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Abstract

The prediction of disease risks is an essential part of personalized medicine, which includes early disease detection,
prevention, and intervention. The polygenic risk score (PRS) has become the standard for quantifying genetic
liability in predicting disease risks. PRS utilizes single-nucleotide polymorphisms (SNPs) with genetic risks elucidated
by genome-wide association studies (GWASs) and is calculated as weighted sum scores of these SNPs with genetic
risks using their effect sizes from GWASs as their weights. The utilities of PRS have been explored in many common
diseases, such as cancer, coronary artery disease, obesity, and diabetes, and in various non-disease traits, such as
clinical biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of these diseases
as a predictive biomarker and provide information on modifiable risk factors driving health outcomes. On the other
hand, there are several limitations to implementing PRSs in clinical practice, such as biased sensitivity for the ethnic
background of PRS calculation and geographical differences even in the same population groups. Also, it remains
unclear which method is the most suitable for the prediction with high accuracy among numerous PRS methods
developed so far. Although further improvements of its comprehensiveness and generalizability will be needed for
its clinical implementation in the future, PRS will be a powerful tool for therapeutic interventions and lifestyle
recommendations in a wide range of diseases. Thus, it may ultimately improve the health of an entire population in
the future.
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Background
Understanding human disease risk factors that contrib-
ute to disease onset is vital for the implementation of
early disease detection, prevention, and intervention.
The primary components of human disease risk factors
are usually explained by the combination of genetic sus-
ceptibility, environmental exposures, and lifestyle factors
[1]. Differences in these factors between individuals also
yield differences in disease physiology among individuals.
Precision medicine can be defined as tailored medical
care primarily based on understanding these differences
in disease physiology among individuals (Fig. 1a).

One of the important approaches for precision medi-
cine is stratifying individual genetic susceptibility based
on inherited DNA variation. This approach has been de-
veloped with progress in human genetics. Since the first
complete human genome sequencing was finished in
2003, progress in human genetics has been accelerated
by recent technological advances, such as genome se-
quencing technology for a large population and advances
in statistical genetics methodology. All this progress in
human genetics has been expected to give insight into
the contribution of genetic factors for common human
diseases and better prediction of disease risks. A
genome-wide association study (GWAS), which uses
single-nucleotide polymorphisms (SNPs) arrays, is one
of the most effective methods for statistically assessing
the genetic association of diseases. Not only have
GWASs identified thousands of genomic loci associated
with common human diseases [2], they have also
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elucidated complex genetic architectures in most com-
mon human diseases. Because most SNPs identified by
GWASs that are significantly associated with common
human diseases often have a small effect size on these
disease risks [3], using only SNPs that are significantly
associated with these diseases in disease risk prediction
is not reliable. A model underlying this concept is called
a “polygenic model” [4], which explains disease suscepti-
bility as a combination of several SNPs that have a small
effect size on disease.
A statistical method based on a polygenic model,

called the PRS, has been developed. PRS is calculated as
a weighted sum of several risk alleles carried by an indi-
vidual, where the risk alleles and their weights are de-
fined by SNPs and their measured effects [5]. PRS has
gained interest because it may be useful in predicting in-
dividual disease susceptibility. In this review, we
summarize the recent advances, utilities, perspectives,
and precision medicine application of PRS (Fig. 1).

An overview of polygenic risk score
The concept of polygenic risk was initially advocated
and modeled in the early twentieth century [6]. Along
with the accumulation of genomic loci associated with
common human diseases and complex traits by the

success of GWASs [2], it has been possible to quan-
tify polygenic risk using risk alleles identified by
GWASs in these diseases and traits. The quantifying
polygenic risk methods have been developed in the
last decade as tools to calculate the cumulative effect
of many genetic loci for a certain trait into a quanti-
tative metric [7], which is called PRS. As a usual
practice, PRS is calculated as a weighted sum of sev-
eral risk alleles carried by an individual. The risk al-
leles and their weights are defined by SNPs and their
measured effect sizes (Fig. 1b). The effect sizes are
typically estimated as the beta coefficients for quanti-
tative traits or as odds ratios for categorical binary
traits. PRS is typically calculated using a set of SNPs
with different p-value thresholds (e.g., 1 × 10−5, 1 ×
10−4, …, 0.05, 0.1, …, 0.5) for disease association, and
then a series of PRSs is calculated for a disease or a
trait. After the PRS has been calculated in one cohort,
it is essential to assess its predictive performance in
another external cohort, which is not used for the
construction of PRS. This performance of constructed
PRS is often evaluated by the area under the receiver
operating characteristic curve, called area under the
curve (AUC) of a PRS, which provides a quantitative
measure for the discrimination ability of a PRS [8].

Fig. 1 Overview of clinical application of statistical genomics and polygenic risk score. a Clinical application of statistical genomics for complex
human diseases. b Overview of polygenic risk score construction. As a usual practice, PRS is calculated as a weighted sum of several risk variants
from a genome-wide association study in one cohort with multiple p-value thresholds. The effect sizes are typically estimated as β (beta
coefficients) or as odds ratios. After the PRS is calculated in one cohort, the distribution of individual PRS is assessed in another cohort
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In the calculation and validation of PRS, some meth-
odological concerns have been argued [9, 10]. For ex-
ample, although the construction of PRS by inclusion of
larger numbers of SNPs (including SNPs that do not
meet genome-wide significance) can have more predict-
ive accuracy, it is argued whether the inclusion of those
SNPs with close to zero effects in PRSs makes sense
[11]. In another example, linkage disequilibrium (LD),
the correlations between nearby SNPs, which leads to
over-representation of high LD regions in calculating
PRS, potentially reduces the predictive performance of
PRS [12]. To mitigate the effect of LD, LD pruning (ran-
domly removing one SNP from a pair in high LD), LD
clumping (pruning by LD, while referentially retaining
more significantly associated SNPs), or more complex
methods that explicitly account for LD [13] have been
used.

Applications of the polygenic risk score for
disease prediction
In the case of disease with age-dependent prevalence,
such as lifestyle-related diseases, it is effective to identify
the population with a high risk of disease onset in ad-
vance and implement a preventive intervention. One of
the PRS utilities with high clinical values can be a pre-
dictive biomarker of disease risk. This utility of PRS has
been explored in many common diseases, such as can-
cer, coronary artery disease, obesity, and diabetes [14–
16]. For example, in coronary artery disease, PRS, which
was developed by a GWAS of coronary artery disease
from a dataset (validation dataset) of UK Biobank partic-
ipants and applied to another dataset (test dataset) of
UK Biobank participants, demonstrated that participants
in the top 0.5 percentile of PRS in the test dataset had a
fivefold increase in the prevalence of coronary artery dis-
ease [16]. This result showed that PRS developed by a
large-scale GWAS potentially enabled the accurate pre-
diction of disease prevalence.
In another example, disease risk prediction of breast

cancer, which had been estimated from two genes,
BRCA1 and BRCA2 [17], was expanded by the applica-
tion of PRS. PRS of breast cancer based on 303 genetic
variants from a GWAS of breast cancer demonstrated
that women in the top 1 percentile of PRS had a fourfold
increased risk of developing estrogen receptor-positive
breast cancer and a sixfold decreased risk for women in
the lowest 1 percentile of PRS [18]. Although this PRS
had a modest AUC of 0.63, this study showed that breast
cancer PRS potentially captured sufficient information to
identify a high-risk subgroup of women who could be
offered preventive interventions.
Application of PRS for a non-disease trait was also re-

ported. This analysis developed PRSs of trans-biobank
(BioBank Japan, UK Biobank, and FinnGen; ntotal = 675,

898) analysis of the association of several clinical bio-
markers and revealed the association between high sys-
tolic blood pressure PRS and a shorter lifespan in trans-
ethnic individuals and the association between obesity
PRS and lifespan in Japanese and European individuals
[19]. These results showed the potential application of
PRS in improving population health by providing infor-
mation on modifiable risk factors driving health
outcomes.
From these examples, the utilities of PRS have been

expected to be potential predictors of future risks of dis-
ease or health outcomes. Thus, they are expected for tar-
get treatment application, alteration of screening
paradigms, and modification of non-genetic factors re-
lated to predicted high-risk phenotypes.

Limitations and challenges for the application of
polygenic risk score
We focus on several limitations on the implementation
of PRSs in clinical practice. First, PRS is highly sensitive
to ethnic background. The variability of PRS among eth-
nic groups can be explained by the differences in allele
frequency, LD, and effect sizes of variants among ethnic
groups [20]. Therefore, the performance of PRS drops if
PRS developed from one ethnic group is applied to an-
other ethnic group [21]. To overcome these ethnic
group-specific biases, several methods have been pro-
posed. For example, the ancestry deconvolution PRS
method with consideration for an admixture of ancestry-
specific partial sequence in individual genome demon-
strated improved susceptibility predictions of PRS for
four traits (type 2 diabetes, breast cancer, height, and
body mass index [BMI]) [22]. In addition to the further
development of the PRS method, future GWASs would
be needed to include subjects from diverse ethnic back-
grounds to improve the generalizability and utility of
PRS for all populations because the majority of GWASs
have been performed in European-Caucasian popula-
tions [23, 24]. In order to enlarge the benefit of PRS in
non-European-Caucasian populations, whose amount of
genomic data is limited compared with European-
Caucasian populations, it is important that vastly in-
creasing diversity of participants is included and ana-
lyzed in genetic studies, and open data-sharing standards
of these results are needed for improving the accuracy of
PRS in these populations [24].
Second, the distribution of PRS even in the population

group was reported to show biases according to geo-
graphical differences. For example, geographical differ-
ences in PRSs of coronary artery disease, rheumatoid
arthritis, schizophrenia, waist–hip ratio, BMI, and height
were detected in Finland [25]. Whether the cause of
these biased distributions was the geographical differ-
ence in disease prevalence or the difference in the
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genetic background by population stratification remains
unclear. In another example, considerable differences of
PRSs between the non-mainlanders and mainlanders in
Japan were reported [26]. In this report, PRS of BMI
showed that the smaller BMI PRS was observed in non-
mainlanders, although the greater BMI was observed in
non-mainlanders. This difference is assumed to be a re-
sult of sudden changes in environmental factors which
affected non-mainlanders’ BMI in the non-mainland that
preceded the reflection of genomic structure in response
to these environmental changes. From these examples,
the PRS could be susceptible to population structure’s
geographical distributions, even within a relatively
homogeneous population.
Third, given the numerous available models of PRS, it

remains unclear which method is the most suitable for
predicting the risks of diseases or traits. It was reported
that when categorizing the existing 15 PRS methods into
three groups, which consisted of (1) simple methods that
selected variants below a p-value limit and within a LD
range, (2) complex methods that selected variants by
attempting to approximate the results of a mixed-model
approach, and (3) ensemble methods created by taking
an average of the top five PRSs weighted by their coeffi-
cients in a cross-validated logistic regression, it was
shown that the simple methods generated slightly more
accurate PRSs than did the complex methods [27]. Fur-
ther insight into the characterization of PRS models will
be needed to evaluate and compare these predictive per-
formances. Comparable performance metrics of these
PRS models would need to be systematically evaluated.
For example, the PGS Catalog [28], an open resource for
PRSs that has been reported recently, enables PRS ana-
lysis in a standardized format along with consistent
metadata and direct comparison between scores.
Fourth, the prospect of clinical use of PRS is associated

with a wide variety of ELSI (ethical, legal, and social im-
plications) concerns, which have been also discussed in
the context of monogenic genetic results and is also
present in the polygenic context [29]. One of the ELSI
concerns about PRS is the relevance of findings of PRS
to family members. Genetic variation is shared in fam-
ilies and the PRS of first-degree family members are cor-
related [30], but this information is not as clear as in the
monogenic genetic results. Guidelines developed by pro-
fessional societies would be needed for both patients and
providers for prompt warning about the polygenic risk
to family members. Other examples of the ELSI con-
cerns about PRS are risk of psychosocial harms, false re-
assurance, and overdiagnosis and overtreatment, which
are typically considered in the monogenic genetic
results. Further research for whether the harms of false
reassurance, overtreatment and overdiagnosis materialize
would be needed.

Conclusions
In this review, we focused on recent advances, utilities,
and perspectives of PRS. The predictive accuracy of PRS
will continue to be improved by more extensive and
diverse cohorts to construct PRS models and improve
methods for PRS derivation and application. Although
further improvements of its comprehensiveness and
generalizability would be needed for its clinical imple-
mentation in the future, the potential clinical impacts
and benefits of the PRS have been proposed and dis-
cussed. For example, PRS-informed clinical intervention,
PRS-informed disease screening, and PRS-informed life
planning were proposed as the potential clinical benefits
[5]. Also, individual PRS measurement only needs its
genome sequence, which could be taken once at a rela-
tively low cost, and PRS will be potentially applied for
various diseases and traits. PRS will guide therapeutic in-
terventions and lifestyle recommendations in several dis-
eases. Thus, it might ultimately improve the health of an
entire population in the future.

Abbreviations
PRS: Polygenic risk score; SNP: Single nucleotide polymorphism;
GWAS: Genome-wide association study; AUC: Area under the curve;
ER: Estrogen receptor; BMI: Body mass index

Acknowledgements
Not applicable.

Authors’ contributions
T.K. wrote the manuscripts. Y.O. supervised the review. The authors read and
approved the final manuscript.

Funding
This study was supported by the Japan Society for the Promotion of Science
(JSPS) KAKENHI (19H01021 and 20 K21834) and AMED (JP20km0405211,
JP20ek0109413, JP20ek0410075, JP20gm4010006, and 20 km0405217), Takeda
Science Foundation, and Bioinformatics Initiative of Osaka University
Graduate School of Medicine, Osaka University. T.K. is an employee of Japan
Tobacco Inc.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Statistical Genetics, Osaka University Graduate School of
Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan. 2Central Pharmaceutical
Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Japan. 3Laboratory
of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC),
Osaka University, Suita 565-0871, Japan. 4Integrated Frontier Research for
Medical Science Division, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, Suita 565-0871, Japan.

Konuma and Okada Inflammation and Regeneration           (2021) 41:18 Page 4 of 5



Received: 28 April 2021 Accepted: 9 June 2021

References
1. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of

polygenic risk scores. Nat Rev Genet. 2018;19:1–10.
2. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10

years of GWAS discovery: biology, function, and translation. Am J Hum
Genet. 2017;101(1):5–22. https://doi.org/10.1016/j.ajhg.2017.06.005.

3. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al.
Finding the missing heritability of complex diseases. Nature. 2009;461(7265):
747–53. https://doi.org/10.1038/nature08494.

4. Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the
contribution of common variants. Proc Natl Acad Sci U S A. 2014;111(49):
E5272–81. https://doi.org/10.1073/pnas.1419064111.

5. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of
polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90. https://doi.org/10.1
038/s41576-018-0018-x.

6. Fisher RA. The correlation between relatives on the supposition of
Mendelian inheritance. Trans R Soc Edinb. 1919;52(2):399–433. https://doi.
org/10.1017/S0080456800012163.

7. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to
disease from genome-wide association studies. Genome Res. 2007;17(10):
1520–8. https://doi.org/10.1101/gr.6665407.

8. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver
operating characteristic (Roc) curve. Radiology. 1982;143(1):29–36. https://
doi.org/10.1148/radiology.143.1.7063747.

9. Choi SW, Mak TSH, O’Reilly PF. Tutorial: a guide to performing polygenic risk
score analyses. Nat Protoc. 2020;15(9):2759–72. https://doi.org/10.1038/s41
596-020-0353-1.

10. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic
risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;
17(7):392–406. https://doi.org/10.1038/nrg.2016.27.

11. Janssens ACJW, Joyner MJ. Polygenic risk scores that predict common
diseases using millions of single nucleotide polymorphisms: is more, better?
Clin Chem. 2019;65(5):609–11. https://doi.org/10.1373/clinchem.2018.296103.

12. Wu J, Pfeiffer RM, Gail MH. Strategies for developing prediction models
from genome-wide association studies. Genet Epidemiol. 2013;37(8):768–77.
https://doi.org/10.1002/gepi.21762.

13. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al.
Modeling linkage disequilibrium increases accuracy of polygenic risk scores.
Am J Hum Genet. 2015;97(4):576–92. https://doi.org/10.1016/j.ajhg.2015.09.
001.

14. Fritsche LG, Beesley LJ, VandeHaar P, Peng RB, Salvatore M, Zawistowski M,
et al. Exploring various polygenic risk scores for skin cancer in the
phenomes of the Michigan genomics initiative and the UK Biobank with a
visual catalog: PRSWeb. PLoS Genet. 2019;15(6):e1008202. https://doi.org/1
0.1371/journal.pgen.1008202.

15. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic
prediction of weight and obesity trajectories from birth to adulthood. Cell.
2019;177:587–96.e9.

16. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al.
Genome-wide polygenic scores for common diseases identify individuals
with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–
24. https://doi.org/10.1038/s41588-018-0183-z.

17. Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al.
The BOADICEA model of genetic susceptibility to breast and ovarian
cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66. https://
doi.org/10.1038/sj.bjc.6604305.

18. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al.
Polygenic risk scores for prediction of breast cancer and breast cancer
subtypes. Am J Hum Genet. 2019;104(1):21–34. https://doi.org/10.1016/j.a
jhg.2018.11.002.

19. Sakaue S, Kanai M, Karjalainen J, Akiyama M, Kurki M, Matoba N, et al. Trans-
biobank analysis with 676,000 individuals elucidates the association of
polygenic risk scores of complex traits with human lifespan. Nat Med. 2020;
26(4):542–8. https://doi.org/10.1038/s41591-020-0785-8.

20. Márquez-Luna C, Loh P. South Asian Type 2 Diabetes (SAT2D) Consortium,
SIGMA Type 2 Diabetes Consortium, Price AL. Multiethnic polygenic risk
scores improve risk prediction in diverse populations. Genet Epidemiol.
2017;41(8):811–23. https://doi.org/10.1002/gepi.22083.

21. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis
of polygenic risk score usage and performance in diverse human
populations. Nat Commun. 2019;10(1):3328. https://doi.org/10.1038/s41467-
019-11112-0.

22. Marnetto D, Pärna K, Läll K, Molinaro L, Montinaro F, Haller T, et al. Ancestry
deconvolution and partial polygenic score can improve susceptibility
predictions in recently admixed individuals. Nat Commun. 2020;11(1):1628.
https://doi.org/10.1038/s41467-020-15464-w.

23. Mills MC, Rahal C. A scientometric review of genome-wide association studies.
Commun Biol. 2019;2(1):9. https://doi.org/10.1038/s42003-018-0261-x.

24. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of
current polygenic risk scores may exacerbate health disparities. Nat Genet.
2019;51(4):584–91. https://doi.org/10.1038/s41588-019-0379-x.

25. Kerminen S, Martin AR, Koskela J, Ruotsalainen SE, Havulinna AS, Surakka I,
et al. Geographic variation and bias in the polygenic scores of complex
diseases and traits in Finland. Am J Hum Genet. 2019;104(6):1169–81.
https://doi.org/10.1016/j.ajhg.2019.05.001.

26. Sakaue S, Hirata J, Kanai M, Suzuki K, Akiyama M, Too CL, et al.
Dimensionality reduction reveals fine-scale structure in the Japanese
population with consequences for polygenic risk prediction. Nat Commun.
2020;11(1):1569. https://doi.org/10.1038/s41467-020-15194-z.

27. Kulm S, Mezey J, Elemento O. Benchmarking the accuracy of polygenic risk
scores and their generative methods. medRxiv. 2020. https://doi.org/10.11
01/2019.12.11.12345678.

28. Lambert SA, Gil L, Jupp S, Ritchie S, Xu Y, Buniello A, et al. The Polygenic
Score Catalog: an open database for reproducibility and systematic
evaluation. Nat Genet. 2021;53(4):420–5. https://doi.org/10.1038/s41588-021-
00783-5.

29. Lewis ACF, Green RC. Polygenic risk scores in the clinic: new perspectives
needed on familiar ethical issues. Genome Med. 2021;13(1):14. https://doi.
org/10.1186/s13073-021-00829-7.

30. Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, et al.
Screening human embryos for polygenic traits has limited utility. Cell. 2019;
179:1424–1435.e8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Konuma and Okada Inflammation and Regeneration           (2021) 41:18 Page 5 of 5

https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1038/nature08494
https://doi.org/10.1073/pnas.1419064111
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1101/gr.6665407
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/s41596-020-0353-1
https://doi.org/10.1038/s41596-020-0353-1
https://doi.org/10.1038/nrg.2016.27
https://doi.org/10.1373/clinchem.2018.296103
https://doi.org/10.1002/gepi.21762
https://doi.org/10.1016/j.ajhg.2015.09.001
https://doi.org/10.1016/j.ajhg.2015.09.001
https://doi.org/10.1371/journal.pgen.1008202
https://doi.org/10.1371/journal.pgen.1008202
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1038/sj.bjc.6604305
https://doi.org/10.1038/sj.bjc.6604305
https://doi.org/10.1016/j.ajhg.2018.11.002
https://doi.org/10.1016/j.ajhg.2018.11.002
https://doi.org/10.1038/s41591-020-0785-8
https://doi.org/10.1002/gepi.22083
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1038/s41467-020-15464-w
https://doi.org/10.1038/s42003-018-0261-x
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1016/j.ajhg.2019.05.001
https://doi.org/10.1038/s41467-020-15194-z
https://doi.org/10.1101/2019.12.11.12345678
https://doi.org/10.1101/2019.12.11.12345678
https://doi.org/10.1038/s41588-021-00783-5
https://doi.org/10.1038/s41588-021-00783-5
https://doi.org/10.1186/s13073-021-00829-7
https://doi.org/10.1186/s13073-021-00829-7

	Abstract
	Background
	An overview of polygenic risk score
	Applications of the polygenic risk score for disease prediction
	Limitations and challenges for the application of polygenic risk score
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

