) Low-level (HueHist, SIFT, HOG, SSIM, entered

simultaneously), (2) GIST, (3) GEOM (All, Gnd, Pos, Sky, Vrt, entered
simultaneously), (4) SUN, (5) NEIL, (6) Behavioral. ∗Denotes changes in R that
reached significance p < 0.05 corrected for multiple correlations; + denotes
changes in R that reached significance p < 0.05 uncorrected.

• The most effective computer vision models were better than
behaviorally-obtained ratings of scene similarity at accounting
for variance in our neural data.

Of note, we found that regions of the brain selective for scene pro-
cessing respond similarly to the same scenes, and treating, similar
scenes as defined in one ROI as similar in another ROI, and, dif-
ferent scenes as defined in one ROI as different in another ROI.
This pattern of results suggests that there is a stable encoding
pattern for scenes within scene-selective brain regions and that
voxel-to-voxel variation carries meaningful information regard-
ing commonalities and differences between scenes.

These results suggest that, as a first step, applying computer
vision models to neural data may allow us to better understand
how scene information is encoded in neural systems. In par-
ticular, we view the application of NEIL as having the most
promise in that its “vocabulary” of scene attributes does not
ultimately depend on intuition, but rather on those regulari-
ties that can be learned from scene data. By way of example,
NEIL includes visual features such as textures, color/shape com-
binations, and geometric configurations that do not readily cor-
respond to any typical part label, but that may help enable
NEIL’s ability to categorize scenes. More generally, models such
as NEIL offer better-specified theories of visual representation:
it is our contention that NEIL and other artificial vision models
offer meaningful—and testable—constraints at multiple levels of

visual processing. With respect to our present results, we can
now iterate toward more fine-grained tests of the most promising
models (NEIL, SUN, GIST).

Beyond the well-specified representational constraints inher-
ent in any functional model of computer vision, adopting multi-
ple models also allowed us to consider a range of feature repre-
sentations. In particular, the computer vision methods employed
here ranged from analyzing low-level features, such as orienta-
tion information and spatial frequency, to high-level features,
such as semantic categories. As expected, the low-level feature
spaces (e.g., SIFT) were best correlated with patterns of voxel
activity found in early visual brain regions, but were not highly
positively correlated with the patterns of activity arising from
scene-selective cortex. In contrast, as discussed, NEIL, SUN, and
GIST gave rise to feature spaces that were most strongly correlated
with the patterns of activity arising from scene-selective brain
regions. Moreover, we found that NEIL’s feature space, in partic-
ular, accounted for unique variance that could not be accounted
for by any of the other methods. Together, our results indicate
that the PPA, RSC, and TOS are involved in the processing of
mid- to high-level features of scenes. We should note also that
one curious result is the fact that NEIL accounted for signifi-
cant variance in early visual areas. However, without a map of
retinotopy for these early visual areas, it is difficult to say much
about what NEIL’s features may reveal about these processing
areas.
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Finally, we also observed that two models relying primarily on
low-level features were significantly correlated with certain scene-
selective brain regions. First, GIST correlated quite strongly with
the RSC, replicating previous findings demonstrating a connec-
tion between GIST and the RSC functional properties (Watson
et al., 2014). This suggests that the RSC may contribute to pro-
cessing an image’s spatial envelope or global scene properties
which are known to be involved in scene understanding (Oliva
and Torralba, 2006; Greene and Oliva, 2009). Moreover the RSC
has been shown to process a representation of the scene that is
abstracted from what is seen in the environment, typically pro-
cessing a broader environment that extends beyond the current
saccade (Epstein and Higgins, 2007; Park et al., 2007; Park and
Chun, 2009). One possibility is that the RSC may process the
low spatial frequencies or global properties of a scene that are
strongly indicative of scene category. In addition, RSC was found
to correlate with behavioral ratings of similarity, which was not
found in the PPA or the TOS. That the correlations with GIST and
behavior were unique to the RSC may suggest that RSC may pro-
vide a more categorical, or high-order representation of scenes.
The second low-level model proved to be important were SIFT
features in color domains that correlated strongly with multiple
scene-selective regions: Hue SIFT showed strong correlations with
the PPA and TOS, while RGB SIFT showed strong correlations
with the RSC. In earlier work, junctures within scenes, which
may be similar to SIFT features, were found to be important
for scene categorization (Walther and Shen, 2014). Our results
add to this finding by suggesting that key features but specifically
within different color domains also carry information regarding
scene categories. That is, scene-selective brain regions may rely on
color cues in scene understanding—a claim consistent with ear-
lier behavioral research on scene processing (Oliva and Schyns,
2000). At the same time, the lower correlations observed for the
Hue Histogram model as compared to the Hue SIFT and RGB
SIFT models suggest that it is not color per se that carries this
information, but rather information about scene categories arises
from an interaction of SIFT features within color domains. In par-
ticular, the perirhinal cortex—a region of the parahippocampal
gyrus adjacent to the PPA—has been shown to unitize properties
across an object; for example, that stop signs are red (Staresina
and Davachi, 2010). As such, this function may extend to the
parahippocampal region more generally being seen as unitizing
diagnostic features, with the PPA supporting this function within
scene processing.

In sum, we explored the visual dimensions underlying the neu-
ral representation of scenes using an approach in which models
derived from computer vision are used as proxies for any psycho-
logical theory. While this approach may seem somewhat indirect,
we argue that it is a necessary precursor in that extant psycho-
logical models have typically been somewhat underspecified with
respect to the potential space of visual features. Humans can
identify scenes effortlessly under a wide variety of conditions.
For example, we can name scenes with near-equivalent accuracy
when shown both photographs and line drawings, and with color
present or absent. There is, then, no single feature dimension
that drives the organization of scene-selective cortex. However,
some dimensions are likely to prove more effective than others.

Color is just one example of the many diagnostic cues that are
used to aid in scene perception. There are almost surely a range
of visual attributes and their associations within scenes that are
diagnostic as to their categories and to which we are sensitive
(Bar et al., 2008; Aminoff et al., 2013). Computer vision models,
to the extent that they make representational assumptions with
respect to scene attributes and their associations (i.e., models with
a less well-understood representational basis may not actually be
particularly informative), are, therefore, useful for better expli-
cating those featural dimensions involved in human visual scene
processing.

ACKNOWLEDGMENTS
Supported by Office of Naval Research—MURI contract number
N000141010934 and National Science Foundation 1439237. We
thank Carol Jew for help in data collection; and Ying Yang and
Tim Verstynen for technical assistance.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fncom.

2015.00008/abstract

REFERENCES
Aminoff, E. M., Kveraga, K., and Bar, M. (2013). The role of the parahip-

pocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390. doi:
10.1016/j.tics.2013.06.009

Arnott, S. R., Cant, J. S., Dutton, G. N., and Goodale, M. A. (2008). Crinkling
and crumpling: an auditory fMRI study of material properties. Neuroimage 43,
368–378. doi: 10.1016/j.neuroimage.2008.07.033

Baldassi, C., Alemi-Neissi, A., Pagan, M., DiCarlo, J. J., Zecchina, R., and Zoccolan,
D. (2013). Shape similarity, better than semantic membership, accounts for
the structure of visual object representations in a population of monkey
inferotemporal neurons. PLoS Comput. Biol. 9:e1003167. doi: 10.1371/jour-
nal.pcbi.1003167.s004

Bar, M., and Aminoff, E. (2003). Cortical analysis of visual context. Neuron 38,
347–358. doi: 10.1016/S0896-6273(03)00167-3

Bar, M., Aminoff, E., and Schacter, D. L. (2008). Scenes unseen: the parahip-
pocampal cortex intrinsically subserves contextual associations, not scenes
or places per se. J. Neurosci. 28, 8539–8544. doi: 10.1523/JNEUROSCI.0987-
08.2008

Barenholtz, E., and Tarr, M. J. (2007). “Reconsidering the role of structure in
vision,” in Categories in Use, Vol. 47, eds A. Markman and B. Ross (San Diego,
CA: Academic Press), 157–180.

Cant, J. S., and Goodale, M. A. (2011). Scratching beneath the surface: new insights
into the functional properties of the lateral occipital area and parahippocampal
place area. J. Neurosci. 31, 8248–8258. doi: 10.1523/JNEUROSCI.6113-10.2011

Cant, J. S., and Xu, Y. (2012). Object ensemble processing in human
anterior-medial ventral visual cortex. J. Neurosci. 32, 7685–7700. doi:
10.1523/JNEUROSCI.3325-11.2012

Chen, X., Shrivastava, A., and Gupta, A. (2013). “NEIL: extracting visual knowledge
from web data,” in IEEE International Conference on Computer Vision (ICCV)
(Sydney), 1409–1416.

Dalal, N., and Triggs, B. (2005). Histograms of oriented gradients for human detec-
tion. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 886–893. doi:
10.1109/CVPR.2005.177

Diedrichsen, J., and Shadmehr, R. (2005). Detecting and adjusting for
artifacts in fMRI time series data. Neuroimage 27, 624–634. doi:
10.1016/j.neuroimage.2005.04.039

Epstein, R. A., and Higgins, J. S. (2007). Differential parahippocampal and retros-
plenial involvement in three types of visual scene recognition. Cereb. Cortex 17,
1680–1693. doi: 10.1093/cercor/bhl079

Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. (2009). “Describing objects
by their attributes,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Miami Beach, FL).

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 13

http://www.frontiersin.org/journal/10.3389/fncom.2015.00008/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00008/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Aminoff et al. Scene-space in PPA, RSC, TOS

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object
detection with discriminatively trained part-based models. Pattern Anal. Mach.
Intell. IEEE Trans. 32, 1627–1645. doi: 10.1109/TPAMI.2009.167

Greene, M. R., and Oliva, A. (2009). Recognition of natural scenes from global
properties: seeing the forest without representing the trees. Cogn. Psychol. 58,
137–176. doi: 10.1016/j.cogpsych.2008.06.001

Harel, A., Kravitz, D. J., and Baker, C. I. (2013). Deconstructing visual scenes in
cortex: gradients of object and spatial layout information. Cereb. Cortex 23,
947–957. doi: 10.1093/cercor/bhs091

Hoiem, D., Efros, A. A., and Hebert, M. (2007). Recovering surface layout from an
image. Int. J. Comput. Vis. 75, 151–172. doi: 10.1007/s11263-006-0031-y

Khaligh-Razavi, S., and Kriegeskorte, N. (2014). Deep supervised, but not unsu-
pervised, models may explain IT cortical representation. PLOS Comput. Biol.
10:e1003915. doi: 10.1371/journal.pcbi.1003915

Kravitz, D. J., Peng, C. S., and Baker, C. I. (2011). Real-world scene representations
in high-level visual cortex: it’s the spaces more than the places. J. Neurosci. 31,
7322–7333. doi: 10.1523/JNEUROSCI.4588-10.2011

Lampert, C., Nickisch, H., and Harmeling, S. (2013). Attribute-based classification
for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell.
36, 453–465. doi: 10.1109/TPAMI.2013.140

Leeds, D. D., Seibert, D. A., Pyles, J. A., and Tarr, M. J. (2013). Comparing visual
representations across human fMRI and computational vision. J. Vis. 13, 25.
doi: 10.1167/13.13.25

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vis. 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Naphade, M., Smith, J., Tesic, J., Chang, S., Hsu, W., Kennedy, L., et al. (2006).
Large-scale concept ontology for multimedia. IEEE Multimedia Mag. 13, 86–91.
doi: 10.1109/MMUL.2006.63

Nasr, S., Echavarria, C. E., and Tootell, R. B. H. (2014). Thinking outside the
box: rectilinear shapes selectively activate scene-selective cortex. J. Neurosci. 34,
6721–6735. doi: 10.1523/JNEUROSCI.4802-13.2014

Nestor, A., Vettel, J. M., and Tarr, M. J. (2008). Task-specific codes for face recog-
nition: how they shape the neural representation of features for detection and
individuation. PLoS ONE 3:e3978. doi: 10.1371/journal.pone.0003978

Oliva, A., and Schyns, P. G. (2000). Diagnostic colors mediate scene recognition.
Cogn. Psychol. 41, 176–210. doi: 10.1006/cogp.1999.0728

Oliva, A., and Torralba, A. (2001). Modeling the shape of the scene: a holistic
representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175. doi:
10.1023/A:1011139631724

Oliva, A., and Torralba, A. (2006). Building the gist of a scene: the role of global
image features in recognition. Prog. Brain Res. 155, 23–36. doi: 10.1016/S0079-
6123(06)55002-2

Park, S., Brady, T. F., Greene, M. R., and Oliva, A. (2011). Disentangling scene
content from spatial boundary: complementary roles for the parahippocam-
pal place area and lateral occipital complex in representing real-world scenes.
J. Neurosci. 31, 1333–1340. doi: 10.1523/JNEUROSCI.3885-10.2011

Park, S., and Chun, M. M. (2009). Different roles of the parahippocampal place
area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception.
Neuroimage 47, 1747–1756. doi: 10.1016/j.neuroimage.2009.04.058

Park, S., Intraub, H., Yi, D.-J., Widders, D., and Chun, M. M. (2007). Beyond the
edges of a view: boundary extension in human scene-selective visual cortex.
Neuron 54, 335–342. doi: 10.1016/j.neuron.2007.04.006

Park, S., Konkle, T., and Oliva, A. (2014). Parametric coding of the size and clutter
of natural scenes in the human brain. Cereb. Cortex. doi: 10.1093/cercor/bht418.
[Epub ahead of print].

Patterson, G., and Hays, J. (2012). “Sun attribute database: discovering, annotating,
and recognizing scene attributes,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Providence, RI), 2751–2758.

Shechtman, E., and Irani, M. (2007). “Matching local self-similarities across images
and videos,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Minneapolis, MN), 1–8.

Shrivastava, A., Singh, S., and Gupta, A. (2012). “Constrained semi-supervised
learning using attributes and comparative attributes,” in Proceedings of European
Conference on Computer Vision (ECCV) (Florence), 369–383.

Stansbury, D. E., Naselaris, T., and Gallant, J. L. (2013). Natural scene statis-
tics account for the representation of scene categories in human visual cortex.
Neuron 79, 1025–1034. doi: 10.1016/j.neuron.2013.06.034

Staresina, B. P., and Davachi, L. (2010). Object unitization and associative memory
formation are supported by distinct brain regions. J. Neurosci. 30, 9890–9897.
doi: 10.1523/JNEUROSCI.0826-10.2010

van de Sande, K. E., Gevers, T., and Snoek, C. G. (2011). Empowering
visual categorization with the GPU. Multimedia IEEE Trans. 13, 60–70. doi:
10.1109/TMM.2010.2091400

Vedaldi, A., and Fulkerson, B. (2010). VLFeat: an open and portable library
of computer vision algorithms. Proc. Int. Conf. Multimedia 1469–1472. doi:
10.1145/1873951.1874249

Vedaldi, A., Ling, H., and Soatto, S. (2010). Knowing a good feature when you see it:
ground truth and methodology to evaluate local features for recognition. Stud.
Comput. Intell. 285, 27–49. doi: 10.1007/978-3-642-12848-6_2

Walther, D. B., and Shen, D. (2014). Nonaccidental properties underlie human
categorization of complex natural scenes. Psychol. Sci. 25, 851–860. doi:
10.1177/0956797613512662

Wasserman, L. (2004). “The bootstrap”, in All of Statistics: A Concise Course
of Statistical Inference (New York, NY: Springer Publishing Company),
107–118.

Watson, D. M., Hartley, T., and Andrews, T. J. (2014). Patterns of response to
visual scenes are linked to the low-level properties of the image. Neuroimage
99, 402–410. doi: 10.1016/j.neuroimage.2014.05.045

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). “Sun
database: large-scale scene recognition from abbey to zoo,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (San Francisco, CA),
3485–3492.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and
DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.
doi: 10.1073/pnas.1403112111

Yu, F., Ji, R., Tsai, M., Ye, G., and Chang, S. (2012). “Weak attributes for large-scale
image retrieval,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Providence, RI), 2949–2956.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 10 September 2014; accepted: 15 January 2015; published online: 04
February 2015.
Citation: Aminoff EM, Toneva M, Shrivastava A, Chen X, Misra I, Gupta A and Tarr
MJ (2015) Applying artificial vision models to human scene understanding. Front.
Comput. Neurosci. 9:8. doi: 10.3389/fncom.2015.00008
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2015 Aminoff, Toneva, Shrivastava, Chen, Misra, Gupta and Tarr.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 14

http://dx.doi.org/10.3389/fncom.2015.00008
http://dx.doi.org/10.3389/fncom.2015.00008
http://dx.doi.org/10.3389/fncom.2015.00008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Applying artificial vision models to human scene understanding
	Introduction
	Materials and Methods
	Stimuli
	fMRI Experiment
	Localizer stimuli
	Participants
	Procedure
	fMRI data acquisition
	fMRI data analysis
	Functional scene localizer
	Event-related scene data

	Region of interest (ROI) analysis

	Amazon Mechanical Turk (MTurk)
	Participants
	Procedure and data analysis

	Computer Vision (CV) Metrics
	NEIL
	Semantic scene attributes (SUN)
	GEOM
	GIST
	HOG 2 2 (L0–L2)
	SSIM (L0–L2)

	Correlations Across Measures

	Results
	Discussion
	Acknowledgments
	Supplementary Material
	References


