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In silico screening and analysis 
of nonsynonymous SNPs in human 
CYP1A2 to assess possible 
associations with pathogenicity 
and cancer susceptibility
Leila Navapour & Navid Mogharrab*

Cytochrome P450 1A2 (CYP1A2) is one of the main hepatic CYPs involved in metabolism of 
carcinogens and clinically used drugs. Nonsynonymous single nucleotide polymorphisms (nsSNPs) 
of this enzyme could affect cancer susceptibility and drug efficiency. Hence, identification of 
human CYP1A2 pathogenic nsSNPs could be of great importance in personalized medicine 
and pharmacogenetics. Here, 176 nsSNPs of human CYP1A2 were evaluated using a variety of 
computational tools, of which 18 nsSNPs were found to be associated with pathogenicity. Further 
analysis suggested possible association of 9 nsSNPs (G73R, G73W, R108Q, R108W, E168K, E346K, 
R431W, F432S and R456H) with the risk of hepatocellular carcinoma. Molecular dynamics simulations 
revealed higher overall flexibility, decreased intramolecular hydrogen bonds and lower content of 
regular secondary structures for both cancer driver variants G73W and F432S when compared to the 
wild-type structure. In case of F432S, loss of the conserved hydrogen bond between Arg137 and heme 
propionate oxygen may affect heme stability and the observed significant rise in fluctuation of the 
CD loop could modify CYP1A2 interactions with its redox partners. Together, these findings propose 
CYP1A2 as a possible candidate for hepatocellular carcinoma and provide structural insights into how 
cancer driver nsSNPs could affect protein structure, heme stability and interaction network.

The genome of two individuals, except for identical twins, shares 99.9% identity and only differs by 0.1%. 
Although, this value seems very low, it is responsible for about 3 million differences among 3.2 billion base 
pairs1. The most abundant genetic variations in the human genome are single nucleotide polymorphisms (SNPs) 
which play a significant role in the phenotypic diversity, interindividual differences in susceptibility to complex 
diseases and drug reactions1,2. However, a small number of the SNPs is associated with pathogenicity that must 
be distinguished from a pool of neutral variants. Although experimental techniques provide the most accurate 
and reliable approaches for assessing the consequences of a substitution, analysis of all SNPs in human genome 
or even in a single gene is a major challenge for researchers due to the complex, time-consuming and costly 
experimental procedures3. Therefore, in silico computational approaches have attracted considerable interest 
of biologists, as they make it possible to screen a large number of SNPs in a relatively short time and low cost, 
and to prioritize them for further experimental and clinical tests. Moreover, the structure–function relationship 
studies by molecular dynamics (MD) simulations could elucidate the molecular mechanisms of diseases and 
may provide valuable insights into the diagnosis as well as treatment4–7.

The human cytochrome P450 (CYP) superfamily enzymes are the most important enzymes of the phase I 
xenobiotic metabolism and known as one of the highly polymorphic proteins8,9. Single nucleotide polymor-
phisms in the enzymes of this superfamily play an important role in differences between individuals in response 
to drugs and other xenobiotics as well as the susceptibility to develop various diseases10. Among 18 cytochrome 
P450 families encoded by the human genome, members of CYP1 family are particularly important due to their 
major contribution to the metabolism of carcinogenic compounds such as polycyclic aromatic hydrocarbons 
(PAHs)11–13. This family of CYPs has three members CYP1A1, CYP1A2 and CYP1B1 grouped into A and B 
subfamilies11,13.
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The human CYP1A2 gene is located on the long arm of chromosome 15 (15q24.1) that spans seven exons. 
The CYP1A2 protein is exclusively expressed in liver and plays an important role in metabolism of heterocyclic 
and aromatic amines, caffeine and melatonin14–18. This enzyme is also responsible for hepatic metabolism of 
many clinically used drugs such as tacrine, zolpidem, clozapine, theophylline and so on19–23, while the other two 
enzymes of this family do not have significant role in drug metabolism.

The human CYP1A2 gene encodes a heme-binding protein composed of 516 residues. The three-dimensional 
(3D) structure of the protein covering residues 34–513 has been determined in complex with the inhibitor 
α-naphthoflavone, while the structure of the N-terminal transmembrane helical domain is lost in this crys-
tal structure14. According to the crystal structure (PDB ID: 2HI414), CYP1A2 holds fifteen α-helices and five 
β-sheets14. The iron atom of the heme prosthetic group is coordinated by the Cys458 of the protein moiety which 
belongs to the consensus signature of cytochrome P450 proteins (PROSITE signature PS00086)24. In addition, 
arginine 137 (R137) from C helix is hydrogen bonded to the heme propionate oxygen and further stabilizes its 
position.

CYPalleles is a web page which was developed to standardize the nomenclature of human cytochrome P450 
alleles (http://www.cypal​leles​.ki.se/9). It also provides genetic information and the molecular effect of the vari-
ants on the enzyme activity. More than 20 alleles have been reported for CYP1A2 gene in CYPalleles, among 
them, CYP1A2*6 (R431W), CYP1A2*8 (R456H), CYP1A2*11 (F186L), CYP1A2*15 (P42R) and CYP1A2*16 
(R377Q) are the most studied alleles25–29. Nevertheless, structural or functional consequences of the vast major-
ity of nsSNPs for CYP1A2 recorded by the NCBI dbSNP database have not yet been determined. Since CYP1A2 
is one of the main hepatic CYPs involved in the bioactivation of carcinogens and metabolism of clinically used 
drugs, SNPs of this enzyme could affect cancer susceptibility or drug efficiency. Therefore, the identification and 
evaluation of CYP1A2 pathogenic nonsynonymous SNPs (nsSNPs) are of major importance. This is also helpful 
in personalized medicine and optimization of drug treatment to achieve the most efficiency and least side effects. 
In this study, nsSNPs of CYP1A2 gene were evaluated by computational tools to identify pathogenic nsSNPs. We 
also performed MD simulation to assess how these nsSNPs affect the protein structure.

Methods
Data collection.  The human CYP1A2 protein sequence was obtained from UniProt database30 (UniProt ID: 
P05177). SNP data for CYP1A2 gene were retrieved from NCBI dbSNP31 build 150. All nucleotide positions were 
related to GRCh37.p13 (hg19) annotation release 105. The three-dimensional structure of the CYP1A2 protein 
(PDB ID: 2HI414) was downloaded from Protein Data Bank (https​://www.rcsb.org32).

In silico evaluation of nsSNPs.  In silico evaluation of CYP1A2 nsSNPs was performed using a variety 
of computational tools in a stepwise fashion where the output of each step was served as the input for the next 
one. SIFT33, PROVEAN34, MutationAssessor35, EFIN36, LRT37, FATHMM-MKL38, PhD-SNP39, and CADD40 are 
sequence-based predictors which could be easily applied to amino acid or nucleotide sequences. PolyPhen241, 
SNAP242, SuSPect43, PMUT44 and MutPred245 are sequence- and structure-based tools which utilize the user-
provided sequence information and the self-extracted structural features to predict if SNPs are associated with 
functional effects.

We categorized the tools into three groups (Table 1). SIFT33, PROVEAN34, MutationAssessor35, EFIN36, 
LRT37, FATHMM-MKL38, CADD40, PolyPhen241 and SNAP242 were used to predict the impact of the nsSNPs 
on the protein function. PhD-SNP39, SuSPect43, PMUT44, MutPred245 and VEST-446 were employed to assess the 
likelihood that a variant is pathogenic. CHASM-3.147 was used to identify possible cancer driver variants. All 
prediction scores were received directly from their own web servers except for VEST-4 and CHASM-3.1 which 

Table 1.   Classification of the methods used for in silico evaluation of CYP1A2 gene nsSNPs.

Method Prediction category Prediction result

SIFT Functional impact Deleterious/Tolerated

PolyPhen2 Functional impact Probably damaging/Possibly damaging/Benign

PROVEAN Functional impact Deleterious/Neutral

MutationAssessor Functional impact High/Medium/Low/Neutral

SNAP2 Functional impact Effect/Neutral

LRT Functional impact Deleterious/Neutral

EFIN Functional impact Damaging/Neutral

FATHMM-MKL Functional impact Deleterious/Neutral

CADD Functional impact Deleterious/Neutral

PhD-SNP Deleteriousness Disease/Neutral

SuSPect Deleteriousness Disease-causing/Neutral

MutPred2 Pathogenicity Pathogenic/Benign

PMUT Pathogenicity Disease/Neutral

VEST-4 Pathogenicity Pathogenic/Benign

CHASM-3.1 Cancer susceptibility Driver/Passenger

http://www.cypalleles.ki.se/
https://www.rcsb.org
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were fetched from CRAVAT48 server. In addition to the score, VEST-4 and CHASM-3.1 also assign a p-value to 
each variation and an approximate false discovery rate (FDR) for each p-value. The p-value denotes the prob-
ability that benign/passenger variant is misclassified as a pathogenic/driver.

Evolutionary conservation analysis.  The evolutionary conservation of amino acid positions was calcu-
lated with ConSurf49,50 web server which assigns a score between 1 (most variable position) and 9 (most con-
served position) to each amino acid position. The protein sequence similarity searching was performed against 
UNIREF-90 in which CSI-BLAST (Context-Specific Iterated-Basic Local Alignment Search Tool), 3 and 0.0001 
were set for homolog search algorithm, number of iteration and E-value cutoff, respectively.

Prediction of transmembrane helix.  The TMHMM 2.0 (Transmembrane Hidden Markov Model)51 web 
server was used to predict transmembrane helices. The TMHMM incorporates hydrophobicity, charge bias, helix 
lengths and grammatical constraints into prediction of various regions of a transmembrane protein.

Molecular dynamics simulation.  All MD simulations were conducted by GROMACS package version 
5.0.552 using the CHARMM36 force field53. The crystal structure of the CYP1A2 protein (PDB ID: 2HI414) was 
used as the starting structure for wild-type (WT) protein after removing the ligand (alpha-naphthoflavone) 
atomic coordinates. The initial structure of the variant proteins was generated from WT structure using mutate 
tool of Swiss-Pdb Viewer v4.1.054. The proteins were immersed in a cubic box of TIP3P water molecules. An 
adequate number of water molecules was replaced by counter ions to neutralize the systems. Each neutral-
ized system was then subjected to steepest descent energy minimization until the maximum force fell below 
500 kJ mol−1 nm−1. In order to equilibrate the solvent and ions around the proteins, two position-restrained MD 
simulations were carried out. The temperature and pressure of the systems were controlled at 300 K and 1 bar 
by V-rescale thermostat55 and Parrinello-Rahman barostat56, respectively. After equilibration, each system was 
subjected to 200 ns (ns) unrestrained MD simulation considering the similar conditions as two previous posi-
tion-restraint simulations. The LINCS algorithm57 was used to constrain the bonds with hydrogen atoms and the 
particle mesh Ewald method58 was employed for long range electrostatic interactions. The Cut-off distance for 
the Lennard–Jones, short-range and long-range electrostatic interaction was set to 12 Å. A time step of 2 fs was 
used for integrating Newton’s equations of motion.

Trajectory analysis and visualization.  Most of the trajectory analyses reported in this study were per-
formed by built-in utilities of GROMACS package version 5.0.552. The root mean square deviation (RMSD), root 
mean square fluctuation (RMSF), radius of gyration (Rg), and intramolecular hydrogen bonds were analyzed 
using gmx rms, gmx rmsf, gmx gyrate and gmx hbond of GROMACS package, respectively. The secondary 
structure content of the proteins was calculated as a function of time using the DSSP program59. The principal 
component analysis (PCA) was conducted using gmx covar and gmx anaeig. To perform free energy land-
scape (FEL) analysis, all-atom RMSD with respect to the average structure and radius of gyration were initially 
obtained for the analyzed time frames and then were employed by gmx sham module of GROMACS for cal-
culation of Gibbs free energy as well as construction of FEL. A conformation with minimum free energy was 
extracted as the representative structure for visualization. The three-dimensional structures of the proteins were 
visualized using Chimera 1.1160. The CaPTURE program61 was used to explore cation-pi interactions of the 
snapshots extracted from the MD trajectories.

Results
The SNP dataset.  The nsSNPs of human CYP1A2 gene were retrieved from the NCBI dbSNP database31 
build 150. The nsSNPs which met at least one of the following criteria in the validation method were entered to 
the evaluation: (1) sequenced in 1000Genome project (1000G), (2) validated by multiple independent submis-
sions to the refSNP cluster, (3) validated by frequency or genotype data, (4) genotyped by HapMap project, (5) 
validated by submitter confirmation, and (6) observed in at least two chromosome apiece. The nsSNPs which 
have no information on validation method (did not have any of the mentioned criteria) were excluded. Among 
them, there were four known alleles of CYP1A2 which were listed in CYPalleles including P42R (CYP1A2*15), 
S212C (CYP1A2*12), R377Q (CYP1A2*16) and N397H (CYP1A2*18). Since these alleles have been frequently 
studied, we made an exception for these nsSNPs and included them in our analyses. Totally, 176 nsSNPs were 
prepared for analysis (Supplementary Table S1). More than half of the nsSNPs occured in exon 2 (n = 94) and 
the others were mapped in exons 3 (n = 10), 4 (n = 8), 5 (n = 17), 6 (n = 14) and 7 (n = 33). The G to A transition 
is the most frequent nucleotide substitution (29.5%) found among all analyzed variations followed by C to T 
(23.9%), A to G (6.8%) and C to A (6.8%). At the protein level, the most common amino acids as the reference 
and missense were Arg (n = 45) and Leu (n = 17), respectively. The replacements of Arg with Trp (n = 12, 6.8%), 
Gln (n = 12, 6.8%), Cys (n = 7, 4.0%), and His (n = 7, 4.0%) and substitution of Asp by Asn (n = 7, 4.0%) are the 
most frequent amino acid substitutions (Fig. 1).

In silico evaluation of nsSNPs.  As shown in Fig. 2, a total of 176 nsSNPs for human CYP1A2 gene were 
evaluated in a multi-step framework. A variant must be voted by all of the tools to proceed to the next step of 
the analysis. Firstly, all nsSNPs were evaluated by SIFT, PROVEAN, MutationAssessor, LRT, FATHMM-MKL, 
EFIN, CADD, PolyPhen2 and SNAP2 to identify functional nsSNPs. As a result, 38 nsSNPs were agreed to 
be associated with functional effects by all of the used methods (Supplementary Table S2). Subsequently, the 
isolated nsSNPs were subjected to pathogenicity evaluation using SuSPect, MutPred2, PMUT, PhD-SNP and 
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VEST-4. 18 out of the 38 examined nsSNPs including G52R, L65P, G73R, G73W, L98Q, R108Q, R108W, R136C, 
E168K, F205V, T324R, E346K, R355W, R377Q, H388Y, R431W, F432S and R456H were classified as pathogenic 
by all five methods (Table 2). The evolutionary conservation profile was calculated for the amino acid position of 
these pathogenic variants using ConSurf49,50 web server. The conservation scores calculated by this server range 
from 1 to 9, and discriminate between highly variable and highly conserved positions, respectively. The results 
included one position (136) with score of 8 and fifteen positions (52, 65, 73, 98, 108, 168, 205, 324, 346, 355, 
377, 388, 431, 432 and 456) with score of 9 (Fig. 3), indicating that almost all of the pathogenic nsSNPs affect 
evolutionary conserved positions in CYP1A2 protein.  

The filtered pathogenic variants were further analyzed with CHASM-3.147 to assess possible association with 
cancer susceptibility. CHASM-3.1 consists of cancer-specific classifiers which allow to predict cancer driver 
variants depending on a particular cancer type. Since CYP1A2 is a hepatic enzyme, we selected liver-viral (hepa-
tocellular carcinoma) to compute the cancer driver scores. The results reported in Table 3 revealed a possible 
association with hepatocellular carcinoma for G73R, G73W, R108Q, R108W, E168K, E346K, R431W, F432S and 
R456H variants (P-value < 0.05).

Evaluation of nsSNPs occurring in transmembrane helix.  The CYP1A2 is a membrane-bound 
protein which is anchored to the endoplasmic reticulum membrane through an N-terminal transmembrane 
helix. However, to date, no complete structure for CYP1A2 including this region has been determined. Hence, 
the sequence of CYP1A2 protein was submitted to TMHMM server v2.0 to predict the transmembrane helix. 
According to the server’s estimation, the transmembrane helix includes residues 7 to 28. Nine substitutions 
including S10L, L15F, S18C, S18Y, A19P, F21L, F25C, F25S and V27M have occurred in the transmembrane heli-
cal region, none of which were found to be associated with pathogenicity. Moreover, evolutionary conservation 
analysis of the nsSNPs located in this transmembrane helix did not found any conserved amino acid position 
other than Ser10 (Fig. 3).

Molecular dynamics simulation.  In order to determine which of the cancer driver nsSNPs should be 
subjected to MD simulation, we used all evaluation tools with stringent threshold of effectiveness/deleterious-
ness (Fig. 4). As a result, two cancer driver nsSNPs G73W and F432S voted by all the tools were selected for 
the structural evaluation by MD simulation. The structure of CYP1A2 (PDB ID: 2HI414) after removal of the 
ligand (alpha-naphthoflavone) was used as the wild-type (WT) protein. The initial structure of the G73W and 
F432S variants was obtained by substitution of the corresponding residues in the WT structure. Finally, variant 
and WT structures were subjected to 200 ns MD simulation to explore possible impacts of the substitutions on 
protein structure.

Figure 1.   The Amino acid substitution heatmap. The one-letter codes of amino acids at the left and bottom side 
of the map correspond to the reference and mutant amino acids, respectively. A color index (white to red) was 
assigned for amino acid substitutions according to the number of their occurrences ranged from 0 to 12. The 
gray blocks show the amino acid replacements that are not allowed to occur by single nucleotide substitution.
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Root mean square deviation (RMSD) of the alpha carbon (Cα) atoms for each frame with respect to the start-
ing (1D-RMSD) and to all other frames (2D-RMSD) as well as radius of gyration (Rg) along the simulation time 
were calculated (Fig. 5). By comparing the 1D-RMSD trend it was found that the G73W (1.95 ± 0.20 Å) behaves 
more or less similar to the WT (1.94 ± 0.21 Å), whereas the F432S demonstrates minor deviation in the Cα atom 
positions (2.24 ± 0.28 Å). The 2D-RMSD plots indicate that WT and G73W variant converged to relatively stable 
conformations after about 40 ns of simulations (Fig. 5C), while for F432S variant, such a stable conformation 
was achieved after about 80 ns, suggesting that F432S has experienced more structural changes before running 
out into a stable structure (Fig. 5C). The measurement of Rg as a function of the simulation time also implied 
that the structures converged after about 80 ns (Fig. 5B). Taking these findings together and to be statistically 
comparable, the analyses were focused on those trajectories obtained from the last 120 ns of simulations (from 
80 to 200 ns) for all the three proteins.

In order to gain more insight into the local structural changes around substitution sites, we extracted a 
conformation with minimum free energy as the representative structure using free energy landscape analysis 
from the last 120 ns of each MD simulation. Gly73 is located in a short loop just after A helix (residues 61–72). 
Substitution of this residue by tryptophan renders the indole ring of Trp to be captured by the positive charge 
of the guanidinium group of Arg90. As a result, a cation-pi interaction formed between Trp73 and Arg90 after 
about 39 ns of the simulation. The distance between the indole ring and guanidinium group is maintained at 
about 4 Å for 70 ns, after that the magnitude of the fluctuations increased (Fig. 6A). In this regard, 161 snapshots 
were extracted at every 1 ns from 40 to 200 ns of the simulation time and explored for cation-pi interactions by 
CaPTURE program61. The results taken from CaPTURE also confirmed the formation of cation-pi interaction 
between Trp73 and Arg90, although it was attenuated after 120 ns (Fig. 6B). On the other hand, analysis of the 
secondary structure showed the C-terminal end of the A helix became unstable after establishment of cation-pi 
interaction between Trp73 and Arg90 (Fig. 6C). The next substitution site, Phe432, is located in a 310 helix flanked 
by helices K’ and K". In WT structure, most of the residues located within a radius of 5 Å from side chain of 
Phe432 are nonpolar residues, of which, Ala370, Leu373, Trp421, Ile440, Leu444 and Met448 have been shown 
to be involved in van der Waals interactions with the aromatic moiety of Phe432. By comparing WT and F432S 
representative structures, it was cleared that substitution of serine residue with a small polar side chain for F432 
has led to disappearance of these interactions.

Figure 2.   Schematic representation of the stepwise evaluation of CYP1A2 gene nonsynonymous single 
nucleotide polymorphisms (nsSNPs). A total of 176 nsSNPs were entered into the analysis by a variety of 
computational tools. In first step, 38 out of 176 nsSNPs were found to be associated with functional effects. 
Among them, 18 nsSNPs were predicted as pathogenic. Finally, 9 nsSNPs (G73R, G73W, R108Q, R108W, 
E168K, E346K, R431W, F432S and R456H) were also found to be cancer drivers. G73W and F432S cancer driver 
variants were then subjected to 200 ns molecular dynamics simulation. Conformations with minimum free 
energy were extracted as the representative structure for wild-type, G73W and F432S CYP1A2 proteins using 
FEL analysis and were visualized and superimposed using UCSF Chimera 1.11 (www.cgl.ucsf.edu/chime​ra).

http://www.cgl.ucsf.edu/chimera
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We also conducted further analyses to explore the overall structural changes upon substitutions. The second-
ary structure content of the proteins was also measured during the analyzed time window. Both variants showed a 
decrease in the β-sheet (Fig. 7A) and α-helical content (Fig. 7B). The average number of β-sheet forming residues 
was reduced from 40 ± 2 in WT to 34 ± 3 in G73W variant and 33 ± 3 in F432S variant. The average number of 
residues participating in α-helix was also decreased from 220 ± 4 in WT to 212 ± 7 and 213 ± 6 in G73W and 
F432S, respectively. Detailed analysis of secondary structure elements revealed disruption of β-sheet 3′ in G73W 
variant (Fig. 7C) and β-sheet 4 in F432S variant (Fig. 7D). The results implied that no α-helix structure was 
completely lost, they were just shortened by one or more residues.

On the other hand, analysis of hydrogen bonds implied a decrease in the number of intramolecular hydrogen 
bonds in both variants as the average number of hydrogen bonds was reduced from 376 ± 9 in WT to 365 ± 9 and 
363 ± 9 in G73W and F432S variants, respectively (Fig. 7E). It was also observed that the number of hydrogen 
bonds with occupancy above 70% has decreased from 264 in WT to 237 and 249 in G73W and F432S variants, 
respectively. The reduction in the number and strength of hydrogen bonds suggested a gain in the overall flex-
ibility of the variants upon substitutions. So, to examine whether these substitutions affect protein overall flex-
ibility, we performed principal component analysis (PCA). The Eigenvectors and eigenvalues were obtained from 

Table 2.   Pathogenicity evaluation of functional CYP1A2 nsSNPs. Pred: Prediction, S: Score, P-value: 
Probability that a benign variant is misclassified as pathogen, FDR: False discovery rate, P: Pathogenic, N: 
Neutral/Benign. The nsSNPs classified as pathogenic by all five methods are highlighted in bold.

Variant

PhD-SNP SuSPect MutPred2 PMUT VEST-4

Pred (S) Pred (S) Pred (S) Pred (S) Pred (S, P-value, FDR)

P36S N (0.23) N (16) N (0.38) N (0.36) N (0.48, 0.194, 0.55)

P42R P (0.53) P (96) P (0.69) P (0.91) N (0.48, 0.196, 0.55)

G52R P (0.85) P (95) P (0.95) P (0.91) P (0.97, 0.003, 0.10)

P61L P (0.55) N (42) P (0.58) N (0.48) N (0.69, 0.077, 0.35)

L65P P (0.86) P (92) P (0.90) P (0.86) P (0.93, 0.006, 0.10)

G73R P (0.86) P (88) P (0.91) P (0.91) P (0.97, 0.003, 0.10)

G73W P (0.90) P (94) P (0.92) P (0.91) P (0.96, 0.003, 0.10)

R79C P (0.80) P (78) N (0.33) N (0.48) N (0.17, 0.582, 0.90)

V85M N (0.37) P (53) P (0.59) N (0.24) N (0.46, 0.207, 0.55)

L98Q P (0.84) P (93) P (0.91) P (0.91) P (0.96, 0.003, 0.10)

R108Q P (0.83) P (86) P (0.82) P (0.91) P (0.98, 0.002, 0.10)

R108W P (0.89) P (97) P (0.90) P (0.91) P (0.98, 0.002, 0.10)

F125L N (0.42) N (41) P (0.73) N (0.30) P (0.91, 0.008, 0.10)

R136C P (0.69) P (54) P (0.71) P (0.63) P (0.76, 0.046, 0.25)

R137Q P (0.82) P (92) P (0.75) P (0.87) N (0.71, 0.069, 0.35)

R138C P (0.91) P (75) P (0.62) P (0.78) N (0.35, 0.291, 0.60)

V165G P (0.73) P (64) P (0.65) P (0.68) N (0.53, 0.172, 0.55)

E168K P (0.86) P (75) P (0.71) P (0.57) P (0.77, 0.045, 0.25)

F205V P (0.87) P (78) P (0.77) P (0.63) P (0.93, 0.006, 0.10)

F238S P (0.61) N (47) P (0.83) N (0.28) P (0.95, 0.004, 0.10)

R243C P (0.74) P (59) N (0.40) N (0.31) N (0.40, 0.244, 0.55)

T324I P (0.86) P (54) P (0.71) N (0.40) P (0.95, 0.004, 0.10)

T324R P (0.92) P (85) P (0.83) P (0.78) P (0.97, 0.003, 0.10)

E346K P (0.87) P (93) P (0.72) P (0.90) P (0.96, 0.003, 0.10)

R355Q P (0.57) N (44) P (0.70) N (0.41) N (0.47, 0.203, 0.55)

R355W P (0.82) P (71) P (0.77) P (0.74) P (0.81, 0.029, 0.20)

R377Q P (0.79) P (95) P (0.77) P (0.90) P (0.94, 0.005, 0.10)

I386F N (0.40) P (57) P (0.72) N (0.30) P (0.93, 0.006, 0.10)

H388Y P (0.64) P (78) P (0.85) P (0.85) P (0.98, 0.002, 0.10)

R431W P (0.82) P (96) P (0.81) P (0.90) P (0.89, 0.012, 0.10)

F432S P (0.87) P (95) P (0.91) P (0.90) P (0.97, 0.003, 0.10)

K447M N (0.47) P (56) P (0.64) P (0.70) N (0.57, 0.146, 0.55)

R456H P (0.86) P (79) P (0.78) P (0.89) P (0.94, 0.005, 0.10)

R457P P (0.87) P (62) P (0.92) P (0.87) N (0.70, 0.074, 0.35)

R457W P (0.79) P (80) P (0.79) P (0.87) N (0.54, 0.164, 0.55)

E461K P (0.91) N (28) P (0.80) P (0.58) N (0.73, 0.059, 0.30)

A473D P (0.89) P (84) P (0.59) P (0.91) N (0.72, 0.064, 0.30)

T498N P (0.73) P (64) P (0.51) P (0.51) N (0.48, 0.195, 0.55)
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diagonalization of the covariance matrices of the Cα atoms, and the principal components were generated by 
projecting the trajectories on the respective eigenvectors (Fig. 7F and 7G). The trace of the diagonalized covari-
ance matrix was found to be 530.27 Å2, 693.11 Å2 and 931.91 Å2 for WT, G73W and F432S variants, respectively, 
confirming an increase in the overall flexibility of the variants, of which the increase in the F432S variant is more 
drastic compared to that of G73W.

Figure 3.   The conservation profile of CYP1A2 amino acid positions calculated by ConSurf (consurf.tau.ac.il). 
Each amino acid position is scored based on the conservation score obtained from multiple sequence alignment. 
The higher the score, the more conserved is the position. The uppercase letters (helices) and numbers (strands) 
represent the regular secondary structure elements. The structure of the areas enclosed by dashed lines has not 
yet been determined. The positions labeled by black stars indicate amino acid positions of the 18 nsSNPs which 
predicted as pathogenic.
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In order to provide more insight into the protein structural flexibility, RMSF of the Cα atoms as a function of 
residue number was calculated over the last 120 ns (Fig. 8A). The RMSF graph has been highlighted with color 
blocks indicating α-helices and β-strands according to CYP1A2 crystallographic structure. The differences in 
per-residue RMSF (ΔRMSF) for G73W and F432S Cα atoms with respect to the WT were also measured and 
visualized in Fig. 8B. Positive values indicate more flexible residues and negative values show less flexible resi-
dues compared to those of WT. As seen in Figs. 8B and 8C, a significant increase in flexibility was measured 
for β-sheet 3′ and its flanking loops of G73W variant. Disruption of β-sheet 3′ due to breaking of two hydrogen 
bonds between Ala297 and Asn300 confirmed the higher flexibility in this region (Fig. 7C). In case of F432S 
variant, a sharp increase in fluctuation of the CD loop was particularly significant (Figs. 8B and 8C). Increased 
flexibility was also observed in F helix, FG loop, G helix and GH loop.

Calculation of RMSD for Cα of the CD loop during the entire course of the F432S simulation demon-
strated displacement of this loop after about 14 ns of the simulation (Fig. 9A). In addition, monitoring of the 
CD loop interactions revealed that F432S has lost the hydrogen bonding network in this region of the protein 

Table 3.   Assessing the cancer susceptibility of pathogenic CYP1A2 nsSNPs using CHASM-3.1. P-value: 
Probability that a passenger variant is misclassified as driver, FDR: False discovery rate.

Variant Prediction Score P-value FDR

G52R Passenger 0.50 0.080 0.70

L65P Passenger 0.49 0.100 0.70

G73R Cancer driver 0.63 0.013 0.30

G73W Cancer driver 0.62 0.014 0.30

L98Q Passenger 0.48 0.110 0.75

R108Q Cancer driver 0.67 0.006 0.20

R108W Cancer driver 0.68 0.005 0.20

R136C Passenger 0.42 0.190 0.80

E168K Cancer driver 0.60 0.021 0.35

F205V Passenger 0.43 0.178 0.80

T324R Passenger 0.36 0.316 0.80

E346K Cancer driver 0.63 0.012 0.30

R355W Passenger 0.53 0.056 0.60

R377Q Passenger 0.52 0.061 0.60

H388Y Passenger 0.51 0.071 0.65

R431W Cancer driver 0.65 0.007 0.20

F432S Cancer driver 0.66 0.007 0.20

R456H Cancer driver 0.72 0.002 0.20

Figure 4.   Evaluation of the cancer driver nsSNPs by all methods with modified thresholds. The numbers in 
parentheses refer to the user-defined thresholds.
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(Supplementary Table S3). The salt bridge between Asp152 from this loop and Arg281 from GH loop has also 
disrupted (Fig. 9B). The removal of these interactions thought to be the reason for displacement and higher 
mobility of the CD loop as well as GH loop in F432S variant. Another notable change was the significant weak-
ening of the conserved hydrogen bond between Arg137 of the C helix and the heme propionate oxygen which 
occurred shortly after CD loop movement (Fig. 9A). By looking at the results described for CD loop, it may be 
concluded that displacement of the CD loop together with its increased flexibility have induced breakage of the 
Arg137-heme hydrogen bond.

Figure 5.   (A) Time dependence of the root mean square deviation and (B) Radius of gyration calculated for Cα 
atoms. WT, G73W and F432S are shown in black, green and red, respectively. (C) Two-dimensional root mean 
square deviation (2D-RMSD) plots calculated for Cα atoms as a function of the simulation time. The plots are 
color-coded according to RMSD values (nm).

Figure 6.   Local structural changes resulting from G73W substitution. (A) Time evaluation of the distance 
between aromatic moiety of Trp73 and guanidinium group of Arg90. (B) Binding energies of W73-R90 
cation-pi interaction calculated with CaPTURE program. The total binding energy is equal to the electrostatic 
plus the van der Waals interaction energies (Etotal = Eelec + EvdW). (C) Time-dependent secondary structure of the 
A helix. The occurrence of secondary structure elements is indicated by using a color code.
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Figure 7.   Trajectory analysis of the wild-type, G73W and F432S CYP1A2 proteins during the analyzed time 
frames (last 120 ns). (A,B) Number of β-sheet and α-helix forming residues. Box plots for WT, G73W and 
F432S are shown in dark gray, green and red, respectively. (C,D) Time-dependent secondary structure profile 
of β-sheets 3′ and 4 for G73W and F432S variants, respectively. (E) Comparison of the intramolecular hydrogen 
bonds. (F,G) Projection of the motion of the protein in phase space along the first two principal eigenvectors. 
Comparison of G73W (green) and F432S (red) with WT (black) are presented.
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Discussion
In this study, we performed a comprehensive in silico evaluation to identify CYP1A2 gene pathogenic nsSNPs 
using a wide variety of computational tools. To our knowledge only one study has been carried out to evaluate the 
nsSNPs of human CYP1A2 gene. Wang et al. using two tools SIFT and PolyPhen analyzed the functional impact 
of thirty-three nsSNPs of CYP1A2 gene and reported eleven nsSNPs as damaging substitutions62. We expanded 
our study to include more nsSNPs and hypothesized that a more reliable and accurate estimate of a substitution 
consequence could be provided by using a variety of computational methods that follow different approaches to 
distinguish between pathogenic and neutral variants. Although all predictive methods have been developed to 
estimate whether a given substitution has functional/pathogenic effect, it does not necessarily mean that they can 
elucidate the mechanism how the SNPs affect protein function or cause disease. This question could be explored 
using other experimental or computational techniques including MD simulation.

To test our hypothesis, we initially annotated the nsSNPs using a variety of computational methods to dis-
tinguish between functional and neutral variants. Assessing the pathogenicity of functional nsSNPs identified 
18 pathogenic nsSNPs. Evolutionary conservation analysis indicated that almost all of the pathogenic nsSNPs 
occupy conserved amino acid positions. Moreover, the results obtained from CHASM-3.1 revealed a possible 
association between G73R, G73W, R108Q, R108W, E168K, E346K, R431W, F432S and R456H with risk of 
developing hepatocellular carcinoma.

The results of this study are in fairly good agreement with those published by Ito and colleagues. They 
reported reduced activity for CYP1A2*4 (I386F), CYP1A2*6 (R431W), CYP1A2*8 (R456H), CYP1A2*11 (F186L), 
CYP1A2*15 (P42R), CYP1A2*16 (R377Q) and CYP1A2*21 (S298R and Y495Ter) toward phenacetin and 7-eth-
oxyresorufin substrates. The nonsense substitution (Y459Ter) of CYP1A2*21 results in a truncated protein that 
reduces the activity of the enzyme25. Moreover, two allelic variants CYP1A2*14 (T438I) and CYP1A2*20 (D436N) 
showed higher activity for phenacetin compared with wild-type enzyme. In the current study, P42R, R377Q, 
I386F, R431W and R456H variants were predicted as functional variants, of which R431W and R456H variants 
were also found to be associated with pathogenicity and cancer susceptibility.

Among nsSNPs predicted as cancer drivers, G73W and F432S were still voted by all methods even after apply-
ing more stringent thresholds. Accordingly, these variants were subjected to 200 ns MD simulations to explore 
the effect of substitutions on the protein structure. Findings demonstrated that these substitutions change protein 
structural features not only in proximity of the substituted residues but also in spatially distant regions. Both vari-
ants experienced a reduction in the number and strength of intramolecular hydrogen bonds as well as in β-sheet 
and α-helical content. Results derived from the principal component analysis (PCA) confirmed an increase in 
the overall flexibility especially for F432S variant. A drastic increase was also found for the CD loop flexibility 
which is a long serine-rich stretch (residues 148–158) extended into the solvent. Increased mobility of the CD 
loop has been recently reported upon simulation of R377Q27. In this regard, the experimentally observed loss of 
the enzymatic activity in R377Q variant has been attributed to the reduced heme stability due to the increased 
flexibility of the C helix, which is adjacent to the CD loop. The C helix is also adjacent to the heme prosthetic 
group and interacts with heme propionate oxygen via a conserved arginine residue (Arg137). Hence, any change 
in flexibility of the C helix could affect the stability of the heme. Moreover, C helix is one of the main regions 
involved in interaction with redox partners like cytochrome b5 (CYB5). CYPs binding to CYB5 is mediated 
through a groove on the proximal surface of the protein which includes C helix. There are also growing evidences 
for the involvement of CD loop in binding of some CYPs to the CYB5, although it appears the CYB5 interactive 
elements of various CYPs are type specific. For example, the interacting region on CYP3A4 in apo form consists 
of helices B, C, D, BB’ and CD loops, β-bulge and meander region while on CYP2E1 is provided by helices C, J’, 
L, β-bulge and meander region63,64. Taken together, it seems reasonable to expect that the high mobility of the 
CD loop in F432S may affect heme stability as well as interaction with CYB5.

Conclusion
CYP1A2 is one of the main hepatic CYPs involved in the bioactivation of carcinogens and metabolism of clini-
cally used drugs. Hence, nsSNPs of this enzyme could affect cancer susceptibility and drug efficiency. In current 
study, using a variety of computational tools, 38 out of 176 nsSNPs of human CYP1A2 gene were predicted as 
functional variants. The functional nsSNPs were further analyzed to trace possible association with pathogenic-
ity and cancer susceptibility. As a result, 18 nsSNPs predicted as pathogenic, of which G73R, G73W, R108Q, 
R108W, E168K, E346K, R431W, F432S and R456H variants were also found to be associated with hepatocellular 
carcinoma. We also performed 200 ns MD simulations to explore how G73W and F432S cancer driver variants 
affect the protein structure. Simulation results revealed several significant structural alterations, particularly for 
F432S variant. Among them, increased flexibility of the CD loop and loss of the hydrogen bond between heme 
and Arg137 from C helix were the most prominent ones, because they could affect the heme stability as well as 
the protein interaction with cytochrome b5. These findings may be considered in designing experimental studies 
and provide novel insights into understanding the structure–function relationship in CYP1A2 and other CYPs.
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