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Recent advances in high-throughput technologies have provided an unprecedented opportunity to identify molecular markers of
disease processes. This plethora of complex-omics data has simultaneously complicated the problem of extracting meaningful
molecular signatures and opened up new opportunities for more sophisticated integrative and holistic approaches. In this era,
effective integration of data-driven and knowledge-based approaches for biomarker identification has been recognised as key to
improving the identification of high-performance biomarkers, and necessary for translational applications. Here, we have evaluated
the role of circulating microRNA as a means of predicting the prognosis of patients with colorectal cancer, which is the second
leading cause of cancer-related death worldwide. We have developed a multi-objective optimisation method that effectively
integrates a data-driven approach with the knowledge obtained from the microRNA-mediated regulatory network to identify robust
plasma microRNA signatures which are reliable in terms of predictive power as well as functional relevance. The proposed multi-
objective framework has the capacity to adjust for conflicting biomarker objectives and to incorporate heterogeneous information
facilitating systems approaches to biomarker discovery. We have found a prognostic signature of colorectal cancer comprising 11
circulating microRNAs. The identified signature predicts the patients’ survival outcome and targets pathways underlying colorectal
cancer progression. The altered expression of the identified microRNAs was confirmed in an independent public data set of plasma

samples of patients in early stage vs advanced colorectal cancer. Furthermore, the generality of the proposed method was
demonstrated across three publicly available miRNA data sets associated with biomarker studies in other diseases.
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INTRODUCTION

The identification of robust and reproducible molecular markers is
one of the biggest challenges in personalised cancer medicine.
The complexity and heterogeneity of cancer, noise and nonlinea-
rities in high-throughput data, and relatively small sample sizes
can all contribute to the observed inconsistencies across different
biomarkers reported for identical clinical conditions. However, the
increasing use of systems biology approaches has prompted
researchers to integrate heterogeneous data into existing knowl-
edge bases in order to facilitate the system-level understanding of
disease. Now, incorporating such knowledge bases into the
biomarker discovery workflow may adjust for data heterogeneity
and limitation, and offer more precise, robust and consistent
biomarkers.!

Colorectal cancer (CRQ) is the second leading cause of cancer-
related mortality both in Australia> and worldwide,®> and in
Australia, is the second-most prevalent cancer in both men and
women.”> While survival rates have increased over the past 30
years with the introduction of screening programmes and new

systemic treatment agents, the 5-year relative survival from CRC
remains only 68%.% Of those patients who undergo curative
surgery for CRC, one in three will experience disease recurrence.”
For patients with metastatic disease, 5-year survival is only around
13%.> An important challenge, therefore, is identifying those
patients who have undergone curative resection who are at
higher risk of recurrence and selecting those likely to derive
benefit from adjuvant chemotherapy. Similarly, for patients with
metastatic disease, early identification of those who are likely to
develop more severe toxicities or derive little or no response from
what can be expensive cytotoxic and targeted agents would allow
for the selection of alternate, better tolerated therapies; tailored
doses of the same agents; or the use of prophylactic supportive
therapies, such as antibiotics or growth factors. These limitations
highlight the need for novel biomarkers that facilitate the early
identification of patients with poor prognosis.

Currently, performance status and cancer stage are the main
indicators for treatment selection and survival prognostication.
There is now a crucial need for the personalisation of treatment
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using molecular biomarkers, in conjunction with baseline clinical
and laboratory variables. Blood-based biomarkers are particularly
attractive given that blood is a readily available, minimally
invasively obtained medium that allows for simple, inexpensive
and repeated sampling.

MicroRNAs (miRNAs) are small (19- to 25-nucleotide) noncoding
RNA molecules that regulate gene expression at the translational
level. They are involved in a number of biological processes,
including human cancers, where they are differentially expressed.®
MiRNAs have been shown to have roles as tumour suppressor
genes and oncogenes, and their diagnostic, prognostic, predictive
and therapeutic implications are now being explored. Both plasma
and serum are stable sources of circulating miRNAs’® and both
are suitable for investigations of miRNAs as blood-based
biomarkers.”

Several studies on colorectal tumour tissue or cell lines have
been performed which have sought miRNAs for use as prognostic
or predictive biomarkers, and those involved in biological
processes such as tumorigenesis and metastasis.”'® Plasma-
derived miRNAs have been mostly used as diagnostic biomarkers
in CRC patients.'"'? However, while a few studies to date have
examined the utility of circulating miRNAs as prognostic CRC
biomarkers,'>"'® the reported miRNAs do not overlap between
studies.

Predicting patient clinical outcomes via molecular expression
information has traditionally focused on the study of individual
molecules (i.e., differential expression analysis). This approach,
however, does not adequately take into account the informational
complexity underpinning many clinical states. The over-reliance
on such hypothesis-driven, reductionist approaches to biomarker
discovery, despite the valuable achievements so far, may limit the
translation of fundamental research into new clinical applications
due to their limited ability to unravel the multivariate and
combinatorial characteristics of cellular networks implicated in
multi-factorial diseases such as cancer.'”

Instead, systems-based biomarker discovery approaches may
more accurately reflect the underlying biology than traditional
reductionist approaches. In this context, biomarkers, as indicators
of a clinical state, are computationally derived from networks of
interacting molecular entities and incorporate measurements from
the expression of molecules with the information on clinically
meaningful biological interactions.'”

In recent years, network-based approaches of gene expression
analysis have grown in popularity for their capacity to explain
emergent properties such as biological heterogeneity, modularity
or phenotypic variability.'® It has been frequently shown that
molecular networks (e.g., protein—protein interaction, gene
regulatory and signalling networks) are sources for identifying
powerful biomarkers; network-based biomarkers can capture
changes in downstream effectors and in many cases are more
useful for prediction compared to any individual gene.'”*
Several approaches exist involving the utilisation of networks of
molecular interactions in gene expression signature model-
ling.2**?% Nonetheless, the advantage of network-based
approaches has rarely been applied to miRNA biomarkers, possibly
because miRNA networks are not prevalent and readily available
as opposed to gene or protein interaction networks.

It is well understood that miRNAs cooperate to achieve gene
regulation and that each miRNA has the potential to target a large
number of genes.?” Our increasing knowledge of the miRNA-
mediated regulatory network has underlined the importance of
miRNA control over tumour cell biology. miRNAs associated with
patient outcome have been found to be oncogenic or tumour
suppressive, affecting multiple cancer-associated pathways by
targeting oncogenes or tumour suppressor genes.® Overall, the
miRNA-mediated gene regulatory network carries key information
on the functional role of miRNAs in cancer whose utilisation in
miRNA expression signature modelling may lead to the

npj Systems Biology and Applications (2018) 20

identification of biologically relevant markers when miRNAs are
released from cancer cells, or linked to systemic processes.

In this study, we have sought to determine network-based
miRNA biomarker signatures from the plasma of CRC patients that
hold prognostic utility. To this end, we performed miRNA profiling
and then constructed an miRNA-mediated gene regulatory
network, and developed an innovative multi-objective optimisa-
tion-based computational framework to identify miRNA biomar-
kers using both the miRNA expression profile and information
from this miRNA-mediated regulatory network.

METHODS

Patient selection, blood collection and preparation of plasma

Patients with a histologically confirmed diagnosis of locally advanced or
metastatic CRC receiving adjuvant or palliative chemotherapy respectively
attending the medical oncology outpatients’ clinics at Concord and Royal
Prince Alfred Hospitals in Sydney, Australia, were eligible for inclusion.
Patients were required to have good performance status (ECOG 0—2), and
adequate organ function. Patients were excluded if they had prior
chemotherapy for metastatic CRC or completed adjuvant chemotherapy
within the past 6 months. This study was performed in accordance with
relevant guidelines and regulations and with the approval of the individual
ethics committees of the institutions where the patients were being
treated.

Plasma samples were taken prior to commencing chemotherapy. Blood
was collected by routine venepuncture in 10 ml Vacutainer Plus K;EDTA
tubes (BD Biosciences). Tubes were inverted ten times immediately after
collection, and were centrifuged at 2500xg for 20min at room
temperature within 30 min of collection. Plasma was stored at —80°C
until further processing.

RNA isolation, quality control and OpenArray analysis

Total RNA was isolated from plasma using the MirVana PARIS miRNA
isolation kit (Ambion/Applied Biosystems, Foster City, CA) according to a
modified protocol.?® Isolated plasma samples were assessed for haemolysis
by examination of free haemoglobin and miR-16 levels, the latter being an
miRNA found in red blood cells. Quantification of free haemoglobin was
performed as described previously?® on an Implen Nanophotometer
(Implen GmbH, Munich, Germany), and miR-16 levels were quantified by
real-time RT-gPCR. Quantification details are provided in the Supplemen-
tary file 1, Section 1.1. Samples deemed haemolysed were excluded from
further analysis.

Global profiling of miRNAs in the plasma samples was carried out using
the OpenArray platform (Applied Biosystems), according to the manufac-
turer’s instructions. The entire RT reaction was used for pre-amplification
carried out on a ViiA 7 instrument (Applied Biosystems). The resultant
cDNA was combined with the OpenArray real-time PCR Master Mix and
loaded onto the OpenArray miRNA panel plates (Applied Biosystems) using
the AccuFill autoloader. The loaded plates were run on the BioTrove
OpenArray real-time PCR instrument (Flinders Medical Centre, SA) and run
according to the default protocol for reaction conditions. See Supplemen-
tary file 1, Section 1.2 for details.

Statistical data preprocessing

The pre-processing of miRNA cycle quantification (Cq) values from
quantitative RT-gPCR assays were performed using MATLAB 2014b,
Bioinformatics Toolbox and Statistics Toolbox. The preprocessing workflow
includes quality assessment, normalisation and filtering. The chosen
parameters are justified in Supplementary file 1, Section 1.3. QC plots for
non-detects and Cq distributions were used to examine the quality of the
data and deviated trends. Quantile normalisation was used to adjust for
technical variability across multiple samples. MiRNAs that are missing in
>50% of samples were excluded to acquire acceptable distribution of non-
detects for down-stream analysis. Missing data was imputed using the
nearest-neighbour method (KNNimpute), shown to be one of the most
sensitive and robust methods for missing value estimation in expression
data.” Patients were dichotomised to long vs short survival using a 2-year
cut-off point. To adjust for unbalanced class distribution, the under-
represented class (i.e., short survival) was doubled using SMOTE: Synthetic
Minority Oversampling Technique®® as implemented by the R ‘DMwR’
package. Oversampling was only used in the model selection phase to
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highlight performance differences across compared classifiers. Original
data was used for the identification of the final miRNA signature reported
in this study. Given that the data was not normally distributed, differential
expression analyses were conducted using non-parametric approaches,
namely two-sample Kolmogorov—Smirnov (KS) and Wilcoxon tests for the
null hypothesis that the miRNA Cq values in short vs long survival patients
are from the same continuous distribution.

Biomarker discovery

Biomarker identification as an optimisation problem. ldentification of a
prognostic molecular expression signature can be thought of as a
problem of finding a set of molecules (e.g., miRNAs) whose expression
profile best stratifies patients into the groups of interest—i.e., shorter vs
longer survival. This can be modelled as an optimisation problem that is
defined as finding a solution, out of all possible solutions, that minimise/
maximise an objective function. An optimisation problem is typically
formulated as min, f(x), s.t. x € X, where X is the set of all possible
solutions and fx—R is an objective function that maps any feasible
solution onto a real number evaluating the ‘goodness’ of the solution
instance. By convention, the standard form defines a minimisation
problem. A maximisation problem can be treated by negating/inversing
the objective function. In this study, we used a popular and powerful class
of optimisation algorithms known as evolutionary algorithms (EAs).>" EAs
are generic population-based metaheuristic optimisation algorithms
whose mechanisms are inspired by biological evolution. An EA procedure
begins with a population of solutions usually generated at random. It then
iteratively updates the current population to generate a new population
by the use of four main operators, namely selection, crossover, mutation
and elite-preservation. The operation stops when one or more pre-
specified termination criteria are met (e.g., the optimum is found, the
population is converged, or a pre-specified number of generations is
passed).

An EA relies on the specification of (1) solution instance, and (2)
objective function (usually referred to as the fitness function). Here, a
solution instance encodes a set of miRNAs selected out of all N miRNAs
under study and is represented by a binary string of length / = |N|, where
each bit in the string corresponds to a particular miRNA, m; whose value ‘1’
or ‘0’ encodes the inclusion or exclusion of m;, respectively. Each solution
can be thought as a potential biomarker and the optimisation algorithm
searches for a set of miRNAs whose expression profile best classifies
patients into groups with shorter vs longer survival. Therefore, to evaluate
each solution, the expression values of the corresponding miRNAs are fed
into a classifier which is an algorithm or a function that maps these
expression values (known as features) to the binary space of long or short
survival. The classification error rate is then considered as the fitness
function and the EA is set to find a solution with minimal misclassification
rate.

Construction of miRNA-mediated gene regulatory network. We have
developed an algorithm that constructs a network of miRNA-mediated
regulatory cascades and used this network to discover miRNA signatures.
In a mathematical formulation, a network or a graph consists of a set of
nodes V and a set of edges E between nodes. Here, a node is an miRNA or
a gene and an edge is a directed association representing the regulation of
a target gene (TG) by the source nodes that is either an miRNA or a
transcription factor (TF). Human miRNA targets were retrieved from
publicly available data sets of experimentally validated and predicted data
sets using multiMiR*>—updated on 12/22/2016. MultiMiR is an miRNA-
target interaction R package and database that compiles nearly 50 million
records in human and mouse from 11 different databases: validated
targets were collected from miRecords,>* miRTarBase,** and TarBase> and
predictions from DIANA-microT-CDS,3® EIMMo,>” MicroCosm, miRanda,*®
miRDB,*° PicTar, PITA,*® and TargetScan.*' Targets of miRNAs under study
were included in the network if experimentally validated or predicted by at
least two databases. Additionally, a gene regulatory network—i.e., a
collection of validated TF—TG interactions—was obtained from the ORTI
database,*> an open-access comprehensive repository of regulatory
interactions that compiles mammalian TFs and their associated TGs from
publicly available databases of TF—TG interactions, namely HTRI,*
TFactS,** TRED,” TRRD,*® PAZAR,*” and NFI-Regulome,*® and the literature.
The miRNA-mediated regulatory network was then constructed using an
iterative process as outlined below:

Starting from an empty network, the set of miRNA-target interactions for
each miRNA under study were first added to the network. The miRNA
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targets may comprise TFs that can in turn target other genes and pass on
the regulation to the second level. Those TF—TG interactions were then
added to the network. Similarly, the newly added TGs (i.e., the targets of
the targets of the miRNAs) may contain TFs that extend the regulation
cascade to deeper levels. This process continues until ‘convergence’, i.e.,
when no new TF—TG interaction can be added to the network, meaning
that all TFs and TGs reachable from the initial miRNAs have already been
traversed and added to the network. The pseudocode of an efficient
recursive implementation of the proposed algorithm is shown in
Supplementary file 1, Section 1.4.

Annotation of the CRC-related genes on the network. The miRNA-mediated
regulatory network can be used to identify miRNAs which target, either
directly or indirectly, genes functionally associated with CRC, and thus
have the potential to play a role in the cellular mechanisms underlying CRC
pathogenesis. This requires the annotation of the network genes according
to their association with CRC. We used the MalaCards human disease
database,* which is an integrated compendium of annotated diseases
mined from multiple data sources. MalaCards provides the list of genes
affiliated with a queried disease accompanied with a prioritising algorithm
to rank the gene list. It distinguishes ‘elite’ genes as those likely to be
associated with causing the disease, since their gene-disease associations
are supported by manually curated and trustworthy sources. The relevance
of the MalaCards retrieved genes to CRC were ranked into two levels—
rank ‘1" for elite genes and rank ‘2’ for the rest of CRC associated genes.
These genes were then annotated with their ranks on the miRNA-mediated
regulatory network.

Network-based CRC functional relevance score. An miRNA can target
multiple CRC-related genes either directly or indirectly. The probability of
the mechanistic involvement of an miRNA in CRC increases if the miRNA
targets more CRC genes in a shorter distance within the network. We
aggregated these measurements into a scoring function to quantify the
functional relevance (FR) of each miRNA to CRC pathogenesis for the
subsequent biomarker modelling. Equation (1) shows the FR formulation,
where m; is an miRNA in the miRNA-mediated regulatory network, TG =
{gi} is the set of all CRC TGs reachable from m; on the network, d(m;,, g) is
the shortest distance from m; to gx on the network computed using the
Bellman-Ford algorithm,>® and rgk is the CRC rank assigned to TG gy. £ is a
small constant (i.e, 10E-3) to avoid FR=0 and ‘division by zero’ in
subsequent analyses.

FR(m;) = € + Z exp(—[d(mj, gi) +14,])- m

geTG

According to this formulation, the farther the distance (or the higher the
rank), the higher the magnitude of the exponent, and thus, the smaller the
increment of the aggregated FR score. Figure 1b exemplifies FR calculation
on a schematic miRNA network.

Multi-objective optimisation: essentials. A multi-objective optimisation is
an optimisation problem that involves multiple objective functions,
formulated as: minf;(x), ... ,fy(x), where integer k > 2 is the number of
objectives x is a solution instance in the solution space X and f : x — R¥ is
an objective function that maps each solution instance into a vector of
real-valued vector of objectives.

In non-trivial multi-objective optimisation problems where the objective
functions are conflicting, no feasible solution that simultaneously
minimises all objective functions typically exists. Therefore, attention is
paid to Pareto optimal solutions, i.e., solutions that cannot be at least one
of the other objectives. A feasible solution x; € X is said to (Pareto)
dominate another solution x, € X, if:

fix) < f(a)Vie{1,2... .k},
f(x1)<f(x2)F € {1,2... .k}

A solution x; € X is called Pareto optimal if it is not dominated by any
other solution in the solution space>' The set of all feasible non-
dominated solutions in X is referred to as the Pareto optimal set, and the
corresponding objective vectors are called the Pareto front. For many
problems, the number of Pareto optimal solutions is enormous and a
multi-objective optimiser is usually aimed at identifying a representative
set of solutions which (1) lie on the Pareto front, and (2) are diverse enough
to represent the entire range of the Pareto front.>?
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Fig. 1

Outline of the method. a The construction steps of the miRNA-mediated regulatory network: (1) miRNA target genes (TGs) that are

either validated experimentally or predicted by two different data sets were retrieved using multiMiR which is an R package providing access
to 11 publicly available data sets. Transcription factor (TF) targets were retrieved from ORTI database which compiles validated mammalian TF-
TG interactions from six public data sets as well as the literature. The miRNA-mediated regulatory network was constructed using a recursive
algorithm described in Supplementary Figure S3. (2) The network was then annotated using 339 CRC-associated genes identified by
MalaCards; 35 ‘elite’ genes with strong causal associations with CRC progression were ranked ‘1’ and the rest of CRC genes were ranked ‘2. (3)
Using the annotated network, a functional relevance (FR) score was calculated for each miRNA (using Eq. (1)) and a look up table was returned
to be used in the subsequent biomarker discovery. b FR calculation on an example network. ¢ Schematic view of the proposed multi-objective
optimisation-based biomarker discovery workflow: The pre-processed samples were partitioned to validation and discovery sets using fivefold
cross-validation. The multi-objective optimiser was run on discovery set where objectives are prediction errors and averaged FR scores of the
population of putative signatures. Optimal miRNA signatures (i.e., Pareto front solutions) and their corresponding predictive models were
then used to classify test samples and the performance measures were reported. The whole process repeated for 50 times to account for
random partitioning of samples and the average performance measures were reported (Fig. 3)

A popular approach to generate Pareto optimal solutions is to use EAs.
The use of a population of solutions allows an EA to find multiple optimal
solutions, thereby facilitating the solution of multi-objective optimisation
problems. Furthermore, EAs have essential operators to converge towards
a set of non-dominated points which are as close as possible to the Pareto-
optimal front, and yet diverse among the objectives.>?

Currently most evolutionary multi-objective optimisation algorithms
apply Pareto-based ranking schemes. A standard example is the Non-
dominated Sorting Genetic Algorithm-Il  (NSGA-II)>* NSGA-Il sorts the
population into various fronts such that the first front is a completely
non-dominant set in the current population (rank 1 individuals), and the
second front is only dominated by the individuals in the first front (rank-2
individuals) and this process continues until the entire population is
ranked. In addition to the individuals’ ranks, another parameter called
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crowding distance is calculated for each individual. Crowding distance is a
measure of how close an individual is to its neighbours. NSGA-Il selects
individuals based on the rank and the crowding distance.

Multi-objective optimisation in network-based miRNA biomarker discovery.
We developed a bi-objective optimisation workflow to identify multiple
miRNA biomarkers by simultaneously optimising for two objectives: (1) the
predictive power and (2) functional relevance. We used NSGA-II°* to search
for multiple sets of plasma miRNAs whose expression profiles can precisely
predict patients’ survival outcome and, at the same time, target CRC
pathways on the miRNA-mediated regulatory network. The predictive
power was estimated as the minimal misclassification rate using a classifier,
and the functional relevance for each putative biomarker was estimated by
aggregating over FR scores of the corresponding biomarker miRNAs. In
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mathematical terms, let X = {m;},i =1, ... ,n be the set of all n miRNAs
under study, and X; C X be a subset of miRNAs (i.e., a solution or a
putative biomarker), the optimisation problem is then formulated as

min{Err(X;), 1/FR(X))))st. X; C X,
where the biomarker functional relevance is computed by:

FR(X) = D FR(my).

myeX;

The functional relevance shall be maximised and thus inverted to adhere
with the standard minimisation problem. Err(X;) is the average of error
rates (i.e., number of incorrectly classified samples divided by total number
of samples) over multiple runs of fivefold cross validation using X;
expression profile as the classification feature set. Figure 1c illustrates the
proposed biomarker discovery workflow. NSGA-Il parameters were set as
follows: population size was set to 100, (scattered) crossover and (uniform)
mutation rates were set to 0.8 and 0.01, respectively. The maximum
number of generations was set to 50. The solver stops after iterating for 50
generations or when the average change in the spread of the Pareto front
is less than 1E-4. Crowding distance was used as the distance function and
Pareto front population fraction was chosen to be 20%. The workflow was
coded in MATLAB R2014b and R. MATLAB optimisation toolbox was used
to implement NSGA-Il. Codes are available at https://github.com/
VafaeeLab/multiobj_miR_marker_discovery.

Significance assessment of identified biomarkers. The statistical significance
of each biomarker/Pareto solution was assessed using permutation
hypothesis testing. Accordingly, for each Pareto solution an equivalent
random individual was generated which has an equal number of miRNAs,
but randomly chosen from the pool of miRNAs under study. The objective
vector of the random solution was then estimated and this process was
repeated 1000 times to generate a null distribution of objective vectors.
For ease of assessment, we replaced each objective vector with a scalar
value by computing its Euclidean distance with the ideal optimum that is
origin (0; 0). The nominal p value for each Pareto solution/biomarker was
then calculated as the proportion of random samples whose distance to
origin is closer than or equal to that of the Pareto solution.

Validation of altered expression of identified miRNAs in an
independent data set

The altered expression of the identified miRNAs was examined in an
independent public data set of qPCR miRNA CRC patient plasma samples>>
which employed TagMan Array Human MicroRNA Cards Set v2.0A/B and
profiled the expression of 667 miRNAs in 48 plasma samples that included
patients with normal, polyps, adenoma, early-stage (stage I/Il) and
advanced (stage lll/IV) cancer. We downloaded the raw data from NCBI
GEO archive (accession no: GSE67075). For consistency, we followed the
same statistical pre-processing pipeline that we used to analyse our own
data set. We performed differential expression analysis using the two-
sample Wilcoxon test as implemented by R ‘HTqPCR’ package to compare
the early-stage vs advanced groups (8 samples per groups) and reported
the p values of miRNAs of interest. The statistical significance of the
proportion of identified miRNAs differentially expressed in the validation
data set was assessed using the right-sided Fisher's exact test (‘stat’ R
package, ‘phyper’ function).
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Pathway overrepresentation analysis

We were interested to examine whether the identified miRNAs enrich
pathways relevant to CRC progression noting that pathway information
was not used to obtain miRNA FR scores. We used KEGG pathways
retrieved from the Molecular Signatures Database (MSigDB)-V 6.0.°°
Targets of the identified miRNAs were extracted from the miRNA
regulatory network and underwent pathway enrichment analysis using
the right-sided Fisher's exact test whose p value for the null hypothesis is
computed based on the hypergeometric distribution:

1 S2/n\/N-K
= (105
( ) e\ i n—i
n
where N is the total number of annotated genes, n is the number of genes
targeted by signature miRNAs, K is the total number of genes annotated by
a pathway, and k is the number of TGs in the pathway; p values were

adjusted for multiple hypothesis testing using FDR correction. The analysis
was implemented in R using ‘stats’ packages.

RESULTS AND DISCUSSION

Patient characteristics and data preprocessing

The characteristics of patients included in this study are shown in
Table 1 and detailed in Supplementary file 2. Plasma samples were
profiled against 557 miRNAs whose Cq values are shown as a
heatmap in Supplementary file 1, Figure S3. Names of miRNAs
were standardised to miRBase-Version 21 using miRSystem;>” 12
miRNAs that were unavailable or dead were excluded. For reliable
downstream analysis, miRNAs missing in > 50% of samples were
filtered out, resulting in 150 miRNAs.

MiRNA-mediated gene regulatory network

Figure 1a depicts the workflow of miRNA-mediated regulatory
network construction. The constructed network comprises 150
miRNAs under study, 591 TFs and 22,635 TGs with a total
number of 170,617 interactions including both miRNA-TG and
TF-TG interactions. The network flat file is provided in
Supplementary file 3. Once the network was constructed, CRC-
related genes/nodes on the network were marked and ranked.
Overall, 339 genes including 35 elite genes were annotated and
ranked. CRC-associated genes, including elite ones and data
sources used by MalaCards to imply CRC associations, are listed
in Supplementary file 4. Lastly, the functional relevance of each
miRNA was scored based on the rank and distance of miRNA’s
CRC-related targets on the network. The proposed functional
relevance (FR) scoring function takes into account direct miRNA
targets as well as distant targets; yet, the farthest a target is, the
lower its contribution to the FR score. Figure 1b schematically
illustrates the FR calculation on a sample miRNA network; the
histogram of FR score distribution is shown in Supplementary
file 1, Figure S4.

Performance comparison of different classifiers

An optimisation-based approach to biomarker discovery requires
a choice of classifier to compute the fitness (e.g., misclassification

Survival (mean F std)

Tumour site (C/R/RS)  45/24/6
Chemotherapy regime FOLFOX

Table 1. Baseline patient characteristics

Characteristics n=75 Description

Gender (F/M) 30/45 F: Female, M: Male

Age 59 years Average age at enrolment

20.98 F 11.67 months Survival times for 53 patients have not been reported as they have been alive at the end of the
follow-up and their prognostic status was considered as ‘long survival’

C: Colon, R: Rectum, RS: Rectosigmoid
All 75 patients received FOLFOX-based chemotherapy
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Fig. 2 Performance comparison of different classifiers. The predictive performance of three different classifiers namely AdaBoost (with
decision trees as weak learners), Random Forest (RF) and Support Vector Machine (SVM) were assessed. a Predictive features were selected
randomly; the null distributions were set using 500 sets of randomly chosen miRNAs. The distributions of classifiers’ accuracy, specificity and
sensitivity (with ‘long survival’ as positive class) as well as functional relevance scores were plotted. Mean values are marked on density plots.
b The predictive features were the set of differentially expressed genes (KS test, p value < 0.05); error bars show standard deviations

rate) of solutions (i.e., putative signatures). We compared the
performance of Support Vector Machine (SVM),*® Random Forest
(RF)** and AdaBoost®® with decision trees as weak learners as
choices of classifiers. The expression profiles of differentially
expressed miRNAs (i.e., p value < 0.05 using the KS test) were set
as classifier features, which is a commonly used approach for
feature selection in biomarker identification.'>”'®*° The list of
differentially expressed miRNAs is available in Supplementary file
5. We also measured the performance of different classifiers on a
population of 500 randomly selected sets of features (i.e., miRNAs)
providing the null distributions (Fig. 2a). Samples were divided
into discovery and validation sets using fivefold cross-validation;
cross-validation was then repeated ten times to account for
random data splitting (total of 50 independent runs). In each run,
classifiers were trained on the discovery sets and used to predict
the corresponding validation samples. The predictive performance
of the classifiers in terms of accuracy, sensitivity and specificity
was estimated by averaging over 50 rounds of predictions; ‘long
survival' was considered as the ‘positive’ class implying that
sensitivity is the classifier’s ability to correctly identify patients
with long survival whereas the specificity represents the ability to
correctly classify short survival. While all classifiers performed
similarly in terms of total misclassification rates or accuracy (Fig.
2b), SVM significantly outperformed other classifiers on detecting
the under-represented event of ‘short survival' (i.e., higher
specificity) and was thus chosen as the choice of classifier in the
optimisation processes (Fig. 2b).
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Performance comparison with relevant approaches

To investigate the advantage of network-based multi-objective
optimisation workflow proposed in this work, we compared the
performance of resultant signatures with those achieved by a
single-objective optimisation approach. In this latter approach, a
genetic algorithm (GA), with similar experimental setup, was used
to find sets of miRNAs with utility as a prognostic biomarker, by
minimising the error rate in predicting patients’ survival status.
Single-objective optimisation has previously been used for
biomarker discovery in other contexts and has shown superior
prediction performance as compared to conventional approaches.
For instance, Liu et al.®" used GA combined with SVM classifier to
identify biomarkers for tumour categorisation. As another
example, Petricoin et al.* reported the use of self-organising
map coupled with GA to search through raw mass spectrometry
data to identify a proteomic pattern discriminating ovarian cancer
from non-cancer.

Optimisation-based approaches to biomarker discovery inher-
ently select features through the search process. We also included
into the comparison more classical models with the built-in
feature selection capacity. Accordingly, we evaluated the least
absolute shrinkage and selection operator®® (Lasso), a commonly
used regression method that inherently performs variable
selection by producing coefficients that are exactly 0. We used
the ‘glmnet’ R package to fit the generalised linear regression
model with Lasso; a lambda value that gives minimum mean
cross-validated error was used for prediction and extraction of
model coefficients. We also assessed RF and SVM with automatic
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Fig. 3 Performance comparison with relevant approaches with inherent feature selection. The performance of the proposed multi-objective
optimiser was compared with relevant methods with inherent feature selection—i.e., single-objective optimiser, Lasso, guided RRF and
penalised SVM. a The accuracy, specificity sensitivity and functional relevance score were averaged over 50 runs of sample partitioning using
fivefold cross validation. b Sizes of the identified signatures or the number of features selected by each method over 50 independent runs
were shown as box plots. ¢ As a measure of signature stability, Jaccard Index was computed for all pairs of signatures identified by each of
compared methods across 50 runs and the average values were reported. In all bar charts, error bars show standard deviations and multi-
objective optimiser bars were marked by “*' when the proposed method significantly outperforms others (Wilcoxon test p values < 0.001)

feature selection. We used the ‘RRF’ R package to implement
guided reqularised random forest (quided RRF).%* The coefficients of
regularisation were set to the normalised importance score of the
variables as recommended in the RRF package.®® We also adopted
the ‘penalizedSVM’ R-package that implements penalty functions
for automatic feature selection in SVM classification.®® We chose
the penalty function to be Smoothly Clipped Absolute Deviation
(SCAD)®’ due to its superior performance.®®

A similar pre-processing pipeline was followed for all compared
algorithms. Again, samples were divided into discovery and
validation sets using fivefold cross-validation and repeated ten
times (50 independent runs). In each run, compared methods (i.e.,
multi-objective  optimiser, single-objective optimiser, Lasso,
guided RRF and penalised SVM) were trained on the discovery
sets. The end-of-run models with the selected features were then
used to predict validation samples and average accuracy,
sensitivity and specificity were reported. The functional relevance
scores of the identified signatures (i.e., selected features) were also
averaged across 50 runs and reported to compare the biological
implication of the identified biomarkers in CRC underlying
mechanisms. As Fig. 3a shows, Lasso was unable to predict
samples with ‘short survival’ and usually assigned all test samples
to a single class of ‘long survival’. We therefore observed a very
low specificity and high, but false, sensitivity with Lasso. Single-
and multi-objective optimisers performed comparatively better
than the other compared methods. Yet, multi-objective optimisa-
tion performed significantly better than single-objective
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optimisation on accuracy, specificity and functional relevance
(Wilcoxon test p value < 0.001). We observed that single-objective
optimisation overfitted to training data while multi-objective
optimisation produced comparative performance on training and
test sets and thus better generalised to independent data sets
(Supplementary file 1, Figure S5). This demonstrates the advan-
tage of using a data-independent knowledge-based approach in
avoiding overfitting to data. Along the same lines, the multi-
objective optimiser also controls for signature sizes (Fig. 3b). Large
signatures usually produce excessively complex models over-
reacting to minor fluctuations in the training data. Moreover, large
signatures are usually functionally redundant with less clinical
utility and validation feasibility. The single-objective optimiser and
penalised SVM produced very large signatures. On the other hand,
Lasso produces models with no coefficient (with intercept only) in
~20% of runs.

We also estimated the stability of selected features across
different runs using Jaccard Index that measures the intersection
over union of two sets. Accordingly, Jaccard Index was computed
for all pairs of signatures identified by each of compared methods
across 50 runs and the average values were reported (Fig. 3c). The
multi-objective optimiser exhibits signatures with significantly
higher stability than those identified by the compared methods.
Overall, the results demonstrate biomarker reproducibility using
the proposed network-based multi objective optimisation
approach.
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Identified plasma miRNA signature of CRC prognosis. A prognostic signature of 11 plasma miRNAs was identified using the proposed

network-based multi-objective optimisation approach. a Boxplots represent the distributions of miRNA expressions across short and long
survival samples. b The expression values of the identified miRNAs were examined in an independent public data set of gPCR miRNA profiles
obtained from CRC plasma of patients at early or late cancer stages (accession no: GSE67075). Early-stage vs advanced cancer was compared
using non-parametric Kolmogorov—Smirnov hypothesis testing. The bar in front of each miRNA shows the achieved p value scaled by -log10
to improve visibility. ‘NA’ indicates that the corresponding miRNA was not profiled (or filtered out) in the data set; *' specifies differentially
expressed miRNAs based on the p value cut-off of 0.1. ¢ List of important overrepresented KEGG pathways and their corresponding
-log10 scaled p values, related to CRC mechanisms and inflammation that is an important risk factor for the development of colon cancer

Identified plasma miRNA signature of CRC prognosis

Once we confirmed the predictive power and stability of the
signatures obtained by the proposed multi-objective approach,
we restricted the search space to miRNAs with clinically reason-
able variations across samples with short vs long survival. This will
assure that miRNAs contained in the final signature can be
technically detected and verified in future experimental valida-
tions. We chose relatively loose yet clinically feasible fold-change
> 1.5 in either directions (i.e., fold change computed as 2°2<* using
‘HTgPCR’ R package), which resulted in 51 miRNAs used to identify
plasma signatures by the proposed multi-objective optimiser.
We identified a prognostic signature (accuracy =0.907, FR=
4.697) comprising 11 plasma miRNAs namely hsa-let-7a, hsa-miR-
106a, hsa-miR-185, hsa-miR-21, hsa-miR-217, hsa-miR-25, hsa-miR-
30a-5p, hsa-miR-431, hsa-miR-483-5p, hsa-miR-615-5p, hsa-miR-
892a1. The statistical significance of the identified signature was
assessed using a permutation test and a nominal p value of zero
was achieved. Figure 4a shows boxplots representing the
distributions of miRNA expressions across short and long survival
samples. The expression levels of the identified miRNAs were
examined in an independent public data set of qPCR miRNA
profiles obtained from CRC plasma samples including eight early-
stage and eight advanced samples>®> Four miRNAs in the
identified signature were not profiled (or filtered out) in the
plasma data set—i.e., hsa-miR-217, hsa-miR-431, hsa-miR-615-5p
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and hsa-miR-892a. Out of the seven remaining biomarker miRNAs,
four miRNAs show significant differential expression based on the
p value cut-off of 0.1 (Fig. 4b). This proportion is statistically
significant (p value = 0.0084, Fisher's exact test with parameters:
N=310,K=72,n=7,k=4).

Targets of the identified miRNA signature enrich several cancer-
related as well as inflammatory pathways. There is a well-
established connection between inflammation and tumorigenesis
with numerous supporting evidence from genetic, pharmacologi-
cal and epidemiological data.®® Inflammation is an important risk
factor for the development of colon cancer.®® Figure 4c shows
some of the important pathways related to CRC mechanisms and
inflammation that highlights the biological implications of the
identified biomarkers in CRC development and progression.

Among the identified biomarker miRNAs, the utility of serum
miRNA miR-27as a marker of CRC progression and diagnosis has
previously been investigated.'>'®>> Downregulation of miR-106a
in tumour was previously shown to predict shortened survival in
patients with colon cancer.”® Also, experimental evidence
suggests that the let-7 family contributes to immune evasion by
the tumour and there is an association of let-7a expression with T-
cell densities and mortality”! in CRC. STIM1, a direct target of miR-
185, is associated with CRC poor prognosis and promotes tumour
metastasis.”> MiR-217 and miR-25 in CRC tumours are associated
with patient prognosis,”>”* and miR-30a has an inverse correlation
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Fig. 5 Performance comparison over three other miRNA data sets. The proposed multi-objective optimiser and four benchmark methods
were used to identify signatures of disease phenotypes in three publicly available data sets. The performance measures (i.e., accuracy,
sensitivity and specificity over test samples, functional relevance (FR), signature size and stability based on Jaccard index) of compared
methods were aggregated across 25 independent runs (five runs of fivefold CV). Bar charts represent the average values and error bars show
standard deviations. a GSE63108: circulating exosomal miRNA expression profiles in oesophageal adenocarcinoma and normal samples. b
GSE76260: miRNA expression profiling in prostate cancer tumours vs non-neoplastic tissues. Bi-objective GA searches for signatures that
simultaneously minimise the error rates and the inverse of FR. Tri-objective GA minimises error rate, 1/FR and signature size simultaneously.
Increasing the number of objectives increases the number of Pareto front solutions. In tri-objective GA, a Pareto front solution performing
better with respect to the first objective has been chosen in each run. ¢ GSE70754: miRNA expression profiles in locally advanced breast

cancer tumour vs normal tissues

with the staging in patients with colon cancer.”> MiR-892a was
frequently upregulated in human CRC tissues and cell lines
promoting cell proliferation and colony formation of CRC.”® Qur
study, however, is the first to demonstrate the utility of these
miRNAs as circulating markers of CRC progression.

Generality and flexibility of the proposed miRNA biomarker
discovery approach

Although identifying circulating miRNA signatures of CRC survival
was a major objective of the current study, the proposed network-
based multi-objective approach is sufficiently general to identify
signatures of disease phenotypes in other miRNA biomarker
studies. To evaluate the generality and flexibility of the proposed
approach, we sought for other miRNA biomarker discovery studies
whose data sets are available to download from NCBI GEO
repository.

Recently, circulating serum exosomal miRNAs have been
studied as potential diagnostic markers of oesophageal adeno-
carcinoma.”” MiRNAs in serum exosomes were profiled from a
cohort of 19 healthy controls and 18 individuals with locally
advanced oesophageal adenocarcinoma using OpenArray real-
time PCR platform. We downloaded the raw data (GEO accession
no: GSE63108) and pre-processed using a similar pipeline followed
in our study which resulted in 130 miRNAs for downstream
analyses (see Supplementary file 1, Section 1.5 for preprocessing
details). The corresponding miRNA-mediated gene regulatory
network was then constructed and annotated by 33 genes
associated with oesophageal adenocarcinoma in MalaCards (see
Supplementary file 6 for the list of genes).

We adopted a similar GA experimental setup used in previous
experiments (i.e., population size of 100 and maximum number of
50 generations). Similarly, samples were divided into discovery
and validation sets using fivefold cross-validation and repeated
five times. In each run, compared methods (i.e., multi-objective
optimiser, single-objective optimiser, Lasso, guided RRF and
penalised SVM) were trained on the discovery sets and used to
predict the validation samples. Average accuracy, sensitivity,
specificity, functional relevance, signature size and signature
stability were then reported for each of the compared algorithms.
Results presented in Fig. 5a (and detailed in Supplementary file 1,
Table S1) show that the bi-objective GA produced signatures with
superior predictive power and higher relevance to the disease
underlying mechanisms. Bi-objective GA feature selection was
more robust to data partitioning and produced reasonably sized
signatures with higher stability.

The optimisation-based biomarker discovery method is open to
further enhancement by improving the adopted search mechan-
ism. For instance, the search coverage can be extended by simply
increasing the population size. We increased the population size to
200 and observed a better performance of single-objective GA
while the performance of bi-objective GA was not significantly
improved. We hypothesised that the early convergence of the bi-
objective GA performance can be attributed to the miRNA network
poor annotation due to the relatively small number of genes known
to be associated to the disease under study. This limitation may
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direct the search algorithm towards the selection of fewer number
of miRNAs resulting in immature convergence to local minima.

Therefore, to better assess the performance of the proposed
method, we sought for relevant data sets on diseases whose
associated genes are well studied and annotated in MalaCards
producing relatively rich annotation on miRNA-mediated network.
We retrieved miRNA expression profiles acquired from prostate
clinical specimens, including 32 cancer and 32 non-neoplastic
tissues’® (GEO accession no: GSE76260). Data were preprocessed
as detailed in Supplementary file 1, Section 1.5, resulting in 103
miRNAs for the subsequent analyses. The corresponding miRNA-
mediated regulatory network was annotated with 261 genes
(including 29 elite genes) associated with prostate cancer in
MalaCards (Supplementary file 6). We kept the GA population size
at 200 and ran similar experiments performed for the previous
data set; results are presented in Fig. 5b and Supplementary Table
S1. Bi-objective GA identified signatures with significantly higher
functional relevance scores. In terms of the predictive power, bi-
objective GA exhibited performance comparable to guided-RRF
(Wilcoxon p value =0.861 comparing accuracies) and better
performance compared to other methods. Guided-RRF however
produced more compact signatures composing of fewer numbers
of miRNAs.

To produce more compact signatures using the proposed multi-
objective approach, we considered size to be the third objective
resulting in a tri-objective GA search for miRNA signatures that
simultaneously minimise the misclassification error rate, maximise
the functional relevance and minimise the signature size. We also
increased the population size and the maximum number of
generations by 50% to achieve a more extensive search across the
space of possible signatures and reran a fivefold cross validation.
Average performance measures are reported in Fig. 5b. Interest-
ingly, the tri-objective GA not only discovered small-sized
signatures (average size=7.2+1.3), but also improved the
predictive power by producing models with fewer number of
variables which avoid overfitting to the training sets.

We acquired a third data set investigating miRNA diagnostic
markers of breast cancer’® (GEO accession no: GSE70754). We
retrieved normalised miRNA expression profiling of 66 samples
including 19 normal specimens, from patients with locally advanced
breast cancer during chemotherapy treatment. We preprocessed
data as detailed in Supplementary file 1, Section 1.5 and ended up
with 160 miRNAs used for biomarker discovery. As before, we
constructed the miRNA-mediated regulatory network and anno-
tated it with 317 genes (including 26 elite genes) associated with
breast cancer by MalaCards (Supplementary file 6). We set the GA
population size and maximum number of generations to 200 and
50, respectively. Signature size was retained as the third objective of
the multi-objective optimisation approach. The performance
measures of the compared methods were aggregated over five
runs of fivefold cross validation (25 independent runs) and
summarised in Fig. 5¢ and Supplementary Table S1. Results show
that tri-objective GA outperforms its competitors with a higher
functional relevance score and smaller signature size (average size
=5.0+23) as it explicitly optimises for these objectives. It is the
second best performing in terms of accuracy, sensitivity and
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specificity. Penalised SVM and Lasso produced signatures with
higher predictive power but were larger in size.

CONCLUSION

Accumulating evidence in recent years has convincingly demon-
strated that the expression of various miRNAs is frequently
dysregulated in CRC tissue.2%®' More importantly, recent studies
have shown that some of these can also be detected in the
circulation, and their expression pattern can be directly related to
physiological and pathological alterations in patients with CRC®
However, few circulating miRNAs so far have been reported as
markers of CRC prognosis with limited consistency across different
studies.”®™"® In this study, we performed miRNA profiling using 75
plasma samples of locally advanced and/or metastatic colorectal
patients. We identified a signature comprising 11 miRNAs with
utility as biomarkers of CRC prognosis with significant alterations
in an independent validation data set. The identified signature
also corroborates previous findings on miRNA prognostic markers
detected from plasma or tumours of CRC patients.

We have developed a powerful new miRNA biomarker discovery
workflow to identify clinically and biologically relevant miRNA
biomarkers by integrating advanced data-driven methodologies
with a knowledge-based approach, utilising information from an
miRNA-mediated network annotated with relevant cellular mechan-
isms. The miRNA-mediated regulatory network can exploit miRNA
control in biological circuits, and provide insight into the
consequences of miRNA dysfunction in disease. While miRNA direct
targets have been increasingly studied in recent years and compiled
in multiple data repositories, our study is the first to study a network
of miRNA-mediated regulations representing deep regulatory
cascades triggered by miRNAs. Such a network draws a more
comprehensive picture of cellular regulations triggered by miRNAs
as compared to miRNA-target direct interactions, and thus provides
deeper insights into pathological phenomena associated with
miRNA dysfunction. By constructing a network of miRNA-mediated
regulatory cascades and incorporating measured data from this
network into a multi-objective optimisation workflow, we have
demonstrated the potential for data-driven, knowledge-based
approaches to discovering new miRNA signatures. We have
quantitatively compared the performance of our multi-objective
approach to relevant approaches with inherent feature selection
(e.g. single-objective optimiser, Lasso, guided RRF and penalised
SVM) and demonstrated that our approach outperforms on all
relevant metrics: accuracy, specificity, sensitivity, functional rele-
vance and stability in this particular data set. We confirmed the
generality and flexibility of the proposed method across three other
publicly available data sets used to investigate miRNA diagnostic
markers of oesophageal adenocarcinoma, prostate cancer and
breast cancer. We demonstrated the advantage of using a data-
independent knowledge base incorporated into a data-driven
model to control overfitting to expression data and avoid producing
excessively large signatures with poor predictive performance in
independent data sets. Additionally, the multi-objective optimisation
framework provides the flexibility to adjust for different objectives of
interest and to incorporate heterogeneous yet relevant information
facilitating systems approaches to biomarker discovery.

DATA AND CODE AVAILABILITY

The circulating miRNA expression profile of CRC samples collected
in this study can be accessed at NCBI Gene Expression Omnibus
(GEO) using the accession number GSE112955. The proposed
network-based multi-objective optimisation workflow for miRNA
biomarker discovery was coded in MATLAB R2014b and R and is
available at https://github.com/VafaeeLab/multiobj_miR_marker_
discovery.
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