ORIGINAL ARTICLE

1

YCHOPHARMACOLOGY

Comparative analysis of palmitoylation sites of serotonin (5-HT) receptors in vertebrates

Toshie Kaizuka | Takashi Hayashi 🗈

Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan

Correspondence

Takashi Hayashi, Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan. Email: thayashi@ncnp.go.jp

Funding information

Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Grant/Award Number: 16K07078; Japan Agency for Medical Research and Development (AMED) Grant/Award Number: JP17gm5910009; Takeda Science Foundation; Mitsubishi Foundation; Brain Science Foundation; Suzuken Memorial Foundation; Astellas Foundation for Research on Metabolic Disorders

Abstract

Background: In the vertebrate central nervous system as well as in the periphery, serotonin, also known as 5-hydroxytriptamine (5-HT), function as a neurotransmitter, a hormone or a mitogen. 5-HT receptors are composed of 7 family 5-HT_{1-7} receptors, comprising of 14 structurally and pharmacologically distinct 5-HT receptor subtypes. Previous experimental studies showed that mouse 5-HT_{1A} , 5-HT_4 and 5-HT_7 receptors are regulated by post-translational protein palmitoylation, the reversible attachment of the lipid palmitate to intracellular cysteine residues. Here, we further focused on conservation of these putative palmitoylation sites found in vertebrate 5-HT receptor orthologs.

Methods and Results: Analysis of sequence databases provides evidence to suggest that palmitoylation sites of these 5-HT receptors have been extremely conserved in the vertebrate lineages from jawless fishes to human, in spite of the divergence of $5-HT_{1A}$, $5-HT_4$ or $5-HT_7$ receptors full-length amino acid sequences during molecular evolution. **Conclusion:** Our findings mean that dynamic regulation of 5-HT receptors made possible by reversible post-translational protein palmitoylation may be critical for refined functions of the vertebrate serotonergic systems.

KEYWORDS

5-hydroxytryptamine, orthologs, post-translational protein palmitoylation, receptor, serotonin, vertebrate

1 | INTRODUCTION

Serotonin, also chemically known as 5-hydroxytryptamine (5-HT), is an important monoamine neurotransmitter and a local hormone, which diversely acts in the vertebrate central nervous system as well as in the various peripheral organs.¹ Serotonergic dysfunction induces multiple psychiatric disorders, including mood disorders, such as major depressive disorder and bipolar disorder.^{2–5} Evolutionally, serotonin is widely used in invertebrates, plants, and even in unicellular organism.^{1.6} In mammals, serotonin effects are mediated via 7 family $5-HT_{1-7}$ receptors, comprising of 14 structurally and pharmacologically distinct subtypes: $5-HT_{1A}$, $5-HT_{1B}$, $5-HT_{1D}$, $5-HT_{1E}$, $5-HT_{1F}$, $5-HT_{2A}$, $5-HT_{2B}$, $5-HT_{2C}$, $5-HT_{3}$, $5-HT_{4}$, $5-HT_{5A}$, $5-HT_{5B}$, $5-HT_{6}$, and $5-HT_{7}$.⁷ These 5-HT receptors are classified into G protein-coupled receptors (GPCRs) with the exception of the $5-HT_{3}$ receptor, which is a ligand-gated sodium/potassium cation channel.^{7,8} All GPCR-type 5-HT receptor isoforms have evolutionarily conserved 7 transmembrane regions with the extracellular N-terminal domain and the C-terminal cytoplasmic domain.

One key modification of mammalian 5-HT receptors is the reversible attachment of the lipid palmitate to intracellular cysteine residues. Previous biochemical studies showed that 4 5-HT receptor subtypes, mouse 5-HT_{1A}, 5-HT_{1B}, 5-HT₄, and 5-HT₇ receptors are palmitoylated within their C-terminal intracellular region like many other GPCRs.^{9,10}

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2018 The Authors. *Neuropsychopharmacology* Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsychopharmacology NEUROPSYCHOPHARMACO REPORTS

This process, post-translational protein palmitoylation, acts as a sticky "tag" that can direct channels and receptors to specific regions of the plasma membrane, or to specific intracellular membranes or vesicles.^{11–14} Genetic evidence strongly links impaired palmitoylation to abnormal mammalian brain development and/or function, including human neuropsychiatric disorders.^{15–20} Biochemical experiments have already determined the palmitoylation sites of mouse 5-HT_{1A} receptor,²¹ 5-HT₄ receptor,^{22,23} and 5-HT₇ receptor.²⁴

In this report, we further focused on conservation of $5-HT_{1A}$, $5-HT_4$, and $5-HT_7$ receptor palmitoylation sites found in their vertebrate orthologs. Analysis of sequence databases provides evidence for the acquisition and conservation of palmitoylation mechanism in these 5-HT receptor regulations during vertebrate evolution.

2 | METHODS

For analysis of the 5-HT receptor orthologs, currently available protein sequences, cDNA sequences, expressed sequence tags (ESTs), and genomic sequences were obtained by searching the National Center for Biotechnology Information (NCBI) databases, GenBank, EST banks, elephant shark genome project (http://esharkgenome. imcb.a-star.edu.sg/), Joint Genome Institute (http://genome.jgi-psf. org), and the Ensembl database (http://www.ensembl.org/) by sequence homologies. Amino acid sequence alignments among 5-HT receptor orthologs were performed using a Basic Local Alignment Search Tool (BLASTP) search of the NCBI (https://blast.ncbi.nlm.nih. gov/ with BLOSUM62). For the evaluation of sequence homology between humans and animal species in each class, full-length data of 5-HT_{1A}, 5-HT_{4(a)}, and 5-HT_{7(a)} receptor orthologs were used for calculation (Table 1). Both splice variants, $5-HT_{4(a)}$ and $5-HT_{7(a)}$ receptors, uniquely possess variant-specific palmitoylation sites in addition to the common palmitoylation sites of $5-HT_4$ and $5-HT_7$ receptor variants, respectively (for detail, see Figure 3A,B). To analyze the conservation and exchange of all palmitoylation sites, we select 5- $HT_{4(a)}$ and 5-HT_{7(a)} receptors, rather than other 5-HT₄ and 5-HT₇ variants, for the homology comparison. Average of all identity percentages across 5-HT receptor orthologs is shown in the text.

A full phylogenetic tree of 5-HT_{1A} orthologs can be found at: http://www.ensembl.org/Homo_sapiens/Gene/Compara_Tree?db=c ore;g=ENSG00000178394;r=5:63960356-63962507.

A full phylogenetic tree of 5-HT₄ orthologs can be found at: http://www.ensembl.org/Homo_sapiens/Gene/Compara_Tree?db=c ore;g=ENSG00000164270;r=5:148451032-148677235.

A full phylogenetic tree of 5-HT₇ orthologs can be found at: http://www.ensembl.org/Homo_sapiens/Gene/Compara_Tree?db=c ore;g=ENSG00000148680;r=10:90740823-90857698.

3 | RESULTS

Recent expansive progress in genome analyses revealed that many vertebrate species possess $5-HT_{1A}$, $5-HT_4$, and $5-HT_7$ receptor

orthologs (Figure 1). Generally speaking, structurally or functionally important amino acid residues are conserved during molecular evolution against mutation pressure. The homology comparison of fulllength amino acid sequence of 5-HT_{1A} receptor orthologs showed ~93% identity among mammalian species, ~80% identity between humans and birds, ~76% identity between humans and reptiles, ~74% identity between humans and amphibians, ~71% identity between humans and ray-finned fishes (the class Actinopterygii) (Figure 2A). The homology comparison of full-length amino acid sequence of 5-HT_{4(a)} (or 5-HT_{4 isoform X2}) receptor orthologs showed ~96% identity among mammalian species, ~87% identity between humans and birds, ~88% identity between humans and reptiles, ~85% identity between humans and amphibians, ~76% identity between humans and ray-finned fishes (Figure 2B). The homology comparison of full-length amino acid sequence of 5-HT_{7(a)} receptor orthologs showed ~95% identity among mammalian species, ~83% identity between humans and birds, ~86% identity between humans and reptiles, ~77% identity between humans and amphibians. 5-HT₇ (a)-type splice variants have not been identified for fishes (Figure 2C). Random mutations are observed all over vertebrate 5-HT receptor sequences during vertebrate evolution. Sequence alignment among 5-HT_{1A}, 5-HT₄, or 5-HT₇ receptor orthologs revealed that cysteine residues at the putative palmitoylation sites are extremely conserved across vertebrates. (All currently available sequence data are shown in Table 1.) Details for each 5-HT receptor subtype are described below. While there is no strict consensus rule in amino acid sequence around known palmitoylated cysteines, hydrophobic residues (Ile, Leu, Val, and Phe) and positively charged basic residues (Arg and Lys) often locate around the palmitoylation sites, which might contribute to membrane binding.^{11,25} Actually, hydrophobic residues exist around the putative palmitoylation sites in vertebrate 5-HT_{1A}, 5-HT₄, and 5-HT₇ receptor orthologs (Table 1). Arginine and lysine residues are notably detected around the putative palmitoylation sites in most vertebrate 5-HT_{1A} and 5-HT₇ receptor orthologs. Concerning 5-HT₄ receptors, arginine, lysine, or histidine residues locate around the putative palmitoylation sites in almost all cartilaginous and ray-finned fishes, but not in coelacanth and tetrapods.

3.1 | 5-HT_{1A} receptor palmitoylation sites in various vertebrate species

A previous work demonstrated that mouse 5-HT_{1A} receptor is doubly palmitoylated at its C-terminal cysteine residues Cys417 and Cys420.²¹ Stable palmitoylation is required for the receptor coupling to the G_i protein that regulates the inhibition of downstream cAMP formation. Sequence comparison of total 216 vertebrate species from jawless fish (sea lamprey) to humans showed that the first palmitoylation site corresponding to mouse/human 5-HT_{1A} receptor Cys417 is completely conserved in all vertebrate species without exception (Table 1). Concerning another palmitoylation site Cys420, 5-HT_{1A} receptor orthologs of all tetrapods, non-tetrapod lobe-finned fish (the class Sarcopterygii), and cartilaginous fish, namely mammals, birds, reptiles, amphibians, coelacanth, and whale shark possess a

NEUROPSYCHOPHARMACOLC REPORTS

TABLE 1 The BLAST alignments of palmitoylation sites in vertebrate 5-HT_{1A}, 5-HT₄, and 5-HT₇ receptor orthologs

	Species (common name)	Species (Latin name)	identit (%)	y 5-HT1A C417C420	identity (%)	5-HT4 C328C329	5-HT4(a) C386	identity (%)	/ 5-HT7 C401	5-HT7(a) A435C438		
Phylum: Chordata	Subphylum: Vertebrata										Superorder	Subclass
Superclass: Gnathostomata	Class: Mammalia	//	100		100			100				E de seis
Order: Primates	Human Bonobo	Homo sapiens Pan paniscus	99	IIKCKFCRQ	99	IILCCDDE	LESCE	100	LLQCQYR LLQCOYR	QNADYCRKK ONADYCRKK	Ma	Eutheria
	Chimpanzee	Pan troglodytes	99	IIKCKFCRQ	99	IILCCDDE	LESCF	100	LLQCQYR	QNADYCRKK	goro	
	Western lowland gorilla	Gorilla gorilla gorilla Pongo abelii	99	IIKCKFCRQ		IILCCDDE	N.D.	100	LLQCQYR	QNADYCRKK ONADYCRKK	der	
	White-cheeked crested gibbon	Nomascus leucogenys	99	IIKCKFCRQ	99	IILCCDDE	LESCF	33	LLQCQYR	N.D.	Bor	
	Rhesus monkey	Macaca mulatta	98	IIKCKFCRQ	98	IILCCDDE	LESCF	99	LLQCQYR	QNADYCRKK	eoe	
	Pig-tailed macague	Macaca nascicularis Macaca nemestrina	98	IIKCKFCRQ	98	IILCCDDE	LESCF	99	LLQCQYR LLOCOYR	ONADYCRKK ONADYCRKK	uth	
	Japanese macaque	Macaca fuscata	98	IIKCKFCRQ	98	IILCCDDE	LESCF		N.D.	Ñ.D.	eria	
	Golden snub-nosed monkey	Macaca nigra Rhinopithecus roxellana	98	IIKCKFCRQ IIKCKFCRO	98	N.D.	N.D. LESCE	99	N.D. LLOCOYR	N.D. ONADYCEKK	Ē	
	Black snub-nosed monkey	Rhinopithecus bieti	98	IIK <mark>C</mark> KFCRQ		IILCCDDE	N.D.	98	LLQCQYR	QNADY CRKK	arch	
	Angola colobus	Colobus angolensis palliatus	98	IIKCKFCRQ	98	IILCCDDE	N.D.	90	LLQCQYR	N.D. ONADVCRKK	lont	
	African green monkey	Chlorocebus aethiops	98	IIKCKFCRQ	50	N.D.	N.D.		N.D.	N.D.	log	
	Drill Sooty mongohou	Mandrillus leucophaeus	98	IIKCKFCRQ	98	IILCCDDE	LESCF	00	LLQCQYR	N.D.	ires	
	Olive baboon	Papio anubis	98	IIKCKFCRQ		IILCCDDE	N.D. N.D.	99	LLQCQYR	QNADYCRKK		
	Ma's night monkey	Aotus nancymaae	97	IIKCKFCRQ	98	IILCCDGE	LESCF	99	LLQCQYR	QTTDYCRKK		
	White-headed capuchin	Caliitnrix jaccnus Cebus capucinus imitator	97	IFKCKFCRQ IIKCKFCRO	98	IILCCDGE IILCCDDE	LESCF	99	LLQCQYR LLQCQYR	OTTDYCRKK		
	Bolivian squirrel monkey	Saimiri boliviensis boliviensis	96	IIKCKFCRQ	98	IILCCDGE	LESCF	98	LLQCQYR	QTTDYCRKK		
	Philippine tarsier	Carlito syrichta Pronithecus coquereli	96	IIKCKFCRQ	97	IILCCDDE	LESCF	97	LLQCQYR	QNSDYCRKK ONSDYCRKK		
	Northern greater galago	Otolemur garnettii	94	IIKCKFCRQ	96	IILCCDDE	LESCF	97	LLQCQYR	QNSDYCRKK		
Order: Dermoptera	Sunda flying lemur	Galeopterus variegatus Microsobus murinus	94	IIKCKFCRQ	07	IILCCDDE	N.D.	95	LLQCQYR	QNSDYCRKK		
Order: Scandentia	Chinese tree shrew	Tupaia chinensis	93	IIKCKFCRR	98	IILCCDDE	LESCF	98	LLQCQYR	QNSDICKKK QNSDYCRKK		
Order: Rodentia	Degu	Octodon degus	91	IIKCKFCRR	94	IILCCDDE	LESCF	94	LLQCQYR	QNSDYCRKK		
	Guinea pig	Cavia porcellus	92 92	IIKCKFCRR		IILCCDDE	N.D. N.D.	95	LLQCQYR LLQCOYR	QNSDYCRKK QNSDYCRKK		
	Naked mole rat	Heterocephalus glaber	90	IIKCKFCRP	97	IILCCDDE	LESCF	95	LLQCQYR	QNSDYCRKK		
	North American beaver	r-uкomys aamarensis Castor canadensis	90 93	IIKCKFCR IIKCKFCRO	96	IILCCDDE	LESCF N.D.	95 97	LLQCQYR LLOCOVR	QNSDYCRKK ONSDYCRKK		
	Ord's kangaroo rat	Dipodomys ordii	90	IIKCKFCRR		IILCCDDE	N.D.	95	LLQCQYR	QNSDYCRKK		
	Upper Galilee mountains blind Mole rat	wannospalax galili	92	11KCKFCRR		IILCCDDE	N.D.	96	LLQCQYR	QSSDY <mark>C</mark> RKK		
	House mouse	Mus musculus	88	IIKCKFCR	94	IILCCDDE	LESCF	95	LLQ <mark>C</mark> QYR	QNCDHCGKK		
	Ryukyu mouse	Mus caroli Mus pabari	88	IIKCKFCRR	94	IILCODDE	LESCF	95	LLQCQYR	QNSDHCGKK		
	Mongolian jird	Meriones unguiculatus	91	IIKCKFCRR	35	IILCCDDE	N.D.	95	LLQCQYR	QNSDRCGKK QNSDNCGKK		
	Norway rat	Rattus norvegicus	90	IIKCKFCRR	94	IILCCDDE	LESCF	95	LLQCQYR	QNSDHCGKK		
	Prairie deer mouse Prairie vole	Microtus ochrogaster	90	11KCKFCRR 11KCKFCRR	91	IILCCDDE	N.D.	95 94	LLQCQYR LLOCOYR	ONSDHCGKK		
	Chinese hamster	Cricetulus griseus	90	IIKCKFCRR		IILCCDDE	N.D.	94	LLQCQYR	QNSDHCRDK		
	Lesser egyptian ierboa	Jaculus jaculus	89	IIKCKFCRR IIKCKFCRR	95	IILCCDDE IILCCDDE	N.D. LESCE	94 95	LLQCQYR LLQCQYR	QNSDHCSKK ONSDYCRKK		
	Thirteen-lined ground squirrel	Ictidomys tridecemlineatus	92	IIKCKFCRR	96	IILCCDDE	LESCF		LLRCQYR	N.D.		
Order: Lagomorpha	Alpine marmot Babbit	Marmota marmota marmota Orvetolagus cuniculus	93	IIKCKFCSR	96	IILCCDDE	LESCE	94	LLRCQYR LLOCOYR	N.D. ONSDYCEKK		
order: Eagomorpha	American pika	Ochotona princeps	91	IIKCKFCRR	"	IILCCDDE	N.D.	94	LLQCQYR	QNSDYCRKK		
Order: Carnivora	Cat Amur tigor	Felis catus Panthera tigris altaica	94	IIKCKFCRR		IILCCDDE	N.D.		LLQCQYR	N.D.	Ma	
	Leopard	Panthera pardus	94	IIKCKFCRR	97	IILCCDDE	LESCF	96	LLQCQYR	QNSDYCRKK	gon	
	Cheetah	Acinonyx jubatus	93	IIKCKFCRR	07	IILCCDDE	N.D.		LLQCQYR	N.D.	der	
	Polar bear	Ursus maritimus	92	IIKCKFCRR IIKCKFCRR	97	IILCCDDE	N.D.	98	LLQCQYR LLQCQYR	QNSDYCRKK	Bor	
	Giant panda	Ailuropoda melanoleuca	95	IIKCKFCRR	93	IILCCDDE	LESCF	95	LLQCQYR	QNSDYCRKK	eoe.	
	Ferret American mink	Mustela putorius turo Neovison vison	94	IIKCKFCRR N.D.	97	IILCCDDE N.D.	LESCF N.D.	96	LLQCQYR LLQCQYR	QNSDYCRKK N.D.	ŭth	
	Pacific walrus	Odobenus rosmarus divergens	95	IIKCKFCRG	97	IILCCDDE	LESCF		LLQCQYR	N.D.	eria	
	Weddell seal Hawaiian monk seal	Leptonychotes weddellii Neomonachus schauinslandi	95	IIKCKFCRR	97	N.D.	N.D.	96	LLQCQYR	N.D.	v/La	
Order: Pholidota	Malayan pangolin	Manis javanica	91	IIKCKFCRQ	57	SILCCDDE	N.D.	94	LLQCQYR	QNSDYCRKK	ura	
Order: Perissodactyla	Southern white rhinoceros	Ceratotherium simum simum	93	IIKCKFCRR	96	IILCCDDE	LESCF	96	LLQCQYR	QNSDYCRKK	siatt	
	Horse	Equus caballus	94	ILKCKFCRR		IILCCDDE	N.D.	93	LLQCQYR	QNSDICRKK	neri	
Orden Obieratere	Donkey	Equus asinus		N.D.		N.D.	N.D.	96	LLQCQYR	QNSDYCRKK	a	
Order: Uniropiera	David's mvotis	Myous brandui Myotis davidii	89	IIKCKFCRG IIKCKFCR	96	IILCCDDE	N.D. LESCF	97	LLQCQYR LLOCOYR	OKSDCCRKK		
	Little brown bat	Myotis lucifugus	90	IIK <mark>C</mark> KFCRG	95	IILCCDDE	LESCF	83	LLQCQYR	QKSDCCRKK		
	Chinese rufous horseshoe bat	nipposideros armiger Rhinolophus sinicus	92 92	1LKCKFGRQ IIKCKFGRO	95	N.D. IILCCDDE	N.D. LESCF	96 96	LLQCQYR LLOCOYR	QNSDYCRKK ONSDYCRKK		
	Big brown bat	Eptesicus fuscus	90	IIKCKFCRG	96	IILCCDDE	LESCF	95	LLQCQYR	QKSDYCRKK		
	Inatal long-fingered bat	Miniopterus natalensis Pteropus vampyrus	88	IVRCKFCRG	94	ITLCCDDE IILCCDDE	LESCE	96 95	LLQCQYR LLQCOYR	QKSDYCRKK ONSDYCRKF		
	Black flying fox	Pteropus alecto	94	IIKCKFCRR	96	IILCCDDE	LESCF	95	LLQCQYR	QNSDYCRKK		
Order: Cetartiodactula	Egyptian fruit bat	Rousettus aegyptiacus Balaenoptera acutorostrata	93 92	IIKCKFCRR		IILCCDDE IILCCDDE	N.D.	96 95	LLQCQYR	QNSDYCRKK ONSDVRP##		
		scammoni	1 22	- mone one						Substanty		
	Bottlenose dolphin Killer whale	Tursiops truncatus Orcinus orca	93	IikCKfCRr TikCKfCPr	93	IilCcDne	LesCF	96	LlqCQyr	QnsdyCRkk		
	Yangtze River dolphin	Lipotes vexillifer	92	IIKCKFCRR	94	IILCCDNE	LESCF	95	LLQCQYR	QNSDYCRKK		
	Sperm whale	Physeter catodon	92	IikCKfCRr	0.0	IilCcDde	N.D.	96	LlqCQyr	QnsdyCRkk		
	wild Bactrian camel	Camelus ferus	92	IIKCKFCRR	90	IILCCDDE	LESCF LESCF	94 94	LLQCQYR LLQCQYR	QNSEICRKK QNSEYCRKK		
	Bactrian camel	Camelus bactrianus	93	IIRCKFCRR	0.5	IILCCDDE	N.D.	94	LLQCQYR	QNSEYCRKK		
	Wild yak	Bos nutus	92	likCKfCRr LikCKfCRr	95	IilCcDde IilCcDde	LesCF LesCF	94 96	LlqCQyr LlqCQyr	QnsdyCRkk QnsdyCRkk		
	Zebu Water huffele	Bos indicus Rubalua bubalia	92	LikCKfCRr	0	IilCcDde	N.D.	0.5	LlqCQyr	N.D.		
	American bison	Bison bison bison	91	IIKCKICRY IIKCKFCRR	92	IILCCDDE	LESCF	95 94	LLQ <mark>C</mark> QYR LLQ <mark>C</mark> QYR	QNSDYCRKK QNSDYCRKK		
	White-tailed deer	Odocoileus virginianus texanus	92	IIKCKFCRR		IILCCDDE	N.D.	94	LLQCQYR	QNSDYCRKK		
	Goat	Sus scroia Capra hircus	91	lir <u>C</u> Kf <mark>C</mark> RR	92	IILCCDDE IilCcDde	N.D. Les <mark>C</mark> F	96	Llg <mark>C</mark> Ovr	QKSDICRKK N.D.		
	Sheep	Ovis aries	92	Iik <mark>C</mark> KfCRr	95	Iil <mark>Cc</mark> Dde	LesCF		LlqCQyr	N.D.		
	Chiru	Ovis aries musimon Pantholops hodasonii	92 92	lik <mark>C</mark> KfCRr IikCKfCRr	95	111CcDde IilCcDde	LesCF N.D.	96	Liq <mark>C</mark> Qyr Llg <mark>C</mark> Ovr	N.D. OnsdvCRkk		
	Alpaca	Vicugna pacos	93	likCKfCRr		IilCcDde	N.D.	95	LlqCQyr	QnsdyCRkk		
Order: Erinaceomorpha Order: Soricomorpha	Western European hedgehog	Erinaceus europaeus Condylura cristata	89 92	IIKCKFCRR	95	IILCCDDD IILCCDDF	N.D. LESCE	96 96	LLQCQYR LLQCOYR	QNSDYCRKK ONSDYCRKK		
sider. concomorpha	European shrew	Sorex araneus	90	IIKCKFCRR	35	IILCCDDD	N.D.	30	LLQCQYR	N.D.		
Order: Afrosoricida	Cape golden mole	Chrysochloris asiatica	93	IIKCKFCRR	96	IILCCDDE	LESCF		LLQCQYR	N.D.	Afrotheria	
Order: Macroscelidea	Cape elephant shrew	Elephantulus edwardii	90	IIKCKFCR	94	IILCCDDE	N.D. LESCF		LLRCRYR	N.D.		
Order: Tubulidentata	Aardvark	Orycteropus afer afer	92	IIKCKFCRR	97	IILCCDDE	LESCF		LLQCQYR	N.D.		
Order: Proboscidea	Florida manatee	Trichechus manatus latirostris	90 92	11KCKFCRR IIKCKFCRR	96	IILCCDDE	LESCF LESCF		LLRCRYR LLOCOYR	N.D. N.D.		
Order: Cingulata	Nine-banded armadillo	Dasypus novemcinctus	90	IIKCKFCRR	97	IILCCDDE	LESCF	96	LLQCQYR	QNSDYSRKK	Xenarthra	
Order: Didelphimorphia	Gray short-tailed opossum	Monodelphis domestica	84	IVRCKFCRQ		IILCODEE	N.D.	84	LLQCRYR	QNSDYCRKK	Ameridelphia	Metatheria
Order: Diprotodontia	Koala	Phascolarctos cinereus	83	IVRCKFCRQ		IILCCDEE	N.D.	84	LLQCRYR	QNSDISKKK QNSDISKKK	Australidelphila	
Order: Monotremata	Platypus	Ornithorhynchus anatinus	57	IVRCKFCRQ		IILCCGDE	N.D.	80	LLQCRYR	RNSDSSRKK	Monotremata	Prototheria
1	1				1			I				

77

WILEY-

TABLE 1 (Continued)

WILEY—<u>REPORTS</u>

Superclass: Gnathostomata	class: Aves									
Order: Psittaciformes	Kea	Nestor notabilis Malapaittagua undulatua	00	N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
	Turquoise-fronted amazon	Amazona aestiva	79	TVKCKFCRQ	00	TILCCGDE	N.D.	86	LLOCRYR	N.D. RSSDESREK
Order: Passeriformes	American crow	Corvus brachyrhynchos	83	N.D.	80	IILCCGDE	QESCF	86	LLQCRYR	RSPDFSREK
	Hooded craw	Corvus cornix cornix	80	IIKCKFCRQ	84	IILCCGDE	QESCF	87	LLQCRYR	RSPDFSREK
	Collared flycatcher	Ficedula albicollis	79	IIKCKFCRQ	87	IILCCGDE	OESCF	80	LLOCRYR	RSPDFSREK
	Ground tit	Pseudopodoces humilis	81	IIKCKFCRQ	83	IILCCGDE	QESCF		LLQCRYR	N.D.
	Great tit Medium ground-finch	Parus major Geospiza fortis	81 73	IIKCKFCRQ	78	IILCCGDE	QESCF	81	LLQCRYR LLQCRYR	RSSDFSREK
	Zebra finch	Taeniopygia guttata	79	IIKCKFCQQ	0.	IILCCGDE	N.D.		LLQCRYR	N.D.
	Society finch	Lonchura striata domestica	79	IIKCKFCQQ	82	IILCCGDE	QESCF	81	LLQCRYR	RSSDFSREK
	White-throated sparrow	Zonotrichia albicollis	80	IIKCKFCRQ	85	IILCCGDE	QESCF	83	LLQCRYR	RSSDFSREK
	Golden-collared manakin	Manacus vitellinus	79	IIKCKFCRQ	89	IILCCGDE	QESCF		LLQCRYR	N.D.
	Blue-crowned manakin	Lepidothrix coronata Sturnus vulgaris	79	I INCKFCRQ	89	IILCCGDE	QESCF	81	LLQCRYR LLQCRYR	N.D. RSPDFSREK
	Blackbird	Turdus merula	80	IIKCKFCRQ		N.D.	N.D.	01	N.D.	N.D.
Order: Falconiformes	Saker falcon	Falco cherrug	81	IIKCKFCKQ	89	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Bucerotiformes	Rhinoceros hornbill	Buceros rhinoceros silvestris	80	IIKCKFCRQ	69	IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Piciformes	Downy woodpecker	Picoides pubescens	80	IIKCKFCRQ	90	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Coraciiformes	Carmine bee-eater Red-legged seriema	Cariama cristata		N.D. N D		IILCCGDE	N.D.	85	LLOCRYR	KSSDFSRES N D
Order: Accipitriformes	White-tailed eagle	Haliaeetus albicilla		N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
	Bald eagle	Haliaeetus leucocephalus	81	IIKCKFCRQ	00	IILCCGDE	N.D.	01	LLQCRYR	N.D.
	Turkey vulture	Cathartes aura	01	N.D.	69	N.D.	N.D.	01	LLQCRYR	N.D.
Order: Strigiformes	Barn ówl	Tyto alba		N.D.		N.D.	N.D.		LLQCRYR	N.D.
Order: Colliformes	Cuckoo roller	Leptosomus discolor	80	N.D. TIKCKXXXX	1	IILCCGDE	N.D.	1	LLOCRYR	N.D. N.D.
Order: Trogoniformes	Bar-tailed trogon	Apaloderma vittatum	64	IIXXXXXXX		IILCCGDE	N.D.	88	LLQCRYR	RSSDFSREK
Order: Gaviiformes	Red-throated loon	Gavia stellata	00	N.D.	00	IILCCGDE	N.D.		LLQCRYR	N.D.
Order. Sphenischonnes	Adelie penguin	Pvaoscelis adeliae	77	N.D.	90	IILCCGDE	N.D.		LLOCRYR	N.D.
Order: Procellariiformes	Northern fulmar	Fulmarus glacialis	1	N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Pelecaniformes	Dalmatian pelican	Pelecanus crispus Ninnonia ninnon	70	N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
	White-throated tinamou	Tinamus guttatus	85	N.D.	83	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Ciconiiformes	Little egret	Egretta garzetta	1	N.D.		IILCCGDE	N.D.	07	LLQCRYR	N.D.
Order: Caprimulaiformes	Chuck-will's-widow	Caprimulgus carolinensis	ł	N.D. N.D.		IILCCGDE	N.D. N.D.	8/	LLQCKYR LLQCRYR	RSSDFSREK N.D.
Order: Apodiformes	Chimney swift	Chaetura pelagica	1	N.D.	87	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Podicipediformes	Anna's hummingbird	Calypte anna Podicens cristatus	83	IIKCKFCRQ	89	IILCCGDE	QESCF N D		LLOCRYR	N.D.
Order: Phoenicopteriformes	American flamingo	Phoenicopterus ruber ruber	-	N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Pteroclidiformes	Yellow-throated sandgrouse	Pterocles gutturalis		N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Columbiformes	Rock pigeon Band-tailed pigeon	Columba Iivia Patagioenas fasciata monilis	79	IIKCKFCRE	88	IILCCGVE	QESCF		LLQCRYR LLQCRYR	N.D. N D
Order: Gruiformes	Grey crowned crane	Balearica regulorum gibbericeps	70	IIKXXXXXX		IILCCGDE	N.D.		LLQCRYR	N.D.
	Sunbittern	Eurypyga helias		N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Otidiformes	Macqueen's bustard	Chlamvdotis macqueenii		N.D. N.D.		IILCCGDE	N.D.		LLQCRYR	N.D. N.D.
Order: Opisthocomiformes	Hoatzin	Opisthocomus hoazin	85	IIKCKFCRQ		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Charadriiformes	Killdeer	Calidris pugnax Charadrius vociferus	81	IIKCKFCRQ	89	IILCCGDE	QESCF	81	LLQCRYR	RSSDFSREK
Order: Cuculiformes	Common cuckoo	Cuculus canorus	80	IIKCKFCRQ	88	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Musophagiformes	Red-crested turaco	Tauraco erythrolophus		N.D.		IILCCGDE	N.D.		LLQCRYR	N.D.
Order: Gaillormes	Japanese quail	Callipepia squamata Coturnix iaponica	80	I I KCKFCRQ	88	N.D. TILCCGDE	N.D. OESCE	80	LLOCRYR	N.D. RSSDFSREK
	Northern bobwhite	Colinus virginianus	81	IIKCKFCRQ		IILCCGDE	N.D.		LLQCRYR	N.D.
	Chicken	Gallus gallus Meleagris gallopavo	80	IIKCKFCRQ	89	IILCCGDE	QESCF	80	LLQCRYR	RSSDFSREK
	Helmeted guineafowl	Numida meleagris	80	IIKCKFCRQ	89	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Anseriformes	Mallard	Anas platyrhynchos	0.1	N.D.	89	IILCCGDE	QESCF	88	LLQCRYR	RSSDFSREK
	Chinese geese	Anser cygnoides domesticus	01	TIKCKPCKQ	89	IILCCGDE	QESCF	87	LLQCRYR	RSSDFSREK
Order: Struthioniformes	Southern ostrich	Struthio camelus australis		N.D.	89	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Tinamitormes	Kiwi	Antervx australis mantelli	85	N.D. N.D.	89	TILCCGDE	OESCE		LLOCKYR	N.D. N.D.
							2		2	
Superclass: Gnathostomata	class: Reptilia	Concernation of the second	70		07		0.000			D. CODUCT VI
Order: Crocodilla	American alligator	Alligator mississippiensis	76	IVKCKFCRQ	87	IILCCGDE	OESCF	84	LLQCRYR	RSCDYSRKK
	Chinese alligator	Alligator sinensis	81	IVKCKFCRQ	87	IILCCGDE	QESCF		LLQCRYR	N.D.
Order: Testudines	Gharial Green sea turtle	Gavialis gangeticus Chelonia mydas	76	IVKCKFCRQ	87	IILCCGDE	QESCF	84	LLECRYR	RSSDYSRKK
	Chinese soft-shelled turtle	Pelodiscus sinensis	84	IIKCKFCRQ	88	IILCCGDE	QESCF	89	LLQCRYR	RNSDYARKK
Order: Cauemate	Painted turtle	Chrysemys picta bellii	81	IIKCKFCRQ	89	IILCCGDE	QESCF		LLQCRYR	N.D.
Grach. Oquamaid	Schlegel's Japanese gecko	Gekko japonicus	73	IVKCKFCRQ	0	IILCCGDE	N.D.	81	LLQCRYR	RSSDYSRKK
	Central bearded dragon	Pogona vitticeps	73	IVRCKFCTQ	88	IILCCGDE	QESCF	89	LLQCRYR	RSSDYSRKK
	Eurmese python King cobra	r ytnon bivittatus Ophiophagus hannah	/4	IVKCKFCAP		IILCCGDE	N.D. N.D.	89	LLQCRYR LLOCRYF	KNSDYSRRK N.D.
	Pit vipers	Protobothrops mucrosquamatus	72	IVRCKFCMP	87	IILCCGDE	QESCF		LLQCRYR	N.D.
	Common garter snake	I hamnophis sirtalis	73	IVRCKFCLP		IILCCGDE	N.D.		LLQCRYR	N.D.
Superclass: Gnathostomata	class: Amphibia		1							
Order: Anura	Western clawed frog	Xenopus (Silurana) tropicalis	76	IIKCKFCRQ	84	IILCCGDE	QESCF		LLQCRYR	-TRRHSREH
	High Himalaya frog	Xenopus laevis Nanorana parkeri	72	I IKCKFCRQ	85	IILCCGDE	QESCF	74	LLOCKYR	RTRRQSREN KNYSRED
							× 1001			
Superclass: Gnathostomata	class: Sarcopterygii	Latimoria obalumnoa	70	TTROPPODO	0.4	TTI COODD	OPCOP		LLOCDUC	ND
Gruer. Operacanthilormes	oociaca ini l	Laumena olidiumide	19	TINCKPCKQ	04	TIPCCODE	QEPCR.		ттбсклк	м.л.
Superclass: Gnathostomata	class: Actinopterygii		1							
Order: Cypriniformes	Common carp	Cyprinus carpio	74 69	ILKCKCIRQ		N.D.	N.D.		LISCRYR	N.D.
	common carp	Sinocyclocheilus anshuiensis	75	ILKCKCIRQ	77	IIL <mark>CC</mark> GHK	QESCF		LLSCHYR	N.D.
	Colden line borbol	Sinocyclocheilus anshuiensis	70	IIKCHFCRP	70	T.T. 00000	00000		I I DODID	
	Golden-line barbel	Sinocyclocheilus granami Sinocyclocheilus granami	74	ILKCKCIRQ	/*	TILCCGHK	QESCF		LLRCRYR	N.D.
	Golden-line barbel	Sinocyclocheilus grahami	70	IIKCHFCRP					LIRCRYR	N.D.
		Sinocyclocheilus rhinocerous	75	ILKCKCIRQ	76	11LCCGHK	QESCF		LIRCRYR	N.D.
	Zebrafish	Danio rerio	75	ILKCKCIRQ	76	IILCCGHK	QESCF		LLRCRYR	N.D.
Order: Dessiferer	Zebrafish Buttonia marithera	Danio rerio	69	IIKCHFCRP					LIRCRYR	N.D.
Order: Percilormes	Burton's mouthbrooder	Haplochromis burtoni	75 67	IIKCKFHRP	''	11LCCGRQ	HESCL		LLRCRYR LLRCRYR	N.D. N.D.
	Nile tilapia	Oreochromis niloticus	76	IIKCKFHRP	76	IILCCGRQ	HESCL		LLRCRYR	N.D.
	Nile tilapia Mozambique tilapia	Oreochromis niloticus Oreochromis mossambicus	67 67	IIKCHFCRP		N.D	ND		LLRCRYR N.D	N.D.
	Lyretail cichlid	Neolamprologus brichardi	76	IIKCKFHRP	76	IILCCGRQ	HESCL		LLRCRYR	N.D.
	Nyerere's Victoria cichlid	Pundamilia nyererei Pundamilia nyererei	75	IIKCKFHRP		N.D.	N.D.		LLRCRYR	N.D.
	Asian sea bass	Lates calcarifer	71	ILKCHFCRP	76	IILCCGRK	HESCL		LLRCRYR	N.D.
	Asian sea bass	Lates calcarifer	68	IIKCHFCRP					LLRCRYR	N.D.
	Spiny chromis	Acanthochromis polyacanthus	75	IIKCKFHRP		IILCCGRK	N.D.		LLRCRYR	N.D.
			50	- margarit with	1					

WILEV

TABLE 1 (Continued)

1	Zebra mbuna	Mavlandia zehra	75	TTRCKEUPP	76	TTLCCCRO	UFCCI	LLDCDA	ZP N D	
	Zebra mbuna	Maylandia zebra	67	IIKCHFCRP	70	TINCCORD	III.SCD	LLRCRY	R N.D.	
	Bicolor damselfish	Stegastes partitus	75	IIKCKFHRP	76	IILCCGRK	HESCL	LLRCRY	R N.D.	
	Bicolor damselfish	Stegastes partitus	67	ILKCHFCRP				LLRCRY	R N.D.	
	Mudskipper	Boleophthalmus pectinirostris	73	ILRCKFHRP		IILCCGRK	N.D.	LLRCRY	'R N.D.	
	Croceine croaker	Larimichthys crocea	74	ILRCKFHRP	79	IILCCGRK	HESCL	LLRCRY	'R N.D.	
	Croceine croaker Ballan wrasso	Larimicnthys crocea	6/	IIKCHFCRP		ND	N D	LLRCRY	R N.D.	
	Ballan wrasso	Labrus bergyita	69	IIRCKFHRA		N.D.	N.D.	LLRCRY	R N.D.	
Order: Cyprinodontiformes	Dallari Wrasse	Austrofundulus limnaeus	71	TIKCKFHRA	76	TILCCGRK	RESCL	LURCEN	R N.D.	
oraon oypiniodonalomico	Mummichog	Fundulus heteroclitus	72	IIKCKFHRP	73	IILCCGRK	HESCL	LLRCRY	R N.D.	
	Mummichog	Fundulus heteroclitus	66	IIKCHFCKN				LLRCRY	R N.D.	
	Sheepshead minnow	Cyprinodon variegatus	72	IIKCKFHRP		N.D.	N.D.	LLRCRY	'R N.D.	
	Sheepshead minnow	Cyprinodon variegatus	66	IIKCHFCKP				LLRCRY	'R N.D.	
	Turquoise killifish	Nothobranchius furzeri	73	IIKCKFHRA	74	IILCCGRK	HESCL	LLRCRY	R N.D.	
	Mangrove rivulus	Knyntolehias marmoratus	72	TTRCYFCRP	75	TTLOCORK	PECCI	LLRCRY	R N.D.	
	Mangrove rivulus	Kryptolebias marmoratus	66	TIKCHECEP	75	11DCCORR.	1050CD	LURCEN	R N.D.	
	Guppy	Poecilia reticulata	72	IIKCKFHRP	74	IILCCGRK	RESCL	LLRCRY	R N.D.	
	Guppy	Poecilia reticulata	66	IIKCHFCKP				LLRCRY	R N.D.	
	Amazon molly	Poecilia formosa	72	IIKCKFHRP	74	IILCCGRK	RESCL	LLRCRY	R N.D.	
	Amazon molly	Poecilia formosa	66	IIKCHFCKP				LLRCRY	R N.D.	
	Sailfin molly	Poecilia latipinna	72	IIKCKFHRP	74	IILCCGRK	RESCL	LLRCRY	'R N.D.	
	Allantic molly Platifich	Vinbonborus magulatus	71	N.D.	74	TILCCGRK	ND	LLRCRY	R N.D.	
Order: Beloniformes	lananese medaka	Onzias latines	72	TTRCKFHRP	76	TILCCGRK	N.D.	LLRCRY	R N.D.	
order. Delormornes	Japanese medaka	Oryzias latipes	67	IIKCHFCKP	70	111000lux	III.SCD	LLRCRY	R N.D.	
Order: Batrachoidiformes	Gulf toadfish	Opsanus beta	71	ILKCKFHRA		N.D.	N.D.	N.D.	N.D.	
Order: Scorpaeniformes	Black rockcod	Notothenia coriiceps	70	IIRCKFHRA		VILCCGDE	N.D.	LLRCRY	R N.D.	
	Black rockcod	Notothenia coriiceps	67	IIKCHFCRP				LLRCRY	R N.D.	
Outer Changelland	False kelptish	Sebastiscus marmoratus		N.D.		N.D.	N.D.	N.D.	N.D.	
Order: Characiformes	Red piranna Red pirabpa	Pygocentrus nattereri	69	IIKCHFCRP	11	IILCCGHR	QESCF	LLSCRY	R N.D.	
	Mexican tetra	Astvanav mexicanus						LLPCPY	R N.D.	
	Mexican tetra	Astvanax mexicanus	68	TIKCHECRP	78	TILCCGHK	OESCE	LICCRY	R N.D.	
Order: Esociformes	Northern pike	Esox lucius	70	IIRCKFHRP	77	IILCCGRK	PESCF	LLRCRY	R N.D.	
	Northern pike	Esox lucius						ILLCRY	R N.D.	
Order: Clupeiformes	Atlantic herring	Clupea harengus	70	IVKCKNFRPIIC		IILCCGRR	N.D.	LLRCRY	R N.D.	
Ourlaw Calmaniference	Atlantic herring	Clupea harengus	- 74		75		0.000	LIRCRY	'R N.D.	
Order: Saimoniformes	Rainbow trout	Oncorhynchus mykiss	71	TIKCKFHRQ	/5	TILCCGRK	QESCF	LLRCRY	R N.D.	
	Coho salmon	Oncorhynchus kisutch	72	TTRCKFHRP		ND	ND	LLBCRI	R ND.	
	Coho salmon	Oncorhynchus kisutch	71	IIKCKFHRQ				ILLCRY	R N.D.	
	Atlantic Salmon	Salmo salar	71	IIRCKFHRP	76	IILCCGRK	QESCF	LLRCRY	R N.D.	
	Atlantic Salmon	Salmo salar	71	IIKCKFHRQ				ILLCRY	R N.D.	
Order: Tetraodontiformes	Japanese pufferfish	Takifugu rubripes	73	ILRCKFHRH		N.D.	N.D.	LLRCRY	'R N.D.	
	Japanese pufferfish	Takifugu rubripes	55	IIKCHFCRA		N. D	N. D	LLRCRY	R N.D.	
Order: Pleuropectiformes	Tongue sole		73	TTYCYFUDD		N.D.	N.D.	N.D.	N.D.	
	Olive flounder	Paralichthys olivaceus	72	IIKCKFHRP	79	IILCCGRK	SESCL	LLRCRY	R N.D.	
	Olive flounder	Paralichthys olivaceus	66	IIKCHFCRP				LLRCRY	R N.D.	
	European flounder	Platichthys flesus	77	IIKCKFHRP		N.D.	N.D.	N.D.	N.D.	
Order: Gasterosteiformes	Tiger tail seahorse	Hippocampus comes	76	IVKCKFHRP	75	SILCCGRK	AESCL	LLRCRY	'R N.D.	
Ordor: Siluriformoo	Liger tail seanorse	Hippocampus comes	68	IIKCHFCRP	70	TTI 000000	00000	LLRCRE	'R N.D.	
Order: Sildmonnes	Channel catfish	Ictalurus punctatus	00	LIKCHPCKK	70	TIPCCOUC	QESCF	LT	R N.D.	
Order: Anguilliformes	Swamp eel	Monopterus albus	75	TIKCKFHRP	77	TILCCGRK	HESCL	LURCEN	R N.D.	
	Swamp eel	Monopterus albus	68	IIKCHFCRP				LLRCRY	R N.D.	
Order: Osteoglossiformes	Asian arowana	Scleropages formosus	75	IVKCKFYR	78	IILCCGHK	QESCL	LLRCRY	R N.D.	
Order: Lepisosteiformes	Spotted gar	Lepisosteus oculatus	79	IIKCKFCR	78	IILCCGQE	QESCF	LLRCRY	R N.D.	
	Spotted gar	Lepisosteus oculatus						LLQCRY	R N.D.	
superclass: Gnathostomata	class: Chondrichthyes		-							
Order: Orectolobiformes	Whale shark	Rhincodon typus	75	IIKCKFCKO		RILCCGDR	N.D.	LLRCRY	KR N.D.	
	Whale shark	Rhincodon typus						LLRCKY	R N.D.	
Order: Chimaeriformes	Australian ghostshark	Callorhinchus milii	76	IIKCKF		TILCCGNR	N.D.	LLRCRY	R N.D.	
	Australian ghostshark	Callorhinchus milii						LLRCQY	R N.D.	
suporclass: Agnatha	class: Potromyzontida		4							
Order: Betromyzontiformes	ISon Jamprov	Potromuzon marinus	62	TTROVECDO		N D	N.D.	N D	N.D.	
order. r enomyzonalonnes	loca amprey	r caomyzon mannus	02	TTUCKECKQ		14.12.	14.D.	IN.D.	N.D.	
phylum: Chordata	subphylum: Cephalochordat	a	1							
Order: Amphioxiformes	Belcher's lancelet	Branchiostoma belcheri	49	ILFGRR	47	RILSCWSCCDVDN	N.D.	N.D.	N.D.	
			_							
pnylum: Chordata	supphylum: Urochordata	Ciono intestinalia		I DDLBIDDD		N. D.	N. D.			
Order: Enterogona	Joea squiri	Ciona Intestinalis	32	TLKMNKKK		N.D.	N.D.	N.D.	N.D.	
L	1		_							_

Amino acid sequences around putative palmitoylation sites corresponding to human $5-HT_{1A}$ receptor Cys417 and Cys420; those corresponding to human $5-HT_4$ receptor Cys328, Cys329, and human $5-HT_{4(a)}$ receptor Cys386; those corresponding to human $5-HT_7$ receptor Cys401 and human $5-HT_{7(a)}$ receptor Ala435 and Cys438 in vertebrate 5-HT receptor orthologs are shown. Percent identities between orthologs across 2 species were obtained by performing BLAST search (with BLOSUM62) with full-length amino acid sequence of human 5-HT receptor orthologs. N. D., sequence not determined.

cysteine residue there (Table 1). In these animals, the corresponding site is exceptionally substituted or lost only in 2 bat species (great roundleaf bat and Chinese rufous horseshoe bat) and ghost shark. Similar to many other teleost fish genes, most teleost fishes have more than 2 different types of 5-HT_{1A} receptor. Redundant 5-HT_{1A} receptor orthologs in teleost fishes are consistent with their additional whole-genome duplication that occurred in the ancestor of teleosts.^{26,27} Basically, there exist 2 cysteine residues at least in one ortholog of most ray-finned fishes. Characteristic sequences "-IIKCHFCRP-stop" or "-IIKCKFHRP-stop" and their several variations are detected in the C-termini of fish 5-HT_{1A} receptor orthologs. Even sea lamprey 5-HT_{1A} receptor holds both putative palmitoylation sites "-IIKCKFCRQ-stop."

3.2 | 5-HT₄ receptor palmitoylation sites in various vertebrate species

5-HT₄ receptors are coupled to G_s protein that stimulate adenylyl cyclases to produce cAMP. Some splice variants of the 5-HT₄ receptor have been identified for many vertebrate species. For instance, there exist at least 11 5-HT₄ receptor splice variants in humans.²⁸ These variants show different tissue distribution and exhibit different functional activities.^{28,29} Mouse 5-HT_{4(a)} (also called 5-HT₄ isoform x₂) receptor contains 387 amino acids that is palmitoylated at distinct sites, Cys328/Cys329 and Cys386.^{22,23} While Cys328/Cys329 are commonly conserved among all mouse splice variants, Cys386 specifically locates close to the C-terminus

WILEY-REPORTS

vertebrate 5-HT_{1A. 4, 7} receptors

FIGURE 1 Palmitoylation of vertebrate 5-HT receptors. Schematic structure of 5-HT_{1A}, 5-HT₄, and 5-HT₇ receptors and their C-terminal palmitoylation sites. 5-HT receptors contain 7 transmembrane domains and intracellular C-terminal domain. Squared "Cys" represents multiple palmitoylation sites of 5-HT_{1A}, 5-HT₄, and 5-HT₇ receptors

of 5-HT_{4(a)}-type variant (Figure 3A). The 5-HT_{4(a)} receptor C-terminus around the palmitoylation site (-Ser-Cys386-Phe-stop) may also form a class I PDZ ligand (-Ser/Thr-Xaa- ϕ -stop, where ϕ represents a hydrophobic residue), which controls protein-protein interactions between receptors and PDZ domain-containing binding proteins.³⁰ Previous reports showed that agonist stimulationdependent palmitoylation on both sites is involved in regulation of receptor constitutive activity.^{22,23} Palmitoylation sites corresponding to mouse 5-HT₄ receptor Cys328/Cys329 are completely conserved in all vertebrate 5-HT₄ receptor orthologs including other splice variants than $5-HT_{4(a)}$ receptor (227 vertebrate species examined, Table 1). In addition to these common palmitoylation sites among 5-HT₄ receptor splice variants, 5-HT_{4(a)} receptor-specific C-terminal palmitoylation site Cys386 and PDZ ligands are almost completely conserved in known 5-HT_{4(a)}-type splice variants (Table 1). This palmitoylation site is exceptionally absent only in sifaka 5-HT_{4(a)} receptor in total 142 vertebrate species.

3.3 | 5-HT₇ receptor palmitoylation sites in various vertebrate species

Several isoforms exist in mammalian 5-HT₇ receptors.²⁸ Both humans and mouse possess 3 5-HT₇ receptor C-terminal splice variants. Dynamic palmitoylation of mouse 5-HT_{7(a)} receptor regulates cAMP formation by activating adenylyl cyclase via a G_s-mediated signaling pathway.²⁴ Mouse 5-HT_{7(a)} (or 5-HT₇ isoform 1) receptor holds 3 palmitoylation sites at Cys404, Cys438, and Cys441 (Figure 3B). Mouse 5-HT₇ receptor Cys404 corresponds to human 5-HT₇ receptor Cys401, which is commonly conserved in all splice variants of vertebrate 5-HT₇ receptor orthologs (240 vertebrate species examined, Table 1). In contrast to this common palmitoylation site, cysteine residue corresponding to mouse 5-HT_{7(a)} receptor Cys438 is specifically found only in 2 species, mouse and saltwater crocodile (Table 1). In other 114 vertebrate species, Ser dominantly exists at the corresponding sites, which is substituted to Ala, Thr, or Pro in some species.

Human	Mouse	Chicken	Anole	Frog	Zebrafish
100%	88%	80%	71%	72%	75%
	100%	79%	68%	69%	73%
		100%	69%	72%	77%
			100%	65%	67%
				100%	70%
					100%
Human	Mouse	Chicken	Anole	Frog	Zebrafish
100%	94%	89%	88%	85%	76%
	100%	86%	86%	83%	73%
		100%	92%	90%	77%
			100%	89%	76%
				100%	78%
					100%
Human	Mouse	Chicken	Anole	Frog	Zebrafish (5-HT ₇)
100%	95%	80%	70%	74%	78%
	100%	79%	70%	74%	78%
		100%	74%	73%	77%
			100%	77%	70%
				100%	70%
					100%
	Human 100% 	Human Mouse 100% 88% 100% 100% 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 94% 1 94% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100% 1 100%	Human Mouse Chicken 100% 88% 80% 100% 79% 100% 79% 100% 100% 100 79% 100% 100% 100 100% 100 100% 100% 94% 100% 94% 100% 86% 100% 100% 100% 94% 100% 86% 100% 94% 100% 86% 100% 94% 100% 86% 100% 94% 100% 86% 100% 94% 100% 94% 100% 100% 100% 95% 100% 79% 100% 100% 100% 100%	Human Mouse Chicken Anole 100% 88% 80% 71% 100% 79% 68% 100% 79% 68% 100% 100% 69% 100 100% 69% 100 100% 100% 100 100% 100% 100 100% 100% 100% 80% 88% 100% 94% 89% 88% 100% 94% 86% 86% 100% 94% 89% 88% 100% 94% 86% 36% 100% 94% 86% 36% 100% 94% 86% 36% 100% 100% 92% 100% 100% 94% 86% 36% 100% 100% 70% 70% 100% 95% 80% 70% 100% 95% 80% 70%	Human Mouse Chicken Anole Frog 100% 88% 80% 71% 72% 100% 79% 68% 69% 100% 79% 68% 69% 100% 100% 69% 72% 100 100% 69% 72% 100 100% 69% 72% 100 100% 69% 72% 100 100% 69% 69% 100 100% 100% 65% 100% 70% 68% 86% 100% 94% 89% 88% 85% 100% 94% 89% 86% 83% 100% 94% 89% 86% 83% 100% 86% 86% 83% 100% 100% 100% 100% 100% 100% 61% 100% 100% 95% 80% 70% 74% 100%

(. .

FIGURE 2 The BLAST alignments of vertebrate 5-HT receptors. A, 5-HT_{1A} receptor orthologs; B, 5-HT_{4(a)} receptor orthologs; C, 5-HT_{7(a)} receptor orthologs. Percent identity among orthologs across any 2 species was obtained by performing BLAST search (with BLOSUM62) with full-length amino acid sequences of vertebrate 5-HT receptor orthologs. *Homo sapiens* (human being), *Mus musculus* (mouse), *Gallus gallus* (chicken), *Anolis carolinensis* (green anole), *Xenopus laevis* (African clawed frog), *Danio rerio* (zebrafish) are compared as representative of each vertebrate class

The class Mammalia recognizes 3 subclasses: the Prototheria (platypus and several species of echidna), the Metatheria (extant Marsupialia, eg, koala), and the Eutheria (extant Placentalia, eg, mouse) (Figure 4A). Eutherian (placental) mammals further comprise 4 superorders; Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. All of the eutherian species diverged from the same root around 100 million years ago in the early Cretaceous period.31,32 Mouse 5-HT_{7(a)} receptor Cys441 corresponds to human 5-HT_{7(a)} receptor Cys438, which is extremely conserved in almost all eutherian 5-HT7(a)-type splice variants (83 eutherian species examined, Table 1). The site is exceptionally substituted only in 2 species, minke whale and armadillo. Moreover, many molecular studies based on DNA analysis have supported an integrated classification as the magorder Boreoeutheria.^{31–33} The Boreoeutheria is a clade that is composed of 2 superordinal sister taxa Laurasiatheria (cat, etc.) and Euarchontoglires (humans, mouse, etc.). Our analysis showed that 81

NEUROPSYCHOPHARMACOLO REPORTS -WII FV-

(A)

mouse 5-HT₄ receptor splice variants

isoform X1/(b): 388 aa (C328, C329) LIILCCDDERYKRPPILGOTVPCSTTTINGSTHVLRDTVECGGQWESRCHLTATSPLVAAQPSDT

isoform X2/(a): 387 aa (C328, C329, C386) <u>LIILCCDDERYKRPPILGOTVPCSTTTINGSTHVL</u>RYTVLHSGHHQELEKLPIHNDPESLE<mark>SCF</mark>

isoform X3: 377 aa (C328, C329) <u>LIILCCDDERYKRPPILGOTVPCSTTTINGSTHVL</u>RTSDYDTYL<u>Q</u>SLGSDKVSI

isoform X4/(e): 371 aa (C328, C329)
LIILCCDDERYKRPPILGOTVPCSTTTINGSTHVLSFPLLFRNRPVPV

isoform X5: 368 aa (C328, C329) <u>LIILCCDDERYKRPPILGOTVPCSTTTINGSTHVL</u>RAGGDQLVTP

(B)

mouse 5-HT₇ receptor splice variants

isoform 1/(a): 448 aa (C404, C438, C441) LLOCOYRNINRKLSAAGMHEALKLAERPERSEFVLONCDHCGKKGHDT

isoform 2: 470 aa (C404) <u>LLOCOYRNINRKLSAAGMHEALKLAERPERSEFVL</u>MTGASGVQKALENLPWGNGVNTGIKAVNSVALTKL

isoform 3: 435 aa (C404) LLOCOYRNINRKLSAAGMHEALKLAERPERSEFVL

human 5-HT7 receptor splice variants

isoform (a): 445 aa (C401, A435, C438) <u>LLOCOYRNINRKLSAAGMHEALKLAERPERPEFVLONADYCRKKGHDS</u>

isoform (b): 432 aa (C401) LLOCOYRNINRKLSAAGMHEALKLAERPERPEFVL

isoform (d): 479 aa (C401, C435(?)) <u>LLOCOYRNINRKLSAAGMHEALKLAERPERPEFVL</u>RACTRRVLLRPEKRPPVSVWVLQSPDHHNWLADKM LTTVEKKVMIHD

FIGURE 3 Palmitoylation sites in the 5-HT receptor splice variants. A, C-terminal sequence alignment of the mouse 5-HT₄ receptor splice variants; B, C-terminal sequence alignments of the mouse and the human 5-HT₇ receptor splice variants. Consensus amino acid sequence among splice variants is underlined. Palmitoylation sites are marked in red. The box shows the canonical class I PDZ ligand specifically located on the C-terminus of 5-HT_{4(a)} receptor

 $5-HT_{7(a)}$ receptor orthologs contain the corresponding cysteine residue in total 82 boreoeutherian species (Figure 4B). In metatherians, opossum holds cysteine residue at the corresponding site, whereas Tasmanian devil and koala lack the palmitoylation site. The serine residue is shared at the corresponding site in Tasmanian devil, koala, platypus, sauropsids (all birds and all reptiles), and all amphibians. $5-HT_{7(a)}$ -type splice variants have not been detected in fishes.

4 | DISCUSSION

Sequence comparison of 5-HT receptor orthologs made it possible to clarify the process of acquisition, conservation, substitution, or loss of these protein modification sites in vertebrate evolution. As described above, sea lamprey $5-HT_{1A}$ receptor ortholog has completely same sequence with humans in its C-terminus "-IIKCKFCRQ- stop." There exists no palmitoylation site in nonvertebrate chordates such as lancelet and sea squirt. Thus, acquisition event of these palmitoylation sites in the 5-HT_{1A} receptor may occur in the common vertebrate ancestor around 500 million years ago in the late Cambrian to the early Ordovician periods. These sites are evolutionarily conserved against mutation pressure throughout vertebrate species. They have been partly lost later in limited species. Conserved expression pattern of 5-HT_{1A} receptor orthologs was observed in most of the brain regions between sea lamprey and other vertebrates.³⁴ In conclusion, C-terminal palmitoylation sites of 5-HT_{1A} receptor, which is likely to play crucial roles in the vertebrate central nervous system, are completely conserved in the vertebrate lineage from the superclass Agnatha (jawless fishes) to the superclass Gnathostomata (jawed vertebrate).

Similarly, all 5-HT₄ receptor splice variants have the common palmitoylation sites. Even the lancelet 5-HT₄ receptor ortholog

NEUROPSYCHOPHARMACOLOGY REPORTS

FIGURE 4 Conserved palmitoylation motifs in the mammalian 5-HT_{7(a)} receptors. A, Classification of mammalian species and existence of C-terminal putative palmitoylation site corresponding to mouse 5-HT_{7(a)} receptor Cys441/human 5-HT_{7(a)} receptor Cys438. Numbers of putative palmitoylation site-containing species (shown in bold) per those of examined species in 17 reported mammalian orders are indicated. "?" means that sequence information is currently unavailable for indicated orders. N. S. V.: *no* information has been reported on 5-HT_{7(a)}-type splice variant sequence yet; B, Classification of boreoeutherian species and existence of C-terminal putative palmitoylation site corresponding to mouse 5-HT_{7(a)} receptor Cys438. Numbers of putative palmitoylation site-containing species (shown in bold) per those of examined species of putative palmitoylation site-containing species (shown in bold) per those of examined species of putative palmitoylation site-containing species (shown in bold) per those of examined species in 12 mammalian orders are indicated

possesses a primitive palmitoylation sequence "-RILSCWSCCDVDN-." Repetitive deletions and substitutions have presumably occurred to generate the common palmitoylation motif for vertebrate 5-HT₄ receptors "typically, -IILCCGDE-," followed by Gly to Asp mutation in mammals "typically, -IILCCDDE-," followed by ure 5A). 5-HT_{4(a)} receptor-specific C-terminal palmitoylation site corresponding to mouse/human Cys386 had appeared in the ancestor of bony fishes. 5-HT_{4(a)}-type splice variants have not been reported for cartilaginous fishes, and no information about any 5-HT₄ receptor is currently available for cyclostomes (hagfishes and lampreys). Future analysis about 5-HT₄ receptor orthologs of hagfishes, lampreys, more sharks, and rays will reveal the detailed history of acquisition and establishment of palmitoylation sites among 5-HT₄ receptor variants. Reversible palmitoylation and depalmitoylation cycle of this 5-HT_{4(a)} receptor-specific site may be critical for dynamic regulation of 5-HT_{4(a)} receptor localization and membrane trafficking through its binding to PDZ domain-containing scaffold proteins.

(A)

FIGURE 5 Evolutionary models of stepwise mutations around palmitoylation sites in vertebrate 5-HT receptor orthologs. A, A model of mutations in 5-HT₄ receptor orthologs developed from a putative ancestor of chordates to mammals. Sequence of the ancestral chordate is predicted from nonvertebrate chordate, lancelet; B, A model of mutations in 5-HT_{7(a)} receptor orthologs developed from a putative ancestor of amniotes to birds. Sequence of the ancestral amniote is predicted from reptiles; C, A model of mutations in 5-HT_{7(a)} receptor orthologs developed from a putative ancestor of the ancestral amniote is predicted from reptiles; C, A model of mutations in 5-HT_{7(a)} receptor orthologs developed from a putative ancestor of amniotes to mammals. Sequence of the ancestral mammal is predicted from platypus. (-): amino acid deletions; arrows: amino acid changes. Putative palmitoylation sites are marked in red

Likewise, all tetrapod 5-HT₇ receptor orthologs have the common palmitoylation site corresponding to mouse Cys404/human Cys401. The origin and development of the palmitoylation motifs in 5-HT₇ receptors still remains unclear because there is no available information on lancelet, sea squirt, and cyclostomes. By contrast, 5-HT_{7(a)}-type variant appeared in the ancestor of tetrapods, in which serine residue locates at the corresponding site to mouse Cys441/human Cys438. Both reptiles and birds hold serine residue at the corresponding site (Figure 5B). Cysteine residue at the palmitoylation site on 5-HT_{7(a)} receptor C-terminus is almost completely conserved in all orders belonging to boreoeutherians (Figure 5C). Highly conserved 5-HT_{7(a)} receptor C-terminal motif around the palmitoylation site in boreoeutherian lineages strongly suggests that this C-terminal motif was shared at least in the common ancestor of

NEUROPSYCHOPHARMACOLOG DEPORTS

boreoeutherians (Figure 4B). This feature was acquired at a certain point during the mammalian evolution. It is still difficult to speculate when acquisition events of this 5-HT_{7(a)} receptor-specific modification site initially took place, because 5-HT_{7(a)}-type variants have not been identified for afrotherian mammals (Figure 4A). On the other hand, Gray short-tailed opossum possesses cysteine residue at the corresponding site in its 5-HT_{7(a)} receptor. This sequence enables us to predict that a replacement of Ser to Cys specifically happened in this marsupial species and in the common ancestor of boreoeutherians. In contrast, Tasmanian devil and koala hold serine residue there. The difference may reflect the marsupial divergence history in Australasia and the Americas. Another possibility is that 5-HT_{7(a)} receptor-specific palmitoylation site was initially established in the common ancestor between the metatherian and the eutherian lineages and has been lost later in afrotherians, xenarthrans, and most metatherian species.

Further accumulation of sequence data will fill in the blanks of the sequence list concerning vertebrate 5-HT_{4(a)}-type variants and tetrapod 5-HT_{7(a)}-type variants and will reveal the timeline of establishment and divergence of these palmitoylation sites-containing motifs in more detail. Especially, sequence information on urochordates (ascidians or sea squirts), cephalochordates (lancelets), and cyclostomes will clarify the initial acquisition of the mechanism of 5-HT receptor palmitoylation.

Dynamic regulation of 5-HT receptors made possible by reversible post-translational protein palmitoylation may be critical for more effective membrane localization and trafficking in refined functions of the vertebrate tissues. Previous researches have revealed that many other GPCRs are functionally regulated by their direct palmitoylation.^{35,36} So far, we have shown that palmitoylation sites of ionotropic glutamate receptors (iGluRs), the major excitatory neurotransmitter receptors in vertebrate central nervous system, and those of iGluRs-binding proteins are extremely conserved in various species of whole vertebrate.^{37–39} Furthermore, palmitoylation sites of hyperpolarization-activated cyclic nucleotide-gated (HCN)-2 channel ⁴⁰ and water channel aquaporin (AQP)-4⁴¹ are conserved across vertebrates. By contrast, palmitoylation sites of dopamine D1-like, D₁ and D₅, receptors, are broadly found in vertebrates and invertebrates.⁴² Future genome analysis would permit us to understand detailed history of acquisition and refinement of the post-translational protein palmitoylation in vertebrates.

ACKNOWLEDGMENTS

This work was supported in part by the Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Grant Number 16K07078, AMED-RRIME from the Japan Agency for Medical Research and Development (AMED) Grant Number JP17gm5910009, the Takeda Science Foundation, the Mitsubishi Foundation, the Brain Science Foundation, the Suzuken Memorial Foundation, and the Astellas Foundation for Research on Metabolic Disorders.

CONFLICT OF INTEREST

The authors declare no conflict of interest for this article.

DATA REPOSITORY

The authors do not deposit any data because this manuscript does not use data.

APPROVAL OF THE RESEARCH PROTOCOL BY AN INSTITUTIONAL REVIEWER BOARD

n/a.

INFORMED CONSENT

n/a.

REGISTRY AND THE REGISTRATION NO. OF THE STUDY/TRIAL

n/a.

ANIMAL STUDIES

n/a.

AUTHOR CONTRIBUTION

TK executed data collection and analyzed the results. TH conceived this project, analyzed the results, and wrote the manuscript.

ORCID

Takashi Hayashi 🕩 http://orcid.org/0000-0003-3591-2109

REFERENCES

- Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31:187–99.
- Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA Jr. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev. 2015;51:164–88.
- Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol. 2016;26:397–410.
- Vadodaria KC, Stern S, Marchetto MC, Gage FH. Serotonin in psychiatry: in vitro disease modeling using patient-derived neurons. Cell Tissue Res. 2017;371:161–70.
- Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain. 2017;10:28.
- Gillette R. Evolution and function in serotonergic systems. Integr Comp Biol. 2006;46:838–46.

- 7. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083–152.
- Koyama Y, Kondo M, Shimada S. The significance of complete distributional analysis of the serotonin receptor. Neurotransmitter. 2017;4:e1564.
- Gorinski N, Ponimaskin E. Palmitoylation of serotonin receptors. Biochem Soc Trans. 2013;41:89–94.
- Ng GY, George SR, Zastawny RL, et al. Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry. 1993;32:11727–33.
- 11. Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci. 2010;11:161–75.
- Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8:74–84.
- 13. Nadolski MJ, Linder ME. Protein lipidation. FEBS J. 2007;274:5202-10.
- Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999;1451:1–16.
- Fallin MD, Lasseter VK, Wolyniec PS, et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet. 2004;75:204–19.
- Mansouri MR, Marklund L, Gustavsson P, et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3; cen) and severe mental retardation. Eur J Hum Genet. 2005;13:970–7.
- Mukai J, Dhilla A, Drew LJ, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008;11:1302–10.
- Otani K, Ujike H, Tanaka Y, et al. The ZDHHC8 gene did not associate with bipolar disorder or schizophrenia. Neurosci Lett. 2005; 390:166–70.
- Raymond FL, Tarpey PS, Edkins S, et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause Xlinked mental retardation associated with a Marfanoid habitus. Am J Hum Genet. 2007;80:982–7.
- Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol. 2012;97:220–38.
- Papoucheva E, Dumuis A, Sebben M, Richter DW, Ponimaskin EG. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein. J Biol Chem. 2004;279:3280–91.
- Ponimaskin EG, Heine M, Joubert L, et al. The 5-hydroxytryptamine (4a) receptor is palmitoylated at two different sites, and acylation is critically involved in regulation of receptor constitutive activity. J Biol Chem. 2002;277:2534–46.
- Ponimaskin EG, Schmidt MF, Heine M, Bickmeyer U, Richter DW. 5-Hydroxytryptamine 4(a) receptor expressed in Sf9 cells is palmitoylated in an agonist-dependent manner. Biochem J. 2001;353 (Pt 3):627–34.
- Kvachnina E, Dumuis A, Wlodarczyk J, et al. Constitutive Gsmediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its Cterminal domain. Biochim Biophys Acta. 2009;1793:1646–55.
- El-Husseini Ael D, Bredt DS. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci. 2002;3:791–802.
- Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289:1045–60.
- Hermansen RA, Hvidsten TR, Sandve SR, Liberles DA. Extracting functional trends from whole genome duplication events using comparative genomics. Biol Proced Online. 2016;18:11.
- Coupar IM, Desmond PV, Irving HR. Human 5-HT(4) and 5-HT(7) receptor splice variants: are they important? Curr Neuropharmacol. 2007;5:224–31.

- Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol. 1999;55:910–20.
- Joubert L, Hanson B, Barthet G, et al. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci. 2004;117(Pt 22):5367–79.
- Springer MS, Murphy WJ. Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev Camb Philos Soc. 2007;82:375–92.
- Springer MS, Meredith RW, Janecka JE, Murphy WJ. The historical biogeography of Mammalia. Philos Trans R Soc Lond B Biol Sci. 2011;366:2478–502.
- Ruiz-Herrera A, Farre M, Robinson TJ. Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity. 2012;108:28–36.
- Cornide-Petronio ME, Anadon R, Barreiro-Iglesias A, Rodicio MC. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system. Brain Struct Funct. 2013;218:1317–35.
- Escriba PV, Wedegaertner PB, Goni FM, Vogler O. Lipid-protein interactions in GPCR-associated signaling. Biochim Biophys Acta. 2007;1768:836–52.
- Norskov-Lauritsen L, Brauner-Osborne H. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Eur J Pharmacol. 2015;763(Pt B):233–40.
- 37. Thomas GM, Hayashi T. Smarter neuronal signaling complexes from existing components: how regulatory modifications were acquired

during animal evolution: evolution of palmitoylation-dependent regulation of AMPA-type ionotropic glutamate receptors. BioEssays. 2013;35:929–39.

- Hayashi T. Evolutionarily conserved palmitoylation-dependent regulation of ionotropic glutamate receptors in vertebrates. Neurotransmitter. 2014;1:e388.
- 39. Hayashi T. The origin and diversity of PICK1 palmitoylation in the Eutheria. Neurotransmitter. 2015;2:e802.
- Itoh M, Kaizuka T, Hayashi T. Evolutionary acquisition and divergence of vertebrate HCN2 palmitoylation. Neurotransmitter. 2017;4: e1603.
- Hayashi T. Conservation and phylogenetic stepwise changes of aquaporin (AQP) 4 palmitoylation in vertebrate evolution. Neurotransmitter. 2017;4:e1608.
- Adachi T, Hayashi T. Evolutionarily conserved phosphorylation and palmitoylation-dependent regulation of dopamine D1-like receptors in vertebrates. Neurotransmitter. 2016;3:e1434.

How to cite this article: Kaizuka T, Hayashi T. Comparative analysis of palmitoylation sites of serotonin (5-HT) receptors in vertebrates. *Neuropsychopharmacol Rep.* 2018;38:75–85. https://doi.org/10.1002/npr2.12011