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In recent years, methylation modification regulators have been found to have essential roles in
various tumor mechanisms. However, the relationships between N6-methyladenosine (m6A)
and 5-methylcytosine (m5C) regulators and clear cell renal cell carcinoma (ccRCC) remain
unknown. This study investigated these relationships using the data from The Cancer Genome
Atlas database. We calculated risk scores using a Lasso regression analysis and divided the
patient samples into two risk groups (tumor vs. normal tissues). Furthermore, we used univariate
and multivariate Cox analyses to determine independent prognostic indicators and explore
correlations between the regulatory factors and immune infiltrating cell characteristics. Finally,
quantitative reverse transcriptase–polymerase chain reaction (PCR) and The Human Protein
Atlas were used to verify signature-related gene expression in clinical samples. We identified
expression differences in 35 regulatory factors between the tumor and normal tissue groups.
Next, we constructed a five-gene risk score signature (NOP2 nucleolar protein [NOP2],
methyltransferase 14, N6-adenosine-methyltransferase subunit [METTL14], NOP2/Sun RNA
methyltransferase 5 [NSUN5], heterogeneous nuclear ribonucleoprotein A2/B1 [HNRNPA2B1],
and zinc finger CCCH-type containing 13 [ZC3H13]) using the screening criteria (p < 0.01), and
then divided the cases into high- and low-risk groups based on their median risk score. We also
screened for independent prognostic factors related to age, tumor grade, and risk score.
Furthermore, we constructed a Norman diagram prognostic model by combining two
clinicopathological characteristics, which demonstrated good prediction efficiency with
prognostic markers. Then, we used a single-sample gene set enrichment analysis and the
cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT)method to
evaluate the tumor microenvironment of the regulatory factor prognostic characteristics.
Moreover, we evaluated five risk subgroups with different genetic signatures for
personalized prognoses. Finally, we analyzed the immunotherapy and immune infiltration
response and demonstrated that the high-risk group was more sensitive to immunotherapy
than the low-risk group. The PCR results showed that NSUN5 and HNRNPA2B1 expression
was higher in tumor tissues than in normal tissues. In conclusion, we identified five m6A and
m5C regulatory factors that might be promising biomarkers for future research.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common renal
malignancy, resulting in more than 14,000 deaths annually in
the United States (Siegel et al., 2018). Clear cell renal cell
carcinoma (ccRCC) is the most common subtype (~70% of
cases) with the worst degree of malignancy and prognosis
(Jonasch et al., 2021). There has been considerable progress
regarding ccRCC treatment. However, overall survival (OS)
and relapse-free survival still require improvement (Greef and
Eisen, 2016). Therefore, identifying new targets and prognostic
biomarkers for ccRCC treatment is crucial.

N-Methyladenosine (m6A) and 5-methylcytosine (m5C) RNA
modifications are newly discovered gene expression regulation
mechanisms (Chen et al., 2019). These modifications affect the
fate of modified RNA and play critical roles in biological
processes such as tumor development (Huang et al., 2020). m6A
modifications are the most abundant type of RNA modification,
occurring in messenger RNA (mRNA), microRNA, and long
noncoding RNAs. Furthermore, studies have demonstrated that
m6A RNA modifications affect RNA processing, translation, and
metabolism.Methyltransferases (writers), demethylases (erasers), and
binding-protein (readers) primarily mediate the effects of m6A. The
“writers” are responsible for RNA methylation and include
methyltransferase-like (METTL) 33, METTL14, KIAA1429,
Wilms’ tumor 1-associating protein (WTAP), RNA binding motif
protein 15 (RBM15), and zinc finger CCCH-type containing 13
(ZC3H13). The “erasers” specifically target m6A RNA and mainly
include AlkB homolog 5, RNA demethylase (ALKBH5), and FTO
alpha-ketoglutarate-dependent dioxygenase (FTO). The “readers”
connect m6A sites and play a role in special regulatory RNA
modifications, including YTH domain-containing (YTHDC) 1,
YTHDC2, YTH domain-containing family protein (YTHDF) 1,
YTHDF2, insulin-like growth factor binding protein (IGFBP) 1,
IGFBP2, IGF2BP3, RNA binding motif protein X-Linked
(RBMX), and heterogeneous nuclear ribonucleoprotein C
(HNRNPC). m6A downregulation leads to reduced proliferation,
self-renewal, survival, and differentiation. Furthermore, m6A
methylation regulates all aspects of cellular RNA metabolism,
including abundance, alternative splicing, stability, nuclear output,
decay, and transformation (Chen et al., 2019; He et al., 2019; Lan
et al., 2019).

m5C modifications are another prevalent RNAmodification type
occurring in mRNA, transfer RNA, ribosomal RNA, and some
noncoding RNAs (Squires et al., 2012; Bohnsack et al., 2019; Trixl
and Lusser, 2019). Studies have demonstrated thatm5C is involved in
gene expression related to RNA output, translation, and stabilization
processes (Bohnsack et al., 2019; Huang et al., 2019).Writers, readers,
and erasers also mediate the effects of m5C. NOP2 nucleolar protein
(NSUN) 1–7, DNA methyltransferase (DNMT) 1, 2, 3A, and 3B are
writers, regulating the process of RNAmethylationmodifications. Tet
methylcytosine dioxygenase (TET) 2, an eraser, has m5C
demethylation activity, removing the m5C modification, and Aly/

REF export factor (ALYREF), a reader, recognizes and binds them5C
site on target mRNAs (Huang et al., 2019; Nombela et al., 2021).

Increasing evidence suggests that m6A and m5C regulators
have essential roles in tumorigenesis and tumor progression
(Chen et al., 2019; Chellamuthu and Gray, 2020). For
example, tumorigenesis and proliferation, differentiation,
invasion, and migration are related to methylation
modifications (Lin et al., 2016; Ma et al., 2017; Liu et al.,
2018a). Furthermore, m6A and m5C regulators have been
reported as prognostic biomarkers. For instance, in
hepatocellular carcinoma, METTL3 is associated with a poor
prognosis and inhibits the suppressor of cytokine signaling 2
(i.e., SOCS2) expression through the miR-145/m 6 A/YTHDF2-
dependent axis (Yang et al., 2017; Chen et al., 2018). In addition,
METTL14 promotes cancer progression by regulating MYB
proto-oncogene–transcription factor (i.e., MYB)/MYC proto-
oncogene–bHLH transcription factor (i.e., MYC) in acute
myeloid leukemia (Weng et al., 2018). m5C research has not
become mainstream. However, studies have confirmed increased
NSUN2 expression in breast cancer (Frye and Watt, 2006), and
NOP2 is a non–small cell lung cancer prognostic biomarker (Sato
et al., 1999). Furthermore, NSUN5 is highly expressed in rectal
cancer and promotes cancer progression through cell cycle
regulation (Jiang et al., 2020).

RNA modifications do not drive tumor progression. However,
abnormal expression of modification regulators can lead to changes
in the biological behavior of tumors (Nombela et al., 2021). For
example, METTL3 is upregulated in breast cancer, which increases
hepatitis B X-interacting protein (i.e., HBXIP) mRNA methylation
and stability, inducing tumor cell proliferation and survival by
inhibiting the tumor suppressor, let −7 g (Cai et al., 2018).
METTL3 also regulates integrin subunit beta 1 (ITGB1)
expression, thereby affecting the binding of ITGB1 to collagen I.
This disruption affects tumor cell migration and promotes bone
metastasis in prostate cancer (Li et al., 2020). In cervical cancer, FTO
activates the β-catenin pathway, increasing ERCC excision repair
1–endonuclease noncatalytic subunit (i.e., ERCC1) expression, which
is associatedwith worse prognosis (Zhou et al., 2018; Zou et al., 2019).
In addition, FTO is overexpressed in lung cancer, promoting cell
proliferation and invasion and inhibiting apoptosis by regulating
myeloid zinc finger 1 (i.e., MZF1) expression, resulting in a poor
prognosis (Liu et al., 2018b). This evidence demonstrates that RNA
methylation significantly influences the biological behavior of tumors.

Many studies have explored the regulatory mechanisms
among m6A- and m5C-related regulatory factors and various
tumors. However, relationships between the clinicopathological
characteristics of ccRCC and combined m6A–m5C regulatory
factors remain unclear. Therefore, this study combined the gene
signatures of m6A with m5C to explore these correlations. We
downloaded kidney renal clear cell carcinoma (KIRC)
transcriptome and clinical data from The Cancer Genome
Atlas (TCGA) to analyze the differentially expressed regulatory
factors in ccRCC. Next, we constructed a prognostic risk model
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using Lasso regression and Cox analyses. Finally, we screened five
prognostic regulatory factors as a model signature and combined
the independent prognostic factors to construct a nomogram
diagram.

Immune cell infiltration plays a decisive role in tumorigenesis and
development. Furthermore, cancer cells shape their
microenvironment by secreting various cytokines, chemokines,
and other factors, leading to the reprogramming of surrounding
cells. Therefore, they play a decisive role in tumor survival and
progression (Hinshaw and Shevde, 2019). This study also aimed to
identify the potential characteristics of m6A- and m5C-related
regulatory factors to improve prognostic ccRCC evaluations.

Overall, we combined m6A and m5C to explore the influence
of regulatory factors on ccRCC prognoses to provide new ccRCC

biomarkers and construct a reliable prognostic model suitable for
use in the clinic.

METHODS

Data Collection and Processing
We downloaded the ccRCC transcriptome (HTseq-FPKM) and
clinical data from the TCGA-KIRC database (https://portal.gdc.
cancer.gov/). We included 611 TCGA samples; 539 were tumor
tissue (ccRCC) samples, and 72 were normal tissues samples. We
removed all samples with missing data.

Expression Differences in
N6-methyladenosine and
5-methylcytosine-Related Regulatory
Factors
We included 23 m6A and 12 m5C regulatory factors based on the
literature (Bohnsack et al., 2019; He et al., 2019; Zhang et al., 2021)
(m6A: KIAA1429, WTAP, RBM15, RBM15B, METTL16, METTL3,
METTL14, ZC3H13, ALKBH5, FTO, FMRP translational regulator 1
[FMR1], heterogeneous nuclear ribonucleoprotein A2/B1

FIGURE 1 | Workflow of this study.

TABLE 1 | Classification of m6A and m5C combined regulatory factors.

Name Regulators Type

m6A METTL3 writer
METTL14 writer
METTL16 writer
YTHDF1 reader
YTHDF2 reader
YTHDF3 reader
YTHDC1 reader
YTHDC2 reader
RBM15 writer
RBM15 B writer
RBMX reader
IGFBP1 reader
IGFBP2 reader
IGFBP3 reader
KIAA1429 writer
FMR1 reader
LRPPRC reader
HNRNPA2B1 reader
HNRNPC reader
ZC3H13 writer
FTO eraser
ALKBH5 eraser
WTAP writer

m5C TET1 eraser
TET2 eraser
TET3 writer
NOP2 writer
NSUN2 writer
NSUN3 writer
NSUN4 writer
NSUN5 writer
NSUN6 writer
ALYREF reader
TRDMT1 writer
YBX1 reader
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[HNRNPA2B1], HNRNPC, IGFBP1, IGFBP2, IGFBP3, leucine-rich
pentatricopeptide repeat-containing [LRPPRC], RBMX, YTHDC1,
YTHDC2, YTHDF1, YTHDF2, and YTHDF3; m5C: TET1, TET2,
TET3, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NOP2,
ALYREF, tRNA aspartic acid methyltransferase 1 [TRDMT1], and
YBX1).We compared the gene expressions of these regulatory factors
between the tumor and normal tissue groups. A p-value of <0.05 and
an absolute log2 fold change value ≥ 1 were considered statistically
significant.

Prognostic Characteristics of
N6-methyladenosine- and
5-methylcytosine-Related Regulatory
Factors
We randomly divided the 525 ccRCC samples into training (n = 263)
and validation (n = 262) groups using a 1:1 ratio and screened the
prognostic adjustment factors.We calculated the risk score as follows:

Riskscore � (Expgene1 × Coefgene1) + (Expgene2 × Coefgene2)

+/ + (Expgene(n) × Coefgene(n)),

where Exp: individual gene expression; Coef: correlation
coefficient.

The samples were classified into high- and low-risk groups based
on the median risk score. Next, we used univariate and multivariate
Cox regression analyses to determine which pathological features
were independent prognostic risk factors. Finally, we prepared
receiver operating characteristic (ROC) curves. This process was
performed in the training and validation groups.

Nomogram Prognostic Model Construction
We selected clinical indicators with a p-value of ≤0.001 in the
multivariate Cox regression analysis and the risk score to construct
the prognostic nomogram model. The calibration curve and C-index
were used to predict the model’s performance. We also created 1-, 3-,

and 5-year ROC curves to verify the model’s predictive ability and
performed a Kaplan–Meier analysis to evaluate theOS of the low- and
high-risk groups (statistical significance was set at p < 0.05).

Cell Infiltration in the Tumor
Microenvironment
We used the single-sample gene set enrichment analysis (ssGSEA)
algorithm to obtain the relative abundance of TME-infiltrated cells
per sample. Next, we used the CIBERSORT algorithm to analyze
differences in immune cell infiltration between the high- and low-
risk groups. The CIBERSORT software deconvolves the matrix of
immune cell subtypes according to linear support vector regression
rules (Lee et al., 2013). We downloaded the ccRCC immune scores
from the MD Anderson database (http://bioninformatics.
mdanderson.org/estimate/) to assess correlations between
regulatory factors and immune and matrix scores.

Cell Culture, Quantitative Real-Time
Polymerase Chain Reaction, and Signature
Gene Expression Analyses
We purchased human ccRCC (769-P) and immortalized
proximal tubule epithelial (HK2) cell lines from the Cell Bank
of the Chinese Academy of Sciences. 769-P and HK2 cells were
cultured in Roswell Park Memorial Institute (i.e., RPMI)-1,640
medium (KeyGEN Biotech, Inc., Nanjing, China) and Dulbecco’s
Modified Eagle Medium (i.e., DMEM) (KeyGEN Biotech, Inc.,),
respectively, containing 10% fetal bovine serum (Biological
Industries, Shanghai, China) at 37°C and 5% carbon dioxide.

We verified the expression levels of the prognostic genes by
qRT-PCR analysis. Total RNA was extracted using Trizol
reagent (TaKaRa Bio Inc. Shiga, Japan), and complementary
DNA was synthesized using PrimeScript RT reagent Kit
(TaKaRa, Shiga, Japan). qRT-PCR was performed on 7,500
Real-Time PCR Systems (Applied Biosystems; Thermo Fisher

FIGURE 2 | Expression pattern of m6A and m5C regulators in TCGA ccRCC cohort. Difference expression of 35 m6A and m5C methylation regulators. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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FIGURE 3 | Construction of the risk signature according to the m6A and m5C RNA methylation regulators. (A) Forest plot of the univariate Cox regression analysis
for the 22 regulators. Identification of six significant regulators (*p < 0.05, **p < 0.01, and ***p < 0.001). (B,C) LASSO coefficient profiles of the six regulators. Cross-
validation for tuning parameter selection in the LASSO model. (D) The K–M analysis showed that patients in the low-risk group presented better OS than those in the
high-risk group. This analysis was based on the survival information of samples in the training set. The red line represents the high-risk cluster, whereas the blue line
indicates the low-risk cluster. (E) The training set of the heat map of the relationship between the gene expression of the corresponding five regulatory factors and clinical
features. *p < 0.05, **p < 0.01, and ***p < 0.001. (F) Kaplan–Meier survival curves for OS of five regulatory factors.
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Scientific, Waltham, MA, United States) using SYBR
GreenER Supermix (TaKaRa, Shiga, Japan). The PCR
conditions comprised an initial melting step at 95°C for
1 min, followed by 35 cycles of 95°C for 90 s, 60°C for 30 s,

72°C for 30 s, and then 72°C for 10 min. We used the 2–ΔΔCt

method to analyze the relative expression of the prognostic
genes based on the normalized relative expression of the β-
actin gene. The primers were as follows: NSUN5: Forward,

FIGURE 4 | Validation of the risk model related to five regulators. (A–C) The training set of the ROC curve for evaluating the prediction efficiency of the prognostic
signature. (D–F) The validation set of the ROC curve for evaluating the prediction efficiency of the prognostic signature.
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FIGURE 5 | Prognostic signature of the five related regulators in the validation set and the training set of independent prognostic factors for KIRC OS. (A) The
validation set of the heat map of the relationship between the gene expression of the corresponding five regulatory factors and clinical features. (B) Kaplan–Meier survival
curves for OS in the two groups of low and high risk. This analysis was based on the survival information of samples in the validation set. (C,D) Forrest plot of the
independent prognostic factors in KIRC.
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FIGURE 6 | Validation of the prognostic signature of the five related regulators. (A) The nomogram of the risk model for predicting the OS probability of ccRCC
patients. The whole points projected on the bottom scales indicate the likelihood of 1-, 3-, and 5-year OS. (B–D) AUC of the ROC analysis showed the predicted efficacy
of the risk model in the training set. (E–G) The calibration plot for the nomogram predicting 1-, 3-, and 5-year OS. The y-axis indicates the actual survival, as measured by
the K–M analysis, while the x-axis shows the nomogram-predicted survival. (H–J) Kaplan–Meier survival curves stratified according to clinicopathological and risk
scores.
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TGCCTCGATTTGTGCGTGTG, Reverse, GACAGCTGG
CCCTGTCCT; GAPDH: Forward, TGACTTCAACAGCGA
CACCCA, Reverse, CACCC-TGTTGCTGTAGCCAAA;
ZC3H13: Forward, TGGTGCTGGAGAAGGATACGA,
Reverse, CTATCACATCTAAGGGATCTGGCA;
HNRNPA2B1: Forward, GCTTTGGGGATTCACGTGGT,
Reverse, CCACTGCCATATCCATCAGATCC. We used
The Human Protein Atlas database to analyze NSUN5 and
HNRNPA2B1 protein expression in clinical specimens.

Statistical Analyses
All statistical analyses were performed using R (version 3.6.1; R
Foundation for Statistical Computing, Vienna, Austria). We created
box plots to visualize differential gene expression using the “reshape2”
and “ggpubr” packages.We screened the prognostic adjustment factors
using a Lasso regression analysis and the “glmnet” package and
generated ROC curves using the “survivalROC” package. The
survival curve was obtained using the “survminer” package, and we
used the “rms” package to calculate the C-index and generate

FIGURE 7 | TME cell infiltration characteristics in distinct modification patterns. (A) Box plot for the TME cells in distinct risk groups derived from KIRC patients
based on the ssGSEA. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). (B–C) Immune and stromal scores within the low- and high-
risk groups. (C) Effect of LRPPRC expression level on the expression of different immunomodulators. *p < 0.05, **p < 0.01, and ***p < 0.001.
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calibration curves. All p-values of <0.05 were considered statistically
significant. We indicated the various levels of statistical significance as
follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

RESULTS

Expression Patterns of the
N6-methyladenosine and 5-methylcytosine
Regulatory Factors
Figure 1presents a workflow chart, and Table 1 lists the
combined (m6A and m5C) regulatory factors. We
identified 24 genes that differed between the tumor and
normal tissue groups (p < 0.01; Figure 2). The expressions
of NSUN4, FMR1, LRPPRC, HNRNPA2B1, ZC3H13,
RBM15B, METTL14, YTHDF3, and IGFBP2 were
significantly higher in the normal tissue samples than in
the tumor tissue samples. The expressions of YTHDC2,
NSUN6, RBM15, NSUN2, NOP2, IGFBP3, ALYREF, TET3,
FTO, ALKBH5, RBMX, NSUN5, METTL3, and WTAP were
significantly higher in the tumor tissue samples than in the

normal tissue samples. TET1 expression did not differ among
the groups (Supplementary Table S1).

Kidney Renal Clear Cell Carcinoma
Prognostic Model Combined With
Regulatory Factors
We further screened the methylation regulatory factors to explore
their prognostic value. We selected 22 regulatory factors as the
analysis object (Figure 3A). Univariate Cox regression analysis
identified six regulatory factors related to OS (Supplementary
Table S2), and the Lasso regression analysis identified five relevant
prognostic factors, namely, NOP2, METTL14, NSUN5,
HNRNPA2B1, and ZC3H13 (Figures 3B,C; Supplementary
Table S3). NSUN5, NOP2, and HNRNPA2B1 were associated
with risk (hazard ratio [HR] >1), and METTL14 and ZC3H13
were associated with a protective effect (HR <1).We used these five
factors to generate the prognostic risk model.

Next, we compared the survival rates of the high- and low-risk
groups based on the median risk. The survival rate of the low-risk
group was distinctly better than that of the high-risk group
(Figure 3D). Furthermore, the heat map illustrated relationships

FIGURE 8 | Differential analysis of immune cells in two low-risk groups.
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among the gene expressions of the five prognostic factors from the
training set and various clinical traits and risk scores. The risk score
correlatedwith tumor (T),metastasis (M), stage, and grade. In addition,
the highly expressed genes NOP2, HNRNPA2B1, and NSUN5 were
highly expressed in the high-risk group, and the low-expressed genes
METTL14 and ZC3H13 were highly expressed in the low-risk group
(Figure 3E). High expression of NOP2, HNRNPA2B1, and NSUN5
correlated with a poor prognosis, and high METTL14 and ZC3H13
expression correlated with a good prognosis (Figure 3F). These results
support the results of our predicted risk genes and protective genes.

Validation of the Risk Model Related to Five
Regulators
The areas under the curve (AUCs) for the 1-, 3-, and 5-year
ROC curves were 0.717, 0.701, and 0.723, respectively, using
the training set data and the prognostic risk model (Figures

4A–C). We performed the same analysis using the validation
set data, finding that the AUCs for the 1-, 3-, and 5-year ROC
curves were 0.677, 0.671, and 0.659, respectively (Figures
4D–F). Furthermore, the expression patterns of prognostic
regulatory factors in the high- and low-risk groups were
almost the same as those in the training set (Figure 5A),
and the Kaplan–Meier analysis of the validation set was
consistent with the training set results. Patient survival
was better in the low-risk group than in the high-risk
group (Figure 5B), indicating that these five regulatory
factors positively affect the KIRC prognosis prediction.
Next, the univariate analysis identified that prognosis was
related to the age, grade, stage, T, M, and risk score. The
multivariate analysis showed that the age, grade, and risk
score were related to the OS (p < 0.05). Therefore, age, grade,
and risk score are independent prognostic factors for KIRC
OS (Figures 5C,D).

FIGURE 9 | Summary of the 21 immune cells’ abundance for different risk groups of training cohort.
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Norman Graph Model Construction and
Verification
We used the independent prognostic factors (i.e., age, grade, and
risk score) to construct a Norman diagram model (Figure 6A).
Next, we constructed a nomogram based on two independent
prognostic factors, and then predicted the 1-, 3-, and 5-year OS
using the Norman diagram. The C-index was 0.737, and the
calibration curve was more consistent with the observed results.
The AUCs for 1-, 3-, and 5-year OS ROC curves were 0.746,
0.740, and 0.739, respectively (Figures 6B–D). The calibration
graphs displaying the curves illustrate that the nomogram model
has a better predictive ability and accuracy (Figures 6E–G). The
grade, age, and risk score survival curves indicate that the survival
rate of patients in the early stage was much better than those in
the late stage (p < 0.001). Furthermore, OS was better in the low-
risk group than in the high-risk group (p < 0.001; Figures 6H–J).

Effects of N6-methyladenosine Regulatory
Factor Modifications on Immune Cell
Infiltration
Tumor infiltration is crucial for tumor development. Therefore,
we performed a ssGSEA analysis to evaluate correlation patterns
between immune infiltrating cells and the risk score (Figure 7A).
There was significant infiltration of eosinophils, immature
dendritic cells, mast cells, and neutrophils in the low-risk
group and abundant infiltration of the activated cluster of
differentiation (CD) 4 +, CD8+ T cells, activated dendritic
cells, CD56 dim natural killer (NK) cells, and myeloid-derived
suppressor cells (MDSCs) in the high-risk group.

Next, we used the estimation of stromal and immune cells in
malignant tumor tissues using the expression data (ESTIMATE)
algorithm to identify associations between the risk groups and the

immune and stromal scores. The immune score was higher in the
high-risk group than in the low-risk group, and the stromal score
was higher in the low-risk group than in the high-risk group
(Figures 7B,C).

The CIBERSORT algorithm identified the types of immune
cells in ccRCC (Figure 8), and we found significant
compositional differences between the high- and low-risk
groups. M0 macrophages, CD4 memory-activated T cells, CD8
T cells, follicular helper T cells, activated NK cells, and regulatory
T cells (Tregs) were significantly enriched in both groups. CD4
resting memory T cells, resting mast cells, M2 and M1
macrophages, monocytes, and naïve B cells were more
abundant in the low-risk group than in the high-risk group.
Memory B cells did not differ between the groups (Figure 9).
These results emphasize that immune cell types vary between
high- and low-risk groups. Therefore, exploring immune cell
infiltration in ccRCC may help elucidate the mechanisms and
improve prognosis predictions.

Immune Checkpoints Related to the
Regulatory Factors
Immunotherapy is an emerging ccRCC therapy, and the current first-
line treatment involves immune checkpoint inhibitors. Cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell
death protein 1 (i.e., PD-1) are the two most important immune
checkpoint molecules (ICMs) regarding improved OS (Dunn et al.,
2002; Ladányi, 2015; Davis et al., 2019). Other immune checkpoints,
such as T-cell immunoglobulin and mucin domain–containing
protein 3 (i.e., TIM-3), lymphocyte-activation gene 3 (i.e., LAG-3),
and T-cell immunoreceptor with Ig and ITIM domains (i.e., TIGIT),
suppress the antitumor immune response (Anderson et al., 2016).
Therefore, clarifying the expression correlations of ICMs among risk
groups may improve the clinical application of immune checkpoint
inhibitors inKIRC. In our study, the immunotherapy scorewas higher
in the high-risk group than in the low-risk group, suggesting that the
high-risk group may respond to anti-CTLA-4 treatment (p < 0.001;
Figure 10).

NSUN5 and HNRNPA2B1 Expression in
Kidney Renal Clear Cell Carcinoma
We verified the expression of NSUN5, ZC3H13,METL14, NOP2,
and HNRNPA2B1 in ccRCC using the HK2 (epithelial; control)
and 769-P (ccRCC) cell lines. METL14 is under-expressed in
ccRCC tissues (Wang et al., 2021), andNOP2 expression is higher
in tumor tissues than in normal tissues (Li et al., 2021).
Furthermore, ZC3H13 expression is low in tumor tissues (Guo
et al., 2021). Based on this, we compared the NSUN5 and
HNRNPA2B1 protein levels of ccRCC and normal kidney
tissues to determine the NSUN5 and HNRNPA2B1 expression
status. NSUN5 and HNRNPA2B1 expressions were higher in
tumor tissues than in normal tissues (Figure 11A), consistent
with our other findings. We also compared NSUN5 and
HNRNPA2B1 protein levels between RCC and normal kidney
tissues, finding more NSUN5 and HNRNPA2B1 staining in RCC
tissues than in normal kidney tissues (Figure 11B).

FIGURE 10 | Low-risk group was more likely to respond to anti-CTLA4
immunotherapy. ICPs: immune checkpoints; ICBs: immune checkpoint
inhibitors.
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DISCUSSION

ccRCC is the third most common renal cancer, accounting for
3% of all adult tumors, and the most common sporadic RCC
subtype (Padala and Kallam, 2022). Studies have
demonstrated that inhibiting m6A and m5C regulatory
factors may have therapeutic benefits for tumors,

providing a new direction for tumor treatment. For
example, R-2-hydroxyglutarate (R-2HG) sensitivity of
leukemia increases with increasing the m6A levels (Su
et al., 2018). Furthermore, aurora kinase B (i.e., AURKB)
regulates NSUN2 at the protein level, phosphorylated by Ser-
139 (Sakita-Suto et al., 2007). To date, the relevant ccRCC
markers are insufficient for clinical diagnosis and prognosis

FIGURE 11 | Expression level of NSUN5 and HNRNPA2B1 in renal clear cell carcinoma (KIRC). (A) The expression of NSUN5 and HNRNPA2B1 in ccRCC cell lines
(HK2,769) was detected by the qRT-PCR assay. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (B) Protein expression of NSUN5 and HNRNPA2B1 in KIRC.
KIRC, kidney renal clear cell carcinoma.
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because ccRCC is often regulated by multiple genes. Thus, a
single prognostic factor cannot accurately predict the clinical
prognosis. This study explored the key regulators in ccRCC to
provide new avenues for cancer treatment by identifying
relevant regulatory factors and developing a new gene
signature for more accurate prognosis predictions.

Our main goal was to clarify the relationship between m6A
and m5C regulatory factors and determine how these combined
factors affect KIRC prognosis and immune infiltrating cells. We
used data from the TCGA database, identifying 35 relevant m6A
and m5C regulatory factors, most of which were abnormally
expressed in KIRC. Using these factors, we constructed a new
prognostic model for more accurate prediction of OS in patients
with KIRC. We randomly divided the TCGA dataset into two
groups (training and validation) to verify the effectiveness of the
risk model and introduced clinicopathological factors to improve
the model’s reliability.

Immune infiltration analysis found more M0 macrophages,
CD4 memory-activated T cells, CD8 T cells, follicular helper
T cells, activated NK cells, and Tregs in the high-risk group. The
low-risk group had more resting CD4 memory T cells, resting
mast cells, M1 and M2 macrophages, monocytes, and naïve
B cells. Increased eosinophils may be related to a good
prognosis, similar to gastric cancer (Iwasaki et al., 1986).
However, it could also indicate a poor prognosis, similar to
bladder cancer (Popov et al., 2018). Increased number of mast
cells are associated with a poor prognosis in lung, colorectal,
gastric, and cervical cancers, and melanoma, but it is associated
with a good prognosis in breast and prostate cancers (Rajput et al.,
2008; Fleischmann et al., 2009; Kormelink et al., 2009). In
addition, CD4+ T cells promote renal cancer cell proliferation
by regulating YBX1 (Wang et al., 2018), and MDSCs accumulate
in various tumors, promoting vascular survival and improving
tumor immunity (De Cicco et al., 2020). Increased follicular
helper T cells and Treg have been shown to promote cancer
progression, which relates to a poor prognosis (Finotello and
Trajanoski, 2017; Long et al., 2019). The role of mast and
dendritic cells and their relationship with renal angiogenesis in
KIRC remains unclear (Tamma et al., 2019).

Several studies have suggested that M2 and a small subset of
M1macrophages cannot phagocytose tumor cells and help tumor
cells escape death and spread to other tissues and organs. These
cells are called tumor-associated macrophages (TAMs) (Zhou
et al., 2020), and they promote cancer progression and metastasis
in human renal cell carcinoma, stimulating tumor inflammation
(Hutterer et al., 2013). TAMs have also been shown to promote
tumor metastasis, occurrence, and vascular lymphangiogenesis.
During the initial stages of tumor development, macrophages
either directly promote antitumor responses by killing tumor cells
or indirectly recruit and activate other immune cells (Lopez-
Yrigoyen et al., 2021). In our study, there were more M0

macrophages in the high-risk group, consistent with other
clinical reports (Yi et al., 2021). Previous studies have shown
that low-risk groups have more M1 and M2 macrophages and
fewer M0macrophages than high-risk groups. These descriptions
are also consistent with our study’s results. Furthermore, the
prognostic outcome of the low-risk group is consistent with the
previous survival advantage. The specific role of NK cells remains
controversial and largely depends on the cancer type (Hinshaw
and Shevde, 2019).

Finally, we used the CIBERSORT and ESTIMATE algorithms
to generate immune and stromal scores per risk group. The
immune score was higher in the high-risk group than in the
low-risk group, and the stromal score was higher in the low-risk
group than in the high-risk group. Furthermore, the high-risk
group was sensitive to anti-CTLA-4. Liu et al. reported that
CTLA-4 as an oncogene accelerates ccRCC development with
high prognostic value (Liu et al., 2020).

However, our research has limitations. First, we only have
internal verification and lack external platform verification.
Therefore, the predictive power of the risk model may be
limited. Also, additional basic experimental research is needed
to determine the detailed mechanisms of these five regulators.

CONCLUSION

Our study evaluated the combined role of m6A and m5C
regulatory factors in regulating the KIRC TME. First, we
constructed a new gene signature with five relevant
regulatory factors. Then, using this signature, we created a
novel prognostic model to stratify KIRC and normal tissue
samples based on risk. Finally, we explored the link between
the new gene signature and immune infiltration and obtained
new potential immune checkpoints. These tools may help
clinicians make more personalized and accurate prognosis
predictions.
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