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Abstract: This work investigated the effects of manufacturing variations, including coil resistance
and initial pod mass, on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples
of pods were used until failure (where e-liquid was consumed, and coil resistance increased to
high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass
ranged between 0.89 to 1.14 [Ω], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime was
µ (mean) = 158, σ (standard deviation) = 21.5 puffs. Total mass of e-liquid consumed until coil failure
was µ = 1.93, σ = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods)
was µ = 0.0123, σ = 0.0003 [g]. Coil lifetime and TPM yield per puff were not correlated with either
variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod
is an important factor in causing coil failure. Small bits of the degraded coil could be potentially
introduced to the aerosol. This work suggests that further work is required to investigate the effect of
e-liquid composition on coil lifetime and TPM yield per puff.

Keywords: aerosol generation; e-cigarette; coil resistance; e-liquid; manufacturing variation

1. Introduction

The aerosol generated by an Electronic Nicotine Delivery System (ENDS) or electronic
cigarette depends on the electrical characteristics of the heating element (hereinafter re-
ferred to as the coil [1–5]), the characteristics of e-liquid [6–9], the ENDS Power Control Unit
(PCU) and battery [10–13], user behavior such as puff flowrate and puff duration [10,14–16],
and device design (e.g., internal geometry, flow path design, wick and coil design and
locations) [10,14]. It has been widely reported that altering one or more of these factors
could change the aerosol emissions from the ENDS such as the total particulate matter
(TPM) yield, hazardous and potentially hazardous constituents (HPHC) of the aerosol, and
consequently the health effects. In particular, changing coil resistance, which results in
altered power consumption, has been associated with changes in some carbonyls and reac-
tive oxygen species (ROS) [1], changes in concentration of selected aldehydes [1–3], changes
in nicotine delivery, and changes in puff topography and e-liquid consumption [4,5].

The variation in coil resistance has the potential to change the power consumed in the
coil and thus the amount of heat generated. Consequently, it could change the performance
of the ENDS, which in turn leads to changes in aerosol emission and presence of the
HPHCs. Less attention has been given to the manufacturing variability of coil resistance
and the relative impact on variations in aerosol yield. Our previous work [17] introduced a
robust method to measure coil resistance of e-cigarettes and documented manufacturing
variation in coil resistance of two popular pod-style ENDS: Vuse ALTO and JUUL. Pod
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units included in the test showed variation in coil resistance of ~30% and ~7.4% for ALTO
and JUUL, respectively. Several studies have reported manufacturing variations in e-liquid
characteristics [18–22]. In preliminary work for this study, we observed manufacturing
variations in the gross mass of Vuse ALTO pods, thought to be dominated by the amount
of e-liquid in the pod rather than by differences in the container mass.

More study is needed to better understand manufacturing variation and the impact
of this variation on device performance. This study leads to better understanding of the
impact of manufacturing variation on coil lifetime and aerosol emissions. Therefore, this
study begins to lay the groundwork for regulations requiring manufacturers to report
variations in tobacco product components as part of the premarket approval process.

Study Objectives

This study focused on investigating the effects of manufacturing variations on e-
cigarette performance; specifically: (1) the effects of the variation in initial coil resistance
on coil lifetime and TPM yield per puff, and (2) the effects of the variation in initial pod
mass on coil lifetime and TPM yield per puff.

2. Materials and Methods

In order to investigate the effects of initial coil resistance and initial pod mass on
device performance, this study measured coil lifetime and total particulate matter (TPM)
yield per puff. Coil lifetime was measured as the number of repeated puffs delivered from
a brand-new pod until the coil broke, without refilling the pod, as indicated by a sharp
increase in coil resistance. Coil breakage could be a result of coil aging, excessive usage,
or a result of energizing the coil in the absence of e-liquid. The excessive heat generated
by the coil could lead to melting and breaking the coil. All of these failure mechanisms
would be reflected in such a sharp increase in coil resistance. Therefore, coil resistance was
deemed to be a good indicator of coil breakage.

2.1. Test Specimens

The experiments were conducted on a commercially available pod style ENDS,
Vuse ALTO [23] pods N = 15 which is one of the most popular e-cigarettes among
teenagers [24,25]. The manufacturer reported that these pods are filled with 1.8 [mL]
of e-liquid. The pods used in this study filled with nicotine flavor e-liquid manufacturer la-
beled 5% nicotine concentration. They were purchased from local retail shops and national
online vendors.

2.2. Aerosol Generation and Collection

The previously validated Programmable Emissions System™ (PES™-1) was used to
activate and run the ENDS under test to generate and collect aerosols as described in [26].
The system can be configured to perform puffing profiles based on a wide range of puff
flowrates, puff durations, and inter-puff intervals. It uses a vacuum tank (5.0 [L] with pres-
sure as low as −60 [kPA]), a proportional valve (KPIH-VP-20-156-25, Kelly Pneumatic Inc.,
Newport Beach, CA, USA with 10 [m s] response time) and a gas flow meter (M-50SLPM-
D-30PSIA/5M, Alicat Scientific, Inc. Tucson, AZ, USA) connected in series to generate the
required flowrates. The flow meter and proportioning valve are digitally monitored and
controlled to implement the desired puffing profile. Several particulate phase collection
modules can be used with this system. The current study used Cambridge style single
stage filter pads.

The TPM collected during each trial was measured by differencing the mass of the filter
pad before and after the trial. A Mettler AE240 Analytical Balance gravimeter was used.
The Mettler balance provided a protected weighing space with accuracy of ±0.0002 [g]
(0.2 [mg]) [27]. The same gravimeter was also used to measure pod mass before and after
each trial.
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Figure 1 shows the entrance region of the experimental setup, which includes the
inlet of the PES-1, filter pad holder, short connecting tube, and the ENDS under test.
The PES-1 was set up with an angle of 30◦ to mimic the declination angle of the ENDS
while being puffed, determined in a previous Master’s thesis, which analyzed data from
YouTube videos of e-cigarette users while vaping their personal ENDS in their natural
environment [28]. The mouthpiece of the Vuse ALTO ENDS was connected to the inlet of
the filter pad holder through a short connecting tube. The tube was fixed to the mouthpiece
with BemisTM ParafilmTM M Laboratory Wrapping Film (not illustrated in the picture
for visibility).
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2.3. Coil Resistance Testing Apparatus

The test fixture presented in [17,29] was used to measure coil resistance, built by
repurposing the housing of the PCU (power control unit) of the targeted ENDS, mimicking
the geometrical and electrical conditions of the original ENDS. The test fixture provides
measurement of the effective coil resistance which accurately represents the resistance
seen by the PCU during operation. The effective coil resistance is the summation of the
resistances of the connectors from the PCU to the pod, the internal connection pins in
the pod, and the heating coil. The fixture utilizes a four-wire resistance measurement
configuration with customized test leads. A detailed step-by-step protocol for building
this fixture has been published on protocols.io [29]. The fixture was used with 34465A
KEYSIGHT™ Digital Multimeter [30].

The coil resistance test fixture [17,29] was held vertically using a tabletop vise to
ensure consistency in the measurement and minimize error resulting from motion. The test
fixture was connected to the digital multimeter and communicated with the PES-1 personal
computer via USB serial connection. When the pod was inserted in the test fixture and the
resistance measurement was ready to be made, a button in the PES-1 software could be
clicked to make the coil resistance reading and record the results in the dataset.

2.4. Data Acquisition

Several types of data were collected while conducting the experiment, including the
measured puffing profile (flowrate), labeling data about the ENDS and pod under test,
filter pad mass, pod mass and coil resistance. The measured flowrate was automatically
collected by the PES-1 controller software, which was saved as a comma-separated values
file at the end of the session for later usage. The PES-1 controller software also provided the
means to enter the other types of the data. The labeling data of the ENDS and pod under
test were scanned by a barcode scanner before the session, the filter pad mass and pod
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mass values were manually measured using the gravimeter and were manually entered to
the PES-1 controller software before and after the session (i.e., after 20, 10 or 5 puffs). Coil
resistance was read by the PES-1 controller software when the pod was inserted in the test
fixture before and after each session. The step by step testing procedure employed in this
study has been published [31] to foster the reproducibility of this work.

2.5. Puffing Profile

The lifetime testing puffing profile used here included emissions testing sessions with
uniform rectangular shape puffs whose puff flowrate was 18.33 [mL/s], puff duration was
5.5 [s], and puff interval was 11 [s]. The number of puffs per session was 20 puffs for the
earlier portion of coil lifetime and was reduced to 10 or 5 puffs per session as each coil
lifetime test progressed. This puff profile was designed to accelerate lifetime testing by
providing long puff duration and short puff interval in order to shorten the time required to
fully consume the pod and achieve coil failure. Such technique (accelerated lifetime testing)
has been used in quality assurance testing standards of many common products [32,33].
The profile was also carefully designed to consider the parameter margins suggested by the
manufacturer, in order to avoid interfering with the results of the experiment while trying
to comply with some aspects of the Cooperation Centre for Scientific Research Relative to
Tobacco (CORESTA) standard for e-cigarette aerosol generation and collection [34]. The
flowrate was chosen based on the results of a preliminary experiment done in our lab which
showed that Vuse ALTO ENDS was consistently activated at a flowrate of ≥15 [mL/s].
While the puff flowrate complies with CORESTA standard, it was also intentionally selected
to be low in order increase the aerosol generation efficiency. The puff duration of 5.5 [s] was
chosen to fully exercise the five seconds specified by the manufacturer before the ENDS
automatically stops puffing [35], while the CORESTA standard specifies a puff duration of
3 ± 0.1 [s]. The puff interval (11 [s]) was shorter than the CORESTA interval (27 [s]). This
11 [s] puff interval is longer than the time specified by the manufacturer to cool the device
after it has been used for ≥5 [s] puff duration. Complying with the CORESTA flow rate
was chosen to make it easier for other researchers to compare our results. We are, however,
not suggesting either the CORESTA profile or the accelerated lifetime puffing profile used
herein accurately represents human user behavior. This profile might not be suitable for
other experiments that focus on different research objectives or test different devices.

3. Results
3.1. Illustration of Coil Lifetime

Coil lifetime was defined as a sharp increase in coil resistance wherein the coil melts or
disconnects. Verification of a sharp increase in coil resistance as a measure of coil lifetime
was demonstrated by dissecting and inspecting three Vuse ALTO pods with different levels
of usage. Figure 2 shows pictures of Vuse ALTO coils with three different conditions: New
coil, Pre-Failed and Failed. The ALTO coils are ‘S’ shaped metal strips on a porous ceramic
wick substrate. Two metal connectors, evident as the circular area on the left and right
side of each image, are mounted to the terminals of the coil and connect the coil to the
power control unit. The new coil had never been used and exhibited no sign of wear. The
pre-failed coil had been used until the pod appeared visually empty of e-liquid. It was,
however, a working coil with a functional resistance value. The pre-failed coil exhibited
signs of erosion and oxidation especially in the lower portion of the ‘S’. The failed coil had
been used until its resistance value increased to ~400 [kΩ] indicating coil failure. The failed
coil exhibited severe signs of wear and a complete physical break in the metal ‘S’ coil can
be easily seen below and to the right side of the left terminal.
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3.2. Impact of Initial Coil Resistance on Coil Lifetime and TPM Yield

The first objective was to investigate the effects of variation in initial coil resistance
(prior to first puff) on coil lifetime (measured as number of puffs until coil failure) and
TPM yield per puff. Figure 3 shows coil resistance values for each session as a function of
cumulative puff count. The data points are presented as a scatter plot of coil resistance vs.
cumulative puff count, overlaid by a boxplot of the same data in an effort to understand
changes in variation over the course of coil life. The first six emissions sessions for all pod
specimens consisted of 20 puffs per session. Thereafter, the operator reduced the count
from 20 to 10 to 5 puffs per session as the e-liquid remaining in each pod decreased. The
initial coil resistance of the pods ranged between 0.89 [Ω] and 1.14 [Ω] with sample mean
(µ) = 1.02 [Ω] and standard deviation (σ) = 0.081 [Ω]. Coil resistance was relatively steady
for the first 120 puffs (~ first 6 sessions). After 135 puffs, coil resistance values started
to increase as some pods started to exhibit coil failure and the number of scatter points
decreases as a function of cumulative puff count. After 165 puffs, only 3 coils remained
operable, while after 190 puffs only one coil remained in operation. Coil lifetime varied
between pods from 135 puffs to 215 puffs with µ = 158 puffs and σ = 21.5 puffs.
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We generated a scatter plot (not shown) of this data and conducted linear regression
analysis to investigate a possible association between initial coil resistance and coil lifetime.
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There was insufficient evidence to support an association between coil lifetime and initial
coil resistance (r = −0.07, p = 0.79). Next, we generated a scatter plot (not shown) to
investigate a possible association between initial coil resistance and initial TPM yield per
puff (first session). The initial TPM yield per puff ranged from 0.0118 [g] to 0.0129 [g] with
µ = 0.0123 [g] and σ = 0.0003 [g]. We found no evidence to support this relation (r = −0.26,
p = 0.35).

3.3. Impact of Initial Pod Mass on Coil Lifetime and Coil Resistance Variation

The second objective was to investigate the effects of variation in initial pod mass on
coil lifetime and TPM yield per puff. Figure 4 shows coil resistance values vs. pod mass
at each session starting from a brand-new full pod to coil failure point. The gross mass
of the brand new pods (initial pod mass) ranged from 6.48 [g] to 6.61 [g] with µ = 6.54 [g]
and σ = 0.0469 [g] while the tare mass of the pods after failure (end pod mass) ranged from
4.56 [g] to 4.67 [g] with µ = 4.61 [g] and σ = 0.0342 [g]. During the full exhaustive test, the
net mass of the e-liquid consumed out of each pod ranged from 1.88 [g] to 2.00 [g] with
µ = 1.93 [g] and σ = 0.035 [g]. The connecting lines between scatter points are used as a
visual aid to show that coil resistance remains relatively steady for most of the session series,
while e-liquid remained in the pods. However, coil resistance values initially decreased as
the e-liquid level approached the wick and then sharply escalated, indicating coil failure,
at which point the pods visually appeared completely empty. We generated scatter plots
(not shown) of this data and conducted linear regression analysis to investigate a possible
association between initial pod mass and coil lifetime. We found insufficient evidence
to correlate coil lifetime with either initial pod mass (r = 0.03, p = 0.9) or the net mass of
e-liquid consumed (r = −0.2, p = 0.45).
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3.4. Impact of Initial Pod Mass on TPM Yield

Figure 5 shows the TPM yield per puff vs. pod mass at each session starting from a
brand-new full pod to coil failure point. As expected, the TPM yield per puff approaches
0 when the e-liquid in the pod is fully or almost fully consumed. We generated scatter
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plots (not shown) to investigate a possible association between initial pod mass and initial
TPM yield per puff. We found insufficient evidence to correlate TPM yield per puff with
initial gross pod mass (r = −0.23, p = 0.41) or with net mass of e-liquid consumed (r = 0.08,
p = 0.76).

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 5. TPM yield per puff vs pod mass for each session starting from brand new full pods until 
coil failure where the pod visually looks empty for N = 15 pods tested in this study. Each pod is 
represented by a different marker color. 

4. Discussion 
4.1. Why Did Initial Coil Resistance Not Affect TPM Yield? 

The results presented herein demonstrated insufficient evidence to support correla-
tions between initial coil resistance TPM yield per puff. In the simplest design of an ENDS, 
the PCU simply short-circuits the battery across the coil and there should be a correlation 
between the TPM yield per puff and the initial coil resistance when the ENDS battery is 
fully charged. There are at least two possible explanations for the lack of correlation. One 
explanation is that the PCU employs an algorithm which limits power dissipated in the 
coil, either through voltage control, current control, puff duration control, or duty cycle 
control. In this case, the temperature of the coil will be limited to the boiling point and 
further increase of the heating power should not affect the temperature as long as there is 
a liquid in contact with the coil. However, if the applied power increases, the additional 
power would increase TPM yield even in the absence of an increase in coil temperature. 
A second explanation is that the PCU employs an algorithm that limits the maximum coil 
temperature to prevent over-heating of the coil. In this case, we would not have observed 
the coil burn-out failure exhibited in Figure 3. Thus, we infer the ENDS PCU did exhibit 
some level of power control but did not exhibit an over-heating protection circuit. 

This suggests that some ENDS PCU may employ algorithms to overcome variation 
in coil resistance or actively control the power. Such algorithms could use a closed-loop 
control system which dynamically measures coil resistance and adjusts the power sup-
plied to the coil in real time in order to keep the heating energy within a limit, as has been 
previously disclosed in the patent literature [36,37], and research literature [38,39]. Thus, 
the temperature of the coil and heating chamber could be controlled in a cycle to keep 
aerosol emission steady. No articles have been presented in the literature which quantify 
the effectiveness of such PCU algorithms and the extent to which they can eliminate the 
effects of coil resistance variation on the performance of the ENDS. The results presented 

Figure 5. TPM yield per puff vs. pod mass for each session starting from brand new full pods until
coil failure where the pod visually looks empty for N = 15 pods tested in this study. Each pod is
represented by a different marker color.

4. Discussion
4.1. Why Did Initial Coil Resistance Not Affect TPM Yield?

The results presented herein demonstrated insufficient evidence to support correla-
tions between initial coil resistance TPM yield per puff. In the simplest design of an ENDS,
the PCU simply short-circuits the battery across the coil and there should be a correlation
between the TPM yield per puff and the initial coil resistance when the ENDS battery is
fully charged. There are at least two possible explanations for the lack of correlation. One
explanation is that the PCU employs an algorithm which limits power dissipated in the
coil, either through voltage control, current control, puff duration control, or duty cycle
control. In this case, the temperature of the coil will be limited to the boiling point and
further increase of the heating power should not affect the temperature as long as there is
a liquid in contact with the coil. However, if the applied power increases, the additional
power would increase TPM yield even in the absence of an increase in coil temperature. A
second explanation is that the PCU employs an algorithm that limits the maximum coil
temperature to prevent over-heating of the coil. In this case, we would not have observed
the coil burn-out failure exhibited in Figure 3. Thus, we infer the ENDS PCU did exhibit
some level of power control but did not exhibit an over-heating protection circuit.

This suggests that some ENDS PCU may employ algorithms to overcome variation
in coil resistance or actively control the power. Such algorithms could use a closed-loop
control system which dynamically measures coil resistance and adjusts the power supplied
to the coil in real time in order to keep the heating energy within a limit, as has been
previously disclosed in the patent literature [36,37], and research literature [38,39]. Thus,
the temperature of the coil and heating chamber could be controlled in a cycle to keep
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aerosol emission steady. No articles have been presented in the literature which quantify the
effectiveness of such PCU algorithms and the extent to which they can eliminate the effects
of coil resistance variation on the performance of the ENDS. The results presented herein
establish a firm premise for the study of PCU control algorithms. Such PCU algorithms
offer potential for both positive and negative health effects, and thus are worthy of detailed
investigation and possible regulatory action.

4.2. What Are the Mechanisms of Coil Failure?

The results demonstrate that a dramatic increase coil resistance is a sufficient indication
of coil failure. At failure point, the coil melts or breaks leaving an open circuit between its
terminals. This break is reflected as a sudden increase in measured coil resistance from
order of ~1 [Ω] to order of ~400 [KΩ]. While our definition of coil failure suggests coil
break, our measured coil resistance was not infinite. The residual resistance measured
after the failure point could be related to the resistance of the wick and some drops of
e-liquid that might still exist around the wick. We observed that the ENDS continued to
operate during this pre-failure condition, when the coil was degraded (Figure 2, middle
image) and loss of metal was observed. The results presented herein may explain the
mechanisms underlying coil failure. When the coil is active, it generates heat that is
transferred to the e-liquid causing it to vaporize. Concurrently, the e-liquid cools the coil as
generated aerosol carries the heat away. This suggests that the presence of e-liquid around
the coil contributes to limiting the coil temperature below its melting point, consistent
with the observed steadiness in coil resistance values while there is e-liquid left in the pod
(Figure 4). When insufficient e-liquid remains to fully submerge the coil and the wick, the
heat generated by the coil remains in the coil and the wick causing the coil temperature to
increase and thus the coil melts or breaks. A follow-up experiment could be conducted to
confirm this explanation by demonstrating the coil lifetime can be extended indefinitely
by refilling the e-liquid reservoir, even though the pods studied here are intended by the
manufacturer to be disposable. Whether or not manufacturers are required to protect
against product misuse, significant public health concerns may arise therefrom, and the
proposed experiment may inform future research into lung injury and atypical health
responses observed among ENDS users.

4.3. Potential Health Impact of Coil Failure and Product Misuse

Metal is likely ejected from the pod into the aerosol while the coil fails during the
final puffing session and potentially much earlier. The coil shown in the middle picture
of Figure 2 illustrates this degraded condition wherein chunks of the coil are gone while
it continued to generated aerosol. The chunks of the degrading coil are most likely to be
ejected with the aerosol and inhaled by the user. This observation is consistent with results
of several articles which test the existence of metal in electronic cigarettes’ emission [40–44].
This is a potentially critical juncture, particularly in the instance where consumers misuse
their product and refill the e-liquid in a pod which was nearly emptied on a prior use
and whose coil had experienced degradation. When a compromised coil is subsequently
heated, there may be increased risk of metal exposure even when the coil has not fully
failed. Follow-up experiments to assess the emissions effects of e-liquid refilling could
eventually establish a scientific foundation for regulations requiring labels warning against
this type of misuse or product safety/inter-lock features preventing re-filling, or both.

4.4. Limitations and Future Work

Visual inspection of pods which were just taken out of the consumer over-packing (not
exposed to light or air since packaged by the manufacturer) revealed variations in e-liquid
color among pods in different blister-packs and between pods in the same blister-pack as
shown in Figure 6. The pods were primitively classified as “light” or “dark” in color (prior
to running experiments) by visually comparing the pods with each other. Out of 15 ALTO
pods used in the experiment, 11 pods were classified as “light” while 4 were classified as
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“dark”. While analyzing the data, it was noticed that coil lifetime of pods with light color
e-liquid appeared to be consistently shorter than that of dark color e-liquid as shown in
Figure 3. In this figure, the pods classified as light color noted with ‘*’ while pods classified
as dark color noted with ‘o’. The light color group was found to have coil lifetime in the
range of 135 to 165 with µ = 149, σ = 10.7 puffs while the dark color group had coil lifetime
in the range of 165 to 215 with µ = 185, σ = 22.7 puffs. An a-posteriori t-test between the
two groups showed a difference of 36 puffs (p < 0.001), confirming an association between
coil lifetime and e-liquid color. The TPM of the pods in the light e-liquid group and the
dark e-liquid group behave differently while the e-liquid is being consumed as shown
in Figure 5. The TPM yield per puff of the light e-liquid group, ‘*’, is relatively steady
for most of the sessions and sharply decreases when the e-liquid is fully consumed or
almost consumed. On the other hand, for the dark e-liquid pods, ’o’, the TPM yield per
puff gradually (linearly) decreases while more e-liquid is being consumed until it sharply
decreases just before the e-liquid is fully consumed. These observations were not further
analyzed as they lack the appropriate chemical analysis, which explains the variations in
e-liquid color. A study with the appropriate measurements is being undertaken to closely
investigate this variation and its effects on ENDS performance.
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5. Conclusions

We found insufficient evidence to correlate coil lifetime and TPM yield to either
initial coil resistance or initial pod mass. The amount of e-liquid remaining in the pod
appears to be the single most important factor in determining coil failure. A dramatic sharp
increase in observed coil resistance is a robust method for quantifying coil lifetime. Further
investigation is needed to assess the potential adverse health impacts of coil degradation
during the final stage of coil lifetime. This work suggests that further work is required to
investigate the effect of e-liquid composition on coil lifetime and TPM yield per puff.
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resources, E.C.H. and R.J.R.; data curation, Q.M.S. and E.C.H.; writing—original draft preparation,
Q.M.S. and E.C.H.; writing—review and editing, N.C.E. and R.J.R.; visualization, Q.M.S. and E.C.H.;
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