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We have previously developed a combined signal/variance distribution model that
accounts for the particular statistical properties of datasets generated on the Ap-
plied Biosystems AB1700 transcriptome system. Here we show that this model can
be eff iciently used to generate synthetic datasets with statistical properties virtu-
ally identical to those of the actual data by aid of the JAVA application ace.map

creator 1.0 that we have developed. The fundamentally different structure of
AB1700 transcriptome profiles requires re-evaluation, adaptation, or even rede-
velopment of many of the standard microarray analysis methods in order to avoid
misinterpretation of the data on the one hand, and to draw full benefit from their
increased specif icity and sensitivity on the other hand. Our composite data model
and the ace.map creator 1.0 application thereby not only present proof of the cor-
rectness of our parameter estimation, but also provide a tool for the generation
of synthetic test data that will be useful for further development and testing of
analysis methods.
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Introduction

We have recently presented an analysis of the data
structure and features of the AB1700 microarray tech-
nology (Applied Biosystems) and compared those re-
sults with the well established Affymetrix technology
(1 ). We evidenced significant increases in the over-
all signal dynamic range and sensitivity of AB1700
data. A second independent lognormal signal dis-
tribution at the low end of the signal range was de-
scribed. The composite signal distribution, which had
not been reported before for microarray data, has fun-
damental implications for data analysis and biologic
interpretation. In absence of biophysical or technical
explanations for this dual distribution, an essentially
different biologic mechanism leading to the second
distribution has to exist. Thus not only thousands
of weakly expressed additional transcripts can be de-
tected, but also direct conclusions might be drawn
as to the fundamental mechanisms of gene regulation
(1 , 2 ). Although we did present a theoretical model
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based on stochastic chromatin “breathing”, the ori-
gin of the second lognormal signal distribution still
remains an unsolved problem, and is likely to spur
future research into the governing principals of gene
regulation, while today it has already lent further sup-
port to the observations concerning the stochasticity
in gene transcription start site selection (2–4 ).

We have also derived, based on a representa-
tive set of original AB1700 data, a composite 18-
parameter (18p) model that takes into account the
signal, the signal variance, and the variance over the
signal variance distributions, and hence accurately de-
scribes the global features of AB1700 data (1 ). Us-
ing this AB1700 data structure model, new avenues
for microarray data quality control could be explored.
Moreover, the particularity of AB1700 data warrants
re-evaluation, adaptation, and redevelopment of sta-
tistical analysis methods, since existing approaches
explicitly or implicitly rely on a single lognormal sig-
nal distribution hypothesis (1 , 5 , 6 ). We then won-
dered how we could further demonstrate the appli-
cability of our model to the description of original
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AB1700 data. As the development and testing of
analytical methods require large testing and training
datasets, and given the fact that the AB1700 tech-
nology is very recent and today few publicly available
datasets exist in transcriptome databases, combined
with the fact that transcriptome studies are resource,
time, and money intensive, we speculated that we
might use the statistical model to generate synthetic
AB1700-like data that could be used for testing and
training purposes. In fact, we have previously ap-
plied such a strategy successfully in the testing of the
NeONORM inter-assay normalization method (7 ).

In this study, we show that the composite model
can be used to generate synthetic AB1700-like data,
which are in their global statistical properties indistin-
guishable from original microarray experimental data.
For this purpose, we have also developed a JAVA
application—ace.map creator 1.0. The ability to gen-
erate large sets of AB1700-like data at no cost thereby
will certainly help to provide the datasets required
for the development and testing of novel statistics ap-
proaches.

Results and Discussion

Strategy for generating synthetic

AB1700-like transcriptome data

The strategy we chose to generate synthetic AB1700-
like data is schematized in Figure 1. Briefly, prepro-
cessed original microarray datasets are analyzed for

their signal distributions and signal-variance distribu-
tions using the previously described AB1700 model.
A random number generator then utilizes the param-
eter estimates obtained from the analysis of the orig-
inal data to draw random signal and variance values,
thereby generating a dataset of identical size. These
synthetic data are then re-evaluated using the model
and are shown to display virtually indistinguishable
global statistical properties when compared with the
original data.

Synthetic HGS V1.0-like data gener-

ated from the composite AB1700 data

structure model

In the first step, we estimate the parameters for
the two independent three-parameter (3p) lognormal
signal distributions, for one of which x0 is allowed
to diverge from zero, using an original experimental
dataset to reconstruct the corresponding signal dis-
tribution (see Materials and Methods) (1 ). Next, us-
ing the identical original dataset, we estimate the pa-
rameters for the composed Neonex function resulting
in the signal-variance distribution (1 ). Finally, using
the estimation procedure for probability density func-
tion (see Materials and Methods and the Supporting
Online Material “05Pseudocode.pdf”), we decompose
the signal distribution in the original data such that
we can separately estimate the signal-dependent vari-
ance distribution for each variance sub-distribution.
As discussed previously, the signal-dependent variance
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Fig. 1 Overall strategy for generating synthetic AB1700-like data with statistical properties identical to those of the

original data. Firstly, raw image data generated during data acquisition on the AB1700 platform are converted into

preprocessed and median-normalized ASCII tables by the Expression Array System Software in its current version.

Those preprocessed data are then read by the ace.map creator 1.0 application, which analyses the statistical signal

and signal-variance distributions, parameterizes our composite AB1700 data model, and finally draws a set of random

data of identical size based on the model. These data are written as output and, due to the logics of the procedure

implemented, share the statistical properties of the initial data file.
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is lognormal distributed over the entire logarithmic
signal range, and the parameters therefore can easily
be determined on the decomposed original datasets.
The two independent resulting density distributions
are then combined together, resulting in the final log-
arithmic signal variance density over lognormal sig-
nal distribution. Taken together, a total of 18 seper-
ate parameters need to be estimated from the original
datasets (1 ).

We used the expectation maximization (EM) al-
gorithm (http://www.cs.duke.edu/courses/spring04/
cps196.1/handouts/EM/tomasiEM.pdf) (8 ) and the
Gram-Schmidt orthogonalized gradient method (9 )
in order to efficiently estimate the above parame-
ters (see Materials and Methods and the Supporting
Online Material “05Pseudocode.pdf”). This proce-
dure was followed for the entire set of fifty original
AB1700 Human Genome Survey (HGS) V1.0 datasets
(Supporting Online Material “04AllParam.pdf”). We
next created fifty corresponding synthetic HGS V1.0-
like datasets by drawing random logarithmic “signal”
and “variance” numbers from the probability density
distribution space defined through the 18p composite
data structure model. Note that since the parame-
ters are not independent of each other, for each syn-
thetic dataset we always used one original dataset’s
set of parameter estimates. The obtained logarith-
mic signal values were de-logarithmized and written
back together with the corresponding variances and
probe IDs to tab-delimited raw data ASCII files (see
Materials and Methods and the Supporting Online
Material “05Pseudocode.pdf” for procedural descrip-
tion). The generated fifty synthetic HGS V1.0-like
data files are provided in the Supporting Online Ma-
terial (“06SynHGS.zip”).

Virtually identical properties for syn-

thetic vs. original HGS V1.0 data

As a final validation of our model, we analyzed the
fifty synthetic AB1700-like datasets using the same
approaches employed throughout the previous study
(1 ). First we calculated the virtual signal dynamic
ranges according to the same criteria. The averaged
results are shown in Table 1 (a complete list for all the
original and synthetic data is available in the Support-
ing Online Material “00DynRange.pdf”). The num-
bers obtained closely resemble those for the original
data, whereas a significant difference can only be no-
ticed for the size of the signal dynamic range of the
98% interval when data are not filtered for a signal
to noise ratio superior to three. This is explained by
the absence of outliers in the synthetic data, since
all values are drawn from within the probability den-
sity distribution. In consequence, the signal variance
density distribution is curtailed for very low and very
high signals, and breaks off earlier than the original
data. However, the “signal dynamic range” of the
synthetic data still significantly increased when com-
pared with Affymetrix datasets (1 ), and the otherwise
closely correlated values should also be noted.

Synthetic HGS V1.0-like data also dis-

play a dual lognormal signal distribu-

tion

We then plotted the logarithmic signal histograms and
their approximations through the single and the mix-
ture lognormal distribution model for the synthetic
data (Figure 2A). Similarly, the different signal vari-

Table 1 Dynamic range estimation and comparison of original and synthetic AB1700 microarray data*

Data Averages over 98% signal interval Averages over 95% signal interval

No. of probes Signal range (ln) Variance No. of probes Signal range (ln) Variance

Original 33,928 8.20 0.80 32,889 7.19 0.76

Original (S/N>3) 17,718 7.18 0.79 17,176 6.45 0.85

Synthetic 32,889 7.07 0.73 32,889 6.89 0.66

Synthetic (S/N>3) 17,214 7.15 0.82 17,214 6.14 0.78

*The dynamic ranges of the original AB1700 HGS V1.0 data and the synthetic HGS V1.0-like data generated in this

study were estimated by calculating the average logarithmic signal range over fifty independent and heterogeneous

datasets from each technology. The logarithmic signal range was determined for the 98% and 95% intervals in order

to eliminate outliers at both ends of the dynamic range, and thus obtain more robust results. We also performed the

calculation for only those signals that have a signal to noise ratio superior to three (S/N>3). The total average number

of probes contributing to the signal range is also given. A complete list for all the original and synthetic data is available

in the Supporting Online Material “00DynRange.pdf”.

Geno. Prot. Bioinfo. Vol. 5 No. 1 2007 47



Generation of Synthetic Transcriptome Data

ance distribution plots were created for the fifty syn-
thetic datasets (Figure 2B). Both sets of representa-
tions indicate absence of any significant difference
between the synthetic data and the original data
(1 ). This is further supported by the likelihood esti-
mates that we calculated for the synthetic data using
all of the three signal distribution models (Table 2;
Supporting Online Material “01SignalDist.pdf” and
“02Dualx0Param.pdf”). Note that the likelihood es-
timates are only marginally increased for the synthetic
data when compared with the original data, which is

a strong and very important indication that our com-
posite model does not idealize the generated distribu-
tions. Finally, we generated 3D signal variance prob-
ability density plots (see Materials and Methods and
the Supporting Online Material “05Pseudocode.pdf”)
for three randomly chosen original HGS V1.0 datasets
(Figure 3A) as well as the three corresponding syn-
thetic HGS V1.0-like datasets (Figure 3B). Albeit the
complexities of the AB1700 data structure, the syn-
thetic density maps closely resemble in the overall
structure of their experimental counterparts.
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Fig. 2 Fifty synthetic HGS V1.0-like datasets generated using the composite model. We generated fifty synthetic HGS

V1.0-like datasets using the parameter estimates from the fifty original HGS V1.0 experiments using the composite

model described. The data structure for these synthetic experiments was assessed just as that for the original data. A.

Left panel: histograms of the synthetic data lognormal signal distribution; Middle panel: approximation using the single

lognormal distribution; Right panel: approximation using the mixture distribution model. Parameters can be found in

Tables 1 and 2, as well as in the Supporting Online Material. B. The variance over lognormal signal distribution plots

are shown for the fifty synthetic datasets.

Table 2 Likelihood estimates for different lognormal signal distribution models*

Data Mean likelihood (L) estimates for signal distributions

L (single) L (dual) L (dual, x0) Single/Dual Single/(Dual, x0) Gain

Original −85885.00 −80233.11 −79468.81 1.0699 1.0802 8.02%

Synthetic −85851.72 −80005.49 −79325.29 1.0725 1.0817 8.17%

*Likelihood measures were calculated and averaged for the original and the synthetic data according to three different

lognormal distribution models. We considered a single 3p lognormal distribution, two combined 3p lognormal dis-

tributions where both x0 are zero, and finally two combined 3p lognormal distributions where the x0 of the second

distribution diverges from zero. The likelihood averaged estimate ratios are given in order to calculate the gain in

descriptive quality. The individual data for the 100 microarray experiments are available in the Supporting Online

Material “01SignalDist.pdf”.
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Fig. 3 Qualitative comparison of signal-dependent variance distributions and lognormal signal density plots for the

original data and the corresponding synthetic data. A. The data density plots of signal-dependent logarithmic variance

and logarithmic signal for three individual experimental HGS V1.0 datasets. B. The corresponding plots for the three

synthetic HGS V1.0-like datasets generated using the parameter estimates from the original data. For all six plots the

x-axis stands for ln(signal), with range from −4 to +6; the y-axis stands for ln(variance), with range from −2 to 2.

Color scheme for density: blue (low)—black—red (high).

The ace.map creator 1.0 application

Having shown that our model is of sufficient qual-
ity to allow the generation of synthetic HGS V1.0-
like data, we decided to generate a software appli-
cation for this purpose and make it available to re-
searchers interested in further investigating the prop-
erties of the high-sensitivity AB1700 data. The idea
is that large sets of statistically correctly structured
data are necessary for the analysis method and algo-
rithmic development in order to better understand,
manipulate, and exploit the experimental advantages
that the AB1700 system offers. However, such large
sets are currently hard to come by. Since the tech-
nology is still very recent (first commercialized in
2005), very few published studies using the AB1700
system are available. Generating once one’s data is
certainly an option, but is very cost, time, labor,
and resource intensive and not necessarily an option
for researchers from the bioinformatics and statistics
communities. Whereas original data are an absolute
requirement for many statistics developments, many
other methods can be tested, optimized, and trained
even on synthetic data provided the synthetic data
correctly reflect the data structure of bona fide exper-
imental sets. The application that we sought to cre-
ate is specifically tailored to such investigations. We
present here the first version of ace.map creator that
is capable of generating synthetic AB1700-like tran-
scriptome data according to the model presented in

the previous study (1 ). The software is a stand-alone
JAVA application and executes, provided a recent
JAVA virtual machine is preinstalled, under all stan-
dard operating systems. The user’s guide containing a
complete description of ace.map creator 1.0 function-
ality is provided in the Supporting Online Material
(“07acemapCreatorUsersGuide.pdf”). An executable
of ace.map creator 1.0 can be downloaded for non-
commercial, public research from our website. Figure
4 is an exemplary screenshot of the running applica-
tion.

Conclusion

By demonstrating that we can generate synthetic
AB1700-like data files with their statistical prop-
erties indistinguishable from bona fide experimental
data, we have further evidenced the correctness of
the AB1700 data model we described previously (1 ).
Due to the absence of a verified hypothesis to the
origin of the mixture distribution observed in these
data, our model only provides a statistically mean-
ingful description of their structure without further
insights into the underlying biology. Using the JAVA
software ace.map creator 1.0, however, large synthetic
datasets with defined statistical features can be gener-
ated in the future in the objective to further evaluate
this technology. Therefore, for instance, statistically
sound estimates to the number of required technical
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Fig. 4 A screenshot of the Java application ace.map creator 1.0. The application is freely available for non-commercial

research from http://www.iri.cnrs.fr/seg.

and biological replicates for meeting preset sig-
nificance thresholds could eventually be a priori cal-
culated using a small number of actual preliminary
experiments and a large set of derived synthetic data.

Another potential application of the 18p compos-
ite AB1700 data structure model is quality assessment
of microarray experiments. Particularly, since this
technology is very recent, researchers will find it quite
difficult to obtain feedback on the quality of any sin-
gle microarray experiment beyond the standard QC
parameters determined by the analysis software (see
Materials and Methods). Since these standard QC
parameters do not capture the overall structure (for
example, density distributions) of the transcriptome
profile, they only provide some indications towards
data quality. Using our model and the procedures
described here, the 18 parameters can easily be esti-
mated immediately after primary analysis of the data
and can be compared with the average parameter val-
ues usually obtained, therefore provide a much better
indication as to the quality of the individual measure-
ment. Over time, with increasingly available AB1700
data in the public resources, these average parameter
values will converge towards better defined ranges,
and thus lead to ever more sensitive quality assess-
ment estimates. Finally, we believe that the ability
to generate synthetic AB1700 test data will be in-
strumental for the required statistical method evalu-
ation and development. The particular structure of
the AB1700 data has implications for data analysis
that are not necessarily yet met by current methods
of microarray analysis.

Materials and Methods

AB1700 microarray technology

The experimental data referred to as HGS V1.0
(Applied Biosystems, Foster City, USA; ProdNo:
4337467) used in this study were generated on two
different AB1700 transcriptome platforms (ProdNo:
4338036) (http://www.appliedbiosystems.com). The
dataset thereby is representative for the ensemble of
data that we have so far generated and analyzed (1 ).
Data preprocessing and primary analysis was per-
formed using the Expression Array System Software
v1.1.1 (ProdNo: 4364137) as previously described (1 ).
Note that we renormalized the resulting data accord-
ing to the median once more after having removed
probes for which the AB1700 software has set flags
equal to or greater than 212, indicating compromised
measurements as well as the controls.

Parameter estimation for the 18p model

Most of the estimation has been described in detail in
previous studies (1 , 8 , 9 ) and the Supporting Online
Material. The estimation process is embedded into
individual EM steps. Every step thereby re-estimates
all parameters over the weighted sample data in the
previous step (in logarithmic space). In our case, for
every data point i [ln(Signali) | ln(Variance0.0i)] and
[ln(Signali) | ln(Variance0.34i)] (hereinafter [Si|Vi]),
the weights w1,i and w2,i are calculated, which corre-
spond to the combined probabilities:
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p(θn | [Si|Vi]) /
(
p(θ1 | [Si|Vi]) + p(θ2 | [Si|Vi])

)

These probabilities p(θ1,2 | [Si|Vi]) are the product of
the a priori probability p(θn|Si), and hence the mix-
ture function, and also the probability that is deter-
mined over the lognormal probability density function
at position Vi with the parameters for the correspond-
ing Si. The weights are being used for the calculation
of weighted mean and weighted variance for the first
lognormal distribution [m1(Si) and s1(Si)]. They are
also being used by the gradient method-based param-
eter estimation as factors for calculating the cumula-
tive error, being minimized for the second lognormal
distribution. After each EM estimation step, the mix-
ture function is re-estimated using the new weights
w1,i. The EM algorithm terminates either after a pre-
set number of steps is reached (negative abortion), or
if the likelihood increase between two EM steps falls
below a preset convergence threshold (positive abor-
tion).

Expectation maximization

For the estimation of the lognormal distribution pa-
rameters modeling the signal distribution, a stan-
dard implementation was used. Weighted means and
variances of each distribution were individually esti-
mated/improved in each step:

Pµ,σ,x0(x) =
e−(ln(x−x0)−m)2/(2σ2)

(x− x0) · σ ·
√

2π
(1)

Pi(x) = Pµi,σi,x0i
(x) (2)

wi,j =
Pi(xj)∑2

k=1 Pk(xj)
(3)

µi ⇐
∑n

j=0 wi,j · ln(xj − x0j)∑0
j=1 wi,j

(4)

σ2
i ⇐

∑n
j=0 wi,j ·

(
ln(xj − x0j)− µi

)2

∑0
j=1 wi,j

(5)

πi ⇐
∑0

j=1 wi,j

n
(6)

The variance model is much more complicated but
uses the same principle. The main difference is the
calculation of πi:

πi = p(θi) =

∑
j p(xj |θi)∑

k

∑
j p(xj |θk)

(7)

Gradient method

Gradient method was first used for estimating param-
eters for the Neonex function (1 ). As a conjugated
gradient method, our method does not always use the
gradient directly, but rather forms an orthonormal ba-
sis via the Gram-Schmidt orthogonalization method
in succeeding steps to ensure to improve all param-
eters and avoid oscillations. The iterative search is
thus subdivided into n orthogonalization steps, with
n being the number of parameters of the function to
find the minimum for:

~g = − ∇f(~x)

‖∇f(~x)‖
; ~d =

{
i = 1 : ~g

i 6= 1 : ~g −∑i−1
j=1(~g ·~bj) ·~bj

~d =
~d

‖~d‖
; and ~bi = ~d

If a calculated ~g is a linear combination of ~b1 . . .~bi−1,
it cannot contribute to the formation of an orthonor-
mal base. If this is detected by the program, ~d is set
to ~g and i is reset to 1.

Each scan consists either of a stepwise movement
from the current parameter vector ~x into direction ~d

using a predefined step-width until the error stops to
decrease, or, if the first step already lead to a greater
error, the step-width is divided by two until either
the error decreases or a maximum number of divi-
sions has been reached. In both cases, the errors of
the last three sampled parameter points are used for
quadratic interpolation to further improve the esti-
mate. Depending on ε and/or c, a new ~x is calculated.
If the corresponding error should be higher than that
for the best scan estimate, it is replaced by the latter.

Generation of synthetic HGS V1.0-like

data from the estimated distribution

parameters

In the first step, one of the two signal distributions
is randomly chosen with a given probability. This
probability is dependent on the a priori probability
for each signal distribution [p(θ1) and p(θ2)]. A sig-
nal value Si is then randomly drawn from the cor-
responding probability density. Using the logarithm
of this signal value [ln(Si)], the a priori probabilities
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for the first and second variance distributions are de-
termined [p(θn|Si)], and are used to randomly choose
one of the variance distributions. For the logarithmic
signal Si, the corresponding parameters mn(Si) and
sn(Si) are calculated, x0,n is chosen, and a random
number is drawn from the resulting distribution. The
number of such generated synthetic signal/variance
pairs corresponds exactly to the number of probes in
the original data file. Both the synthetic and the
original data are signal rank sorted, and the synthetic
data are attributed with the probe ID corresponding
to the same signal rank.

The ace.map creator 1.0 application

Details on the ace.map creator 1.0 software can be
found in the accompanying user’s guide (Supporting
Online Material “07acemapCreatorUsersGuide.pdf”).
The software, which executes on any standard op-
erating system (Solaris, Linux, Windows, or Mac-
intosh) equipped with the freely available SUN
Microsystems JRE package, can be downloaded
from http://www.iri.cnrs.fr/seg in the “web sources”,
“software” section.
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ogy Association—José Carreras Foundation, the In-
stitut des Hautes Etudes Scientifiques, the Institut
de Recherche Interdisciplinaire, the Centre National
de la Recherche Scientifique (CNRS), the Institut Na-
tional de la Santé Et de la Recherche Médicale (IN-
SERM), the Région Nord, and the French Ministry
of Research through the “Complexité du Vivant—
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