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Complement system (CS) components are associated with Alzheimer’s disease (AD), the
commonest cause of dementia in the world. Neutrophils can be attracted to amyloid-β
plaques by several pro-inflammatory factors, including the complement anaphylatoxin C5a.
They may release neutrophil extracellular traps (NETs), which are chromatin nets associated
with myeloperoxidase, elastase, and other enzymes. Some CS molecules, such as C5a,
C1q, and CR1, are associated with increased neutrophil recruitment and NETs release.
However, the relationship between CS molecules and NETs in AD is poorly understood. In
this work, we detected higher NET concentrations in plasma and serum of Brazilian AD
patients, than in elderly controls (medians � 2.78 [2.07–6.19] vs. 2.23 [0.33–4.14] ng/mL, p�
0.0005). We discussed these results within the context of our former findings on
complement and AD and the context of the literature on complement and NET release,
suggesting both as possible therapeutic targets to prevent the progress of the disease.
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INTRODUCTION

Neuroinflammation is a well-established phenomenon in AD (Czirr and Wyss-Coray, 2012; Wyss-
Coray and Rogers, 2012; Dansokho and Heneka, 2018; Kloske and Wilcock, 2020) whose
mechanisms are still poorly understood. They are related to the accumulation of amyloid-β (Aβ)
plaques and neurofibrillary tangles (NFTs), characteristic AD biomarkers. The first present damage-
associated molecular patterns (DAMPs) (Wyss-Coray and Rogers, 2012; Heppner et al., 2015) which
are recognized by the complement system (CS) (McGeer et al., 1989; Veerhuis et al., 2011; Tenner
et al., 2018). They also induce the expression of endothelial adhesion molecules and the release of
pro-inflammatory cytokines by stimulated glial cells (reviewed in Pietronigro et al., 2017). Indeed,
the CS appears to play a relevant role in AD, as judged by the strong association of complement
genetic polymorphisms with this disease (Morgan, 2018; Krance et al., 2019; Kretzschmar et al., 2020;
Tenner, 2020). Besides that, the CS has already been correlated with the formation of neutrophil
extracellular traps (NETs) (Palmer et al., 2016; de Bont et al., 2019). NETs are composed of
chromatin fibers, citrullinated histones, and cytoplasmic enzymes as myeloperoxidase (MPO) and
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neutrophil elastase (NE), which altogether operate as an
extracellular platform for trapping and killing bacteria
(Brinkmann et al., 2004; Yousefi et al., 2009). They have been
observed in AD patients and an AD animal model (Zenaro et al.,
2015; Dong et al., 2018). However, the possible role of the CS in
NET release within AD has never been discussed before. In this
study, we focused on reported interactions of the CS with Aβ
plaques and their possible role in neutrophil recruitment and
NETs release in AD. We also confirmed the presence of higher
NET levels in an AD Brazilian cohort.

ALZHEIMER’S DISEASE AND THE
COMPLEMENT SYSTEM

AD is a neurodegenerative disease responsible for the largest number of
dementia cases globally (Alzheimer’s Association, 2020). Several authors
sought to understand the disease’s etiology by analyzing different
pathways and metabolic processes, most of them causing or being
influenced by neuroinflammation (Zlokovic, 2011; Heppner et al., 2015;
Du et al., 2018). In AD, the production of Aβ plaques and NFTs are
exacerbated. The accumulation of Aβ plaques in the extracellular
environment causes the loss of interneural communication (synapses)
and activates the local and systemic immunological responses since Aβ
plaques can be recognized as DAMPs by phagocytic cells (Czirr and
Wyss-Coray, 2012;Wyss-Coray and Rogers, 2012; Heppner et al., 2015)
and activate the CS (McGeer et al., 2016).

The CS is considered a key element in innate immunity, playing an
essential role in regulating and protecting the central nervous system.
TheCS consists of an enzymatic cascadewith the participation ofmore
than 50 circulating proteins, as well as soluble or membrane receptors
and regulators (Lee et al., 2019). It can be activated by three different
pathways: classical (CP), lectin (LP), and alternative (AP). For more
information on activation and participating CS elements, consult the
review of Ricklin et al., 2016. Although the complement pathways are
activated in different ways, they all enhance phagocytic activity and
may progress to the formation ofmembrane attack complexes (MAC),
leading to cell lysis. In addition, the activation of the complement
cascade also results in anaphylatoxin production and recruitment of
inflammatory cells. The CS must be tightly regulated. If out of control,
the cascade may become offensive, permanently injuring surrounding
tissues (Ricklin et al., 2016).

It is not a novelty that CS components and genetic
polymorphisms are associated with AD (McGeer et al., 1989;
Webster et al., 1997; Loeffler et al., 2008), as complement
component 3 (Stoltzner et al., 2000; reviewed by Wyss-Coray
and Rogers, 2012; Goetzl et al., 2018), complement component
4 (reviewed by Wyss-Coray and Rogers, 2012; Goetzl et al., 2018),
complement membrane complex C5b-C9 (Goetzl et al., 2018),
complement component 3a (C3a) and its receptor C3aR (Lian
et al., 2015; Litvinchuk et al., 2018), complement component 5a
(C5a) and its receptor C5aR1 (An et al., 2018), complement
receptor 1 (CR1) (Lambert et al., 2009; Kretzschmar et al.,
2020), clusterin (CLU) (Lambert et al., 2009) and complement
component 1q (C1q) (Stoltzner et al., 2000; reviewed by; Wyss-
Coray and Rogers, 2012; Lian et al., 2016; McGeer et al., 2016;
Dejanovic et al., 2018; Goetzl et al., 2018), complement component

9 (reviewed by Wyss-Coray and Rogers, 2012), factor B and factor
D (Goetzl et al., 2018). In this work, we will focus only on the CS
components associated with AD, which may be related to the
recruitment of neutrophils and the formation of NETs (Figure 1).

ALZHEIMER’S DISEASE AND NEUTROPHIL
TRAPS

Neutrophils have an essential role in inflammation, acting through
many mechanisms: phagocytosis, degranulation, and extrusion of
NETs (reviewed by Shen et al., 2001; Rossi et al., 2020). NETs are
involved in host tissue injury and inflammation associated with
autoimmune diseases, acute injuries, atherosclerosis, vasculitis, and
cancer (Jorch and Kubes, 2017). In 2015, Zenaro and colleagues
observedNETs adjacent to Aβ plaque deposits in the cerebral vascular
and intraparenchymal region of an AD animal model and European
AD patients. They suggested that Aβ plaques may play an essential
role in the recruitment andmovement of neutrophils, which Baik et al.
(2014) also observed in an AD animal model. Furthermore, NET
extrusion was also detected in high concentrations in European AD
patients’ serum (Dong et al., 2018).

C5a-C5aR1 Axis and the Relation With
Neutrophil Traps and Alzheimer’s Disease
After complement activation (McGeer et al., 1989; Veerhuis et al.,
2011), C3 and C5 are cleaved, generating the anaphylatoxins C3a and
C5a (reviewed by de Bont et al., 2019). C3a lacks chemotactic activity
(Ehrengruber et al., 1994), but C5a generates a potent chemotactic
response and induces neutrophil migration (Ehrengruber et al., 1994),
as well as the release of NETs (reviewed by de Bont et al., 2019).
Therapeutic inhibitors blocking C5a and/ or its receptor C5aR1 have
been proposed to treatAD (Fonseca et al., 2013; Landlinger et al., 2015;
An et al., 2018). Although the functional connection between high
NET levels and C5a has been well described (Yousefi et al., 2009;
Huang et al., 2015; Yuen et al., 2016; Fattahi et al., 2018; de Bont et al.,
2019), it has never been explored in AD.

The CS seems to be, at least through C5a, attracting
neutrophils to the brain and inducing NETs extrusion.
Neutrophil activation by C5a extrudes the mitochondrial DNA
(Yousefi et al., 2009), which suggests that in AD, after NETs
extrusion, the neutrophils do not die, at least not through C5a
stimulation. NETs deposition triggers CS activation via the
alternative pathway and properdin binding (Yuen et al., 2016).
The neutrophils probably recognize the Aβ plaques and trap
them, resulting in increased inflammation and tissue injury. After
triggering the neutrophils to the tissue, the CS may not degrade
the NETs, resulting in tissue NET accumulation and CS over-
activation (de Bont et al., 2019). Thus, the use of C5a inhibitors
may decrease NETs activation in AD.

CR1 and Its Relationship With Neutrophil
Traps and Alzheimer’s Disease
Even before NET’s discovery, several authors sought to understand
the mechanisms of interaction between the complement system and
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neutrophils. Cytokines as tumor necrosis factor-alpha (TNFα),
granulocyte-monocyte and granulocyte colony stimulating factors
(GM-CSF, G-CSF), interleukin 1(IL-1), platelet activating factor
(PAF), and lymphotoxin-beta (LTB) up-regulate phagocytic

complement 1 receptor (CR1, also known as CD35) in neutrophils,
increasing its association with C3b-opsonized microspheres. However,
only TNFα, G-CSF, and PAF increased their phagocytic uptake (Ogle
et al., 1990). Besides that, CR1 recognizing C3b-IgG complexes on the

FIGURE 1 | Possible involvement of the complement system (CS) in the recruitment of neutrophils and the formation of NETs in Alzheimer’s disease. When the
blood-brain barrier (BBB) is intact, most complement molecules do not pass through it but can be produced constitutively by brain cells. In AD, the BBB is compromised,
facilitating the passage of complement elements, among other pro-inflammatory elements (Alexander, 2018). Aβ plaques are recognized as DAMPs by CS components
and other innate immunity receptors, leading to the activation of BBB endothelial cells. They up-regulate ICAM-1 adhesion molecules, allowing neutrophils to
adhere and interact with LFA-1, invading the cerebral parenchyma (Pietronigro et al., 2017). There the neutrophils worsen neuroinflammation, performing NET extrusion.
In this context, the CSmay be involved trough: (1) C1q binding to the Aβ plates, activating the classical complement pathway; (2a) CR1 (CR1*A) molecules present in the
neutrophil membrane, that recognize the Aβ plates opsonized with C3b fragments, preferentially leading to NET extrusion; (2b) soluble CR1 formed by non-functional
isoforms (CR1*B) that do not inhibit the CS (3) Potent anaphylatoxins such as C5a, which recruit neutrophils from the periphery to the Aβ plaque, being recognized by
C5aR1 neutrophil receptors, promoting the release of NETs. Although other elements of the inflammatory reaction do occur, in this figure, we focus on elements of the
CS discussed throughout this study. The complement cascades’ reactions were not represented due to space and number of elements participating in the pathways.
The role of cytokines and endothelial adhesion molecules in neutrophil recruitment for Aβ plaques was extensively reviewed by Pietronigro et al. (2017) ICAM-1-
Intercellular adhesion molecule 1; LFA-1- Lymphocyte function-associated antigen 1; NET- extracellular neutrophil traps; CS- complement system; C1q- complement
component 1q; CR1- complement receptor 1; C3b- complement component 3b; C5a- complement component 5a; C5aR1- complement component 5a receptor. This
figure was created with BioRender.com.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6308693

Kretzschmar et al. Complement and NETs in Alzheimer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


neutrophil membrane led to changes in signal transduction events
associated with Fc receptors, resulting inmyeloperoxidase’s release and
generation of hypochlorous acid (Sambandam and Chatham, 1998).
CR1blockage is followed by a decrease inNET concentration, revealing
an essential role of this molecule in the extrusion process (Palmer et al.,
2016). Thus, recognition of C3b-opsonized particles by CR1 on
neutrophil membranes may preferentially lead to the release of
NETs instead of phagocytosis, although more studies are needed to
corroborate this hypothesis.

Interestingly, increased AD susceptibility has been repeatedly
associated with CR1 polymorphisms (Lambert et al., 2009).
Nowadays, the hypothesis proposed for this association is that some
polymorphisms (such as rs6656401*A) facilitate non-homologous
recombination resulting in the preferential expression of
dysfunctional CR1*B isoform (Brouwers et al., 2012; Mahmoudi
et al., 2015). Although CR1*B has an additional C3b/C4b binding
site, its neuronal expression occurs in vesicular form (Hazrati et al.,
2012). It is also expressed in lower amounts in erythrocytes than the
CR1*A functional protein (Mahmoudi et al., 2018). Thus, CR1*B
probably impairs the process of removing Aβ plates and regulating the
CS (Mahmoudi et al., 2018). Heterozygote CR1*A/CR1*B individuals
express both isoforms. In this case, neutrophil recognition of C3b-
opsonized Aβ plates may occur by CR1*A, with consequent release of
NETs. CR1 can also be found in a soluble form (sCR1). AD patients
have higher levels of sCR1 in serum (Mahmoudi et al., 2018), plasma
(Kretzschmar et al., 2020), and cerebrospinal fluid (CFS) (Daborg et al.,
2012). sCR1 is a potent local inhibitor of the complement system and is
formed through vesiculation or proteolysis of the membrane-bound
CR1 (Pascual et al., 1993; Danielsson et al., 1994; Dervillez et al., 1997;
Hamer et al., 1998), inhibiting the CS by dissociating C3 convertases,
and targeting C3b and C4b for degradation (Zhu et al., 2015). It is
possible that large sCR1 quantities would inhibit complement’s
beneficial role of removing Aβ plaques, contributing to its
accumulation. However, no studies to date demonstrated whether
individuals who have only the CR1*B isoformpresent functional sCR1.
If sCR1 is generated fromCR1*B, CS inhibition probablywill not occur
properly, recruitingmore neutrophils to the affected region,with higher
extrusion of NETs, ultimately contributing to chronic
neuroinflammation. Although CR1’s participation in the increase of
NETs release seems to be evident, it is not yet clear how this may be
related to the different isoforms of themolecule and its associationwith
AD. Still, it raises an exciting possibility of a new role for CR1 in the
disease, which needs to be investigated in further functional studies.

C1q and the Relation With Neutrophil Traps
and Alzheimer’s Disease
The C1q molecule of the CP participates within an essential process
in brain homeostasis. In periods when synapse pruning happens, C1q
tags inappropriate connections between neurons for removal by the
microglia (Presumey et al., 2017). In neurodegenerative diseases, C1q
may lead to aberrant synapse loss (Dejanovic et al., 2018). Curiously,
Aβ binds and activates C1q in the absence of immunoglobulins
(Rogers et al., 1992), starting the CP and probably promoting synapse
loss. A study with a mouse model of AD lacking C1q demonstrated a
significant reduction in inflammation and neuropathological features
(Presumey et al., 2017).

Some researchers already analyzed the relationship between C1q
and NETs. Increased C1q deposition inhibits DNase activity,
resulting in NET accumulation (Leffler et al., 2012). When C1q is
inhibited, the complement cascade does not progress, and NETs do
not appear (Hair et al., 2018). NETs are mainly degraded by
endonuclease DNase1 (Hakkim et al., 2010) and then cleared by
macrophages (Farrera and Fadeel, 2013). DNases have already been
used to successfully treat AD in a case report (Tetz and Tetz, 2016).
Genetic DNASE1 variants have been investigated in systemic lupus
erythematosus (Pruchniak et al., 2019), however, its role in AD has
never been investigated. DNase has been used as an efficient drug to
degradeNET structure in breast cancer, lung injury, and lupusmouse
models (reviewed in Jorch and Kubes, 2017).

High Neutrophil Traps Levels in a Brazilian
Cohort
Recently, we confirmed the genetic association of complement
receptor 1 (CR1) polymorphisms in an AD Brazilian cohort
(Kretzschmar et al., 2020). Based on the association between
molecules of the complement system and NETs, we aimed to
investigate if NET levels are also increased within the same
Brazilian cohort. We quantified NETs in plasma of 22 AD
patients and 20 elderly controls (EC), and serum of another
11 EC (considering that NET levels are similar in serum and
plasma of the same individual (Abrams et al., 2019)). The study
was approved by the local ethics committee (CAAE
55965316.1.0000.0102). All participating individuals were
older than 65 years (AD median � 82.5 [70–88] years old;
EC median � 76 [69–99] years old). AD were recruited from
the Clinical Hospital of the Federal University of Paraná. AD
and EC were diagnosed or confirmed to be neurologically
normal based on clinical history and cognitive tests (Frota
et al., 2011). Diabetes and systemic arterial hypertension
(SAH) are common pathologies in the elderly that may
cause NET release (Soongsathitanon et al., 2019; Parackova
et al., 2020). Both diseases were not associated with NETs in
our study and the association of Alzheimer’s with NETs was
also independent of HAS (OR � [95%CI � 1.75–6.91], p �
0.003) (data available in Supplementary Table S1). The NE-
DNA concentrations in serum and plasma samples were
quantified using an adapted ELISA test with
immunofluorescence (Czaikoski et al., 2016; Colón et al.,
2019) (Supplementary Figure S1). Anti-elastase antibodies
were used for capturing these NE-DNA complexes, and
dsDNA fluorescent reagent was used for detection and
quantification. The data was tested for normality
(D’Agostino and Pearson test). We compared patients and
controls in two ways: 1) using the absolute values (ng/mL), and
2) establishing the 3rd quartile in controls as a threshold for
defining high and low NET levels (2.548 ng/mL). We also used this
threshold for defining the theoreticalmedian in theWilcoxon test. The
groups were compared using unpaired T-test and two-way ANOVA.
All the analyses were done using GraphPad Prism v.6 software. The
p-values were corrected for multiple testing using the false discovery
rate (FDR) method (Benjamini and Hochberg, 1995), performed in R
language 3.6.1, through the Stats package (RDevelopmentCore Team,
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2011). Corrected p-values lower than 0.05 were considered significant.
The data used is available in the Supplementary Table S1.

Our study brings, for the first time, higher circulating NET levels in
AD Brazilian patients. In this work, we detected higher NET
concentrations in plasma and serum of Brazilian AD patients, than
in elderly controls (medians � 2.78 [2.07–6.19] vs. 2.23 [0.33–4.14] ng/
mL, p � 0.0005) (Figure 2A). The difference remained after
dichotomizing AD and EC into high- and low-NET producers. The
median NET concentration of high-NET producers was 3.95
(3.09–6.19 ng/mL) in AD, compared to 3.0 (2.586–4.14 ng/mL) in
EC (p � 0.012). For low-NET producers, the median level of AD was
2.28 (2.07–2.46 ng/mL), compared to 2.0 in EC (0.33–2.46 ng/mL) (p�
0.042) (Figure 2B). Although NETs extrusion can lead to cell death by
NETosis, we did not perform the assays to evaluate it. Despite the small
number of samples used here, few studies investigating NETs in AD
patients were published. All of them confirm the increased NETs in
AD (Zenaro et al., 2015; Dong et al., 2018).

CONCLUDING REMARKS

NETs seem to be promising as new therapeutic targets for AD
treatment. We propose more investigations into the connection
between C5a, C1q, and CR1 with NETs in AD, as well as genetic
associations studies to investigate variants in DNase genes
(DNASE1, DNASE2, and DNASE1L3) that can result in a
down-regulation of DNase expression in AD.
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