
Angiogenesis, a process of new blood vessel formation, 
plays important roles in development but also in pathologic 
conditions, including in cancer, diabetes mellitus, and 
ocular diseases. Endothelial cell (EC)–generated reactive 
oxygen species (ROS) can function as signaling molecules 
to promote EC proliferation, migration, and tube formation 
in angiogenesis [1]. NADPH oxidase, originally recognized 
for the superoxide burst generated by leukocytes to fight 
infection, is a source of ROS generation in ECs [1] that can 

affect angiogenesis [2,3]. Isoforms of NADPH oxidase, NOX 
1–5 and Duox1 and -2, are differentially expressed in tissues 
and cells [4], and several papers support NADPH oxidase 
isoforms as having different roles in physiologic and patho-
logical responses [2]. NOX1, NOX2, and NOX4 are expressed 
in ECs and have been associated with pathology in retinal 
diseases [5-10].

Models of oxygen-induced retinopathy (OIR) are 
useful for studying mechanisms of developmental [11] and 
pathologic angiogenesis caused by different oxygen stresses 
[12,13]. In these models [12,13], newborn animals that 
normally vascularize their retinas postnatally are exposed 
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Purpose: NADPH oxidase–generated reactive oxygen species (ROS) are implicated in angiogenesis. Isoforms of 
NADPH oxidase NOX1, NOX2, and NOX4 are reported to be expressed in endothelial cells (ECs). Of these, NOX1 and 
NOX2 have been reported to contribute to intravitreal neovascularization (IVNV) in oxygen-induced retinopathy (OIR) 
models. In this study, we tested the hypothesis that the isoform NOX4 in ECs contributed to vascular endothelial growth 
factor (VEGF)–induced angiogenesis and IVNV.
Methods: Isoforms of NADPH oxidase mRNA were measured in several types of cultured vascular ECs: human retinal 
microvascular ECs (hRMVECs), choroidal ECs (CECs), and human umbilical vascular ECs (HUVECs) using real-time 
PCR. Newborn rat pups and dams were placed into an OIR model that cycled oxygen concentration between 50% and 
10% every 24 h for 14 days, and then were placed in room air (RA) for an additional 4 days (rat OIR model). NOX4 
expression in retinal lysates from the RA–raised pups at postnatal day 0 (P0), P14, and P18 was determined with western 
blots. STAT3 activation was determined as the ratio of phosphorylated STAT3 to total STAT3 with western blot analysis 
of retinal lysates from pups raised in RA or from the rat OIR model at P18. Semiquantitative assessment of the density 
of NOX4 colabeling with lectin-stained retinal ECs was determined by immunolabeling of retinal cryosections from P18 
pups in OIR or in RA. In hRMVECs transfected with NOX4 siRNA and treated with VEGF or control, 1) ROS generation 
was measured using the 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester fluorescence 
assay and 2) phosphorylated VEGF receptor 2 and STAT3, and total VEGFR2 and STAT3 were measured in western 
blot analyses. VEGF-stimulated hRMVEC proliferation was measured following transfection with NOX4 siRNA or 
STAT3 siRNA, or respective controls.
Results: NOX4 was the most prevalent isoform of NADPH oxidase in vascular ECs. NOX4 expression in retinal lysates 
was significantly decreased during development in RA. Compared to RA, the expression of retinal NOX4 increased at 
P18. At p18 OIR, semiquantitative assessment of the density of lectin and NOX4 colabeling in  retinal vascular ECs was 
greater in retinal cryosections and activated STAT3 was greater in retinal lysates when compared to the RA-raised pups. 
In cultured hRMVECs, knockdown of NOX4 by siRNA transfection inhibited VEGF-induced ROS generation. VEGF 
induced a physical interaction of phosphorylated-VEGFR2 and NOX4. Knockdown of NOX4: 1) reduced VEGFR2 
activation but did not abolish it and 2) abolished STAT3 activation in response to VEGF. Knockdown of either NOX4 or 
STAT3 inhibited VEGF-induced EC proliferation.
Conclusions: Our data suggest that in a model representative of human retinopathy of prematurity, NOX4 was increased 
at a time point when IVNV developed. VEGF-activated NOX4 led to an interaction between VEGF-activated VEGFR2 
and NOX4 that mediated EC proliferation via activation of STAT3. Altogether, our results suggest that NOX4 may 
regulate VEGFR2-mediated IVNV through activated STAT3.
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to oxygen stresses that cause intravitreal neovascularization 
(IVNV) in which blood vessels grow outside the plane of 
the retina into the vitreous. Several pathways involved in 
angiogenesis have been identified, including those activated 
by hypoxia and stabilization of hypoxia inducible factors 
[14], e.g., vascular endothelial growth factor (VEGF) and 
erythropoietin [15-18]; peroxisome proliferator activated 
receptor signaling [19,20]; and inflammatory pathways, such 
as cyclooxygenase signaling [21] and angiotensin II type I 
receptor signaling [22]. We and others found NADPH oxidase 
important in models of OIR [7,9,23,24]. In rat and mouse OIR 
models, NOX2 colocalized with retinal ECs and macrophages 
[8,25] and regulated IVNV [19,25] partly through apoptotic 
and inf lammatory mechanisms [26]. Investigators also 
reported that activation of NOX1 in microglia or other cells 
contributed to ischemia-induced vascular pathologies and 
ganglion cell death [7,27]. The effects of NOX4 in vascular 
diseases are conflicting as having either protective [28] or 
pathologic [10] effects in ischemic vascular diseases. In one 
study involving inducible Nox4−/− mice, silencing of NOX4 
led to aortic inflammation [28]. However, in a diabetic mouse 
model, NOX4 activation upregulated VEGF and reduced the 
integrity of the endothelial blood–retinal barrier [10].

In this study, we sought to study the role of endothelial 
NOX4 in VEGF-induced IVNV. We used the rat 50/10 OIR 
model, which recreates many of the features of human retinal 
diseases, including diabetic retinopathy [29] and retinopathy 
of prematurity (ROP) [30]. We addressed the hypothesis that 
VEGF-activated NOX4 in ECs contributes to pathologic 

angiogenesis through VEGF/VEGF receptor 2 (VEGFR2) 
signaling.

METHODS

Rat model of oxygen-induced retinopathy: All animal studies 
were performed in compliance with the University of Utah 
(Guide for the Care and Use of Laboratory Animals) and 
the Association for Research in Vision and Ophthalmology 
Statement for the Use of Animals in Ophthalmic and Vision 
Research. The rat 50/10 OIR model has been previously 
described [31]. Entire litters of newborn Sprague-Dawley rat 
pups (Charles River, Wilmington, MA) and dams were placed 
in an oxygen environment that cycled oxygen concentration 
between 50% and 10% every 24 h for 14 days and then placed 
in room air. Pup number was maintained at 12 to 14 pups/
litter. Pups were euthanized with intraperitoneal injections 
(IP) of ketamine (60 mg/kg) and xylazine (18 mg/kg) followed 
by IP pentobarbital (80 mg/kg).

Retinal section preparation and staining: Eyes were fixed in 
4% paraformaldehyde (PFA) containing 10 mmol/l sodium 
orthovanadate for 10 min. Retinas were removed and placed 
into 4% PFA for 15 min followed by incubation in 30% 
sucrose/PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 
2 mM KH2PO4, Ph 7.4) overnight. Each retina was immersed 
in optimal cutting temperature compound (OCT; Tissue-Tek; 
EMS, Hatfield, PA). Eyes were cut into 12 µm cryosections 
and were incubated overnight at 4 °C with primary antibody 
anti-NOX4 (Santa Cruz Biotechnology, Santa Cruz, CA). All 
sections were washed and then incubated for 1 h with a 1:500 

Figure 1. Expression of NOX4 in 
cultured vascular endothelial cells. 
Quantitative Real-time PCR of 
NOX isoforms was measured in 
human retinal microvascular endo-
thelial cells (hRMVECs), human 
umbilical vein cells (HUVECs), 
and human choroidal endothelial 
cells (CECs). Numbers represent 
cycle of threshold (Ct) values.
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dilution of Alexa 594-conjugated antibody for isolectin B4 
and FITC-conjugated goat anti-rabbit secondary antibody 
(Invitrogen, Carlsbad, CA) for NOX4. Sections stained with 
only secondary antibodies were controls. Sections were 
rinsed in PBS and mounted in Fluoromount-G (Southern 
Biotech, Birmingham, AL). Integrated density per image area 
of NOX4 fluorescence was quantified using ImageJ.

Cell culture: Human primary retinal microvascular endo-
thelial cells (hRMVECs; Cell Systems, Kirkland, WA) and 
human umbilical vein endothelial cells (HUVECs; Lonza, 
Hopkinton, MA) were maintained in basal endothelial growth 
medium (EGM2-MV, Lonza), supplemented with 5% fetal 
bovine serum (FBS). Human choroidal endothelial cells 
(CECs) were isolated from donor eyes (Utah Eye Bank, Salt 
Lake City, UT) as described previously [32]. Briefly, the 
choroidal tissue was separated from the sclera, minced into 
small pieces. After three washes with cold Hank’s Balanced 
Salt Solution (HBSS) containing 0.5 mg ml−1 penicillin–
streptomycin, the minced choroid was digested in a mixture 
containing 500 μg ml−1 collagenase 1A (Sigma-Aldrich, St. 

Louis, MO) and 1.2 U ml−1 Dispase II (Sigma) for 45 min 
at 37 °C in a rotating shaker. The choroidal digests were 
double filtered through 70 and 44 μm meshes. Enzymes were 
neutralized by adding two times the volume of DMEM with 
10% FBS. The cell suspension was incubated with CD31-
coated DynaBeads (Dynal Biotech, Inc., NY) beads for 15–30 
min at room temperature (RT) with gentle rotation to isolate 
human choroidal ECs and minimize RPE and fibroblast 
contamination. The bead–EC complexes were then washed 
five times in HBSS with 5% FBS, mixed by gentle agitation 
for 1 min, and separated from the mixture with the Dynal 
Magnetic Particle Concentrator (MPC). The bead–choroidal 
EC complexes were resuspended in 150 μl EGM-2 with 10% 
FBS and 0.5 mg ml l−1 penicillin–streptomycin and plated onto 
a 1 cm2 area and incubated overnight at 37 °C and 5% CO2. 
Choroidal ECs were confirmed as ECs and not fibroblasts by 
100% immunostaining with von Willebrand Factor (Sigma), 
CD31 (Serotec, NC), and VE-cadherin (R&D Systems, MN). 
Choroidal ECs were maintained in basal endothelial growth 
medium (EGM-2, Lonza) with 5% FBS at 37 °C in 5% CO2 

Figure 2. NOX4 expression in 
retina and retinal endothelial cells 
is increased at postnatal day18 (P18) 
in the rat 50/10 oxygen-induced 
retinopathy model (ROP model). 
Western blots of NOX4 expres-
sion in retinal lysates from room 
air (RA)-raised pups at P0, P14, 
and P18 (A; ANOVA ***p<0.001; 
***p<0.001 versus P0 by one-way 
ANOVA) and in the retina from 
RA- and ROP model raised pups 
at P18 (B, representative gels) and 
P14 (C, densitometry); immunohis-
tochemistry (IHC) of NOX4 and 
lectin colabeling in retinal sections 
at P18 (D) and greater in the ROP 
model (E; **p<0.01 versus stan-
dard deviation [SD], RA; n = 4–5, 
two-way ANOVA).

http://www.molvis.org/molvis/v20/231


Molecular Vision 2014; 20:231-241 <http://www.molvis.org/molvis/v20/231> © 2014 Molecular Vision 

234

and Passages 2–5 were used in the experiments. For treat-
ment, cells were first starved in serum-free basal endothelial 
medium (EBM2; Lonza) overnight, pretreated with VEGFR2 
tryosine-kinase inhibitor semaxanib (SU5416; 5 µM, Sigma-
Aldrich) or dimethyl sulfoxide (DMSO) for 30 min, and then 
incubated with VEGF (20 ng/ml, R&D Systems, Minne-
apolis, MN) for 1 h. Cells were harvested for western blots 
and immunoprecipitation.

RNA isolation and real-time PCR analysis: Total RNA was 
extracted with the Tri Reagent (Sigma-Aldrich, St. Louis, 
MO). cDNA was generated with the use of a High Capacity 
cDNA Archive Kit (Applied Biosystems, Foster City, CA). 
Quantitative Real Time-PCR was performed on a Master-
cycler ep Realplex (Eppendorf, Westbury, NY) with SYBR 
Green Master Mix (Roche Diagnostics, Indianapolis, IN). 
Quantitative real-time PCR conditions were Step 1 (50 °C 
for 2 min), Step 2 (95 °C for 10 min) and Step 3 (40 cycles 
of [95 °C for 15 s to 60 °C for 1 min]). Expression levels for 

NOX isoforms were normalized to the mean value of internal 
control GAPDH.

siRNA transfection in human retinal microvascular endothe-
lial cells: For siRNA transfection, hRMVECs at 70%–80% 
confluence in six-well plates were transfected with siRNAs 
targeting human NOX4 or STAT3 (Applied Biosystems, 
Grand Island, NY) using Lipofectamine 2000 (Invitrogen). A 
silencer selective negative control siRNA was used as control.

Protein extraction, western blot, and coimmunoprecipitation: 
Retina and hRMVECs were lysed in modified radioimmu-
noprecipitation assay (RIPA) buffer with protease inhibitors 
(Roche Diagnostics, Indianapolis, IN) and orthovanadate (2 
mmol/l; Sigma Aldrich), and then homogenized and centri-
fuged at 15,700 ×g for 10 min at 4 °C. Protein concentration 
in the supernatant fluid was quantified with bicinchoninic 
acid (BCA) Protein Assay (Pierce, Rockford, IL); 30 µg 
total protein for each sample was used for western blots. 
Membranes were incubated overnight at 4  °C with the 

Figure 3. STAT3 is activated at P18 
in the rat 50/10 oxygen-induced 
retinopathy model (ROP model). 
(A) p-STAT3 and total STAT3 in 
the retinas from postnatal day 18 
(P18) pups raised in room air (RA) 
and ROP model were measured by 
western blots; (B) STAT3 activity 
determined by the ratio of pSTAT3 
to total STAT3 is increased in the 
ROP model (**p<0.01 versus stan-
dard deviation [SD], RA, two-way 
ANOVA).
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following primary antibodies: p-VEGFR2, total VEGFR2 
(Santa Cruz Biotechnology), NOX4, p-STAT3 (Y705), and 
total STAT3 (Cell Signaling Technology, Danvers, MA). For 
the interaction of NOX4 and VEGFR2, coimmunoprecipita-
tion was performed in 500 µl cell lysate containing 500 µg 
protein using anti-NOX4 antibody to pull down NOX4; the 
amount of VEGFR2 interacted with NOX4 was determined 
with western blots using anti-VEGFR2 antibody. Blots were 
visualized, and the relative densities of bands were calculated 
using UN-SCAN-IT Gel 6.1.

Intracellular reactive oxygen species generation and cell 
proliferation assay: hRMVECs were seeded into 96-well 
plates and transfected with siRNA. Forty-eight hours post-
transfection, cells were loaded with 5 µm 5-(and-6)-chlo-
romethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl 
ester (CMDCF-DA; Invitrogen) in serum- and growth factor-
free medium for 30 min at 37 °C. After two washes with PBS, 

cells were incubated with VEGF (20 ng/ml) or control PBS 
for 30 min. ROS generation was measured in a fluorescent 
plate reader (excitation-488 nm and emission-520 nm). Cells 
incubated with 10 µM H2O2 were used as a positive control.

For the proliferation assay, 24 h post-transfection, cells 
were starved in serum- and growth factor-free medium for 24 
h and then incubated with VEGF (20 ng/ml) for another 24 
h. Cell number was measured with Vybrant 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell 
proliferation assay kit (Invitrogen).

Statistical analysis: Significant differences between treatment 
groups were determined with ANOVA with the Newman–
Keuls multiple comparison post-hoc test. A minimum value 
of p<0.05 was considered statistically significant. For in vivo 
studies, three different litters were used for each experiment 
to account for potential effects within individual litters. Four 
to five retinas from different individual pups were analyzed 

Figure 4. Knockdown of NOX4 
by siRNA transfection inhibits 
vascular endothelial g rowth 
factor–induced reactive oxygen 
species generation in human 
retinal microvascular endothelial 
cells. (A) western blots of NOX4 
expression and (B) react ive 
oxygen species (ROS) genera-
tion were determined with 434 
5-(and-6)-chloromethyl-2’,7’-
dichlorodihydrofluorescein diace-
tate, acetyl ester (CMDCF-DA) 
f luorescence in human retinal 
microvascular endothelial cells 
(hRMVECs) transfected with 
control siRNA (ConsiRNA) or 
NOX4 siRNA (NOX4siRNA) 
and treated with PBS or vascular 
endothelial growth factor (VEGF; 
20 ng/ml; ***p<0.001 versus PBS 
of ConsiRNA; †††p<0.001 versus 
standard deviation [SD], VEGF of 
ConsiRNA; one-way ANOVA with 
post-hoc Newman–Keuls multiple 
comparison testing).
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Figure 5. NOX4 regulates vascular 
endothelial growth factor–induced 
STAT3 activation through inter-
act ing with phosphor ylated 
vascular endothelial growth factor 
receptor 2 in human retinal micro-
vascular endothelial cells. Western 
blots of phosphorylated vascular 
endothelial growth factor receptor 
2 (p-VEGFR2) and total VEGFR2 
(A) and phosphorylated STAT3 
(p-STAT3) and total STAT3 (B) 
in human retinal microvascular 
endothelial cells (hRMVECs) 
transfected with ConsiRNA or 
NOX4siRNA and treated with 
PBS or VEGF (20 ng/ml); (C) 
coimmunoprecipitation of NOX4 
with VEGFR2 and western blots 
of p-VEGFR2 and total VEGFR2 
in hRMVECs treated with VEGF 
with or without pretreatment of 
SU5416 (Con, control; SU, SU5416; 
V, VEGF). D: Western blots of 
p-STAT3 and total STAT3 were 
performed in hRMVECs treated 
with VEGF and pretreated with 
AG490, apocynin or respective 
controls (C, control; AG, AG490; 
APO, apocynin; **p<0.01 versus 
control and ††p<0.01 versus 
VEGF, one-way ANOVA with 
post-hoc Newman–Keuls multiple 
comparison testing; n=3 and results 
are means±SD).
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for time points. For in vitro studies, at least three condi-
tions were used in each experiment and experiments were 
repeated two additional times. For real-time PCR, six indi-
vidual samples were used for NOX isoforms mRNA analysis. 
Results are means ± standard deviation (SD).

RESULTS

NOX4 Is highly expressed in retinal endothelial cells and 
in rat oxygen-induced retinopathy model: To determine the 
roles of endothelial NADPH oxidase isoforms in angiogen-
esis, we first detected expression profiles of NOX isoforms 
in several types of cultured vascular ECs (hRMVECs, CECs, 
HUVECs) using real-time PCR. In support of our hypothesis 

and the literature [2], NOX4 was the most prevalent isoform 
in all ECs tested, and NOX2 was also expressed in CECs 
(Figure 1). We then measured NOX4 expression in retinal 
lysates from pups raised in RA at postnatal day 0 (P0), P14, 
and P18 and found that NOX4 expression was reduced during 
development (Figure 2A). In comparison to RA-raised rat 
pups, NOX4 protein was significantly increased in the OIR 
model at P18 (Figure 2C), but not at P14 (Figure 2B). We then 
determined NOX4 localization in retinal cryosections from 
rat pups in OIR or RA at P18 (Figure 2D). Compared to the 
RA-raised rat pups, semiquantitative assessment of NOX4 
density was greater in lectin-stained ECs in the P18 OIR 
model than the P18 RA (Figure 2E). Thus, NOX4 expression 

Figure 6. NOX4 regulates vascular 
endothelial growth factor–induced 
endothelial cell proliferation 
through activation of STAT3. 
Cell proliferation was measured 
in human retinal microvascular 
endothelial cells (hRMVECs) 
transfected with control siRNA 
(ConsiRNA) or siRNA to either 
NOX4 (NOX4siRNA; A) or STAT3 
(STAT3siRNA; B) and treated with 
PBS or vascular endothelial growth 
factor (VEGF; 20 ng/ml; **p<0.01 
and ***p<0.001 versus PBS of 
ConsiRNA; †††p<0.001 versus 
standard deviation [SD], VEGF of 
ConsiRNA; one-way ANOVA with 
post-hoc Newman–Keuls multiple 
comparison testing).
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in retinal ECs was increased in the rat OIR model at the time 
point when IVNV occurred, whereas NOX4 was less preva-
lent during retinal vascular development.

Upregulation of NOX4 is associated with activation of 
STAT3 in the rat oxygen-induced retinopathy model: We 
previously found that VEGF-activated STAT3 caused retinal 
endothelial cell proliferation in vitro [33] and that NADPH 
oxidase mediated IVNV through activated STAT3 in a rat 
OIR+supplemental oxygen model in which pups were placed 
in 28% supplemental oxygen from P14 to P18, rather than 21% 
oxygen as in the rat OIR model used in the study [24]. We 
also previously reported that, compared to RA-raised pups, 
retinal VEGF expression increased at several time points 
including P18 in the rat OIR model [34]. Therefore, to deter-
mine if increased EC NOX4 was associated with activation 
of retinal STAT3 at P18 when VEGF is also increased in the 
rat OIR model, we measured phosphorylated STAT3 and total 
STAT3 in retinal lysates from the P18 OIR model and RA 
pups (Figure 3A). STAT3 activation, determined as a ratio 
of phosphorylated STAT3 to total STAT3, was significantly 
increased at P18 in the OIR model compared to the RA pups 
(Figure 3B). This suggested that increased NOX4 was associ-
ated with activation of STAT3 and VEGF signaling at the 
time point when IVNV occurred.

NOX4 regulates vascular endothelial growth factor-induced 
reactive oxygen species generation in retinal endothelial 
cells: Increasing evidence indicates that NADPH oxidase 
participates in retinal angiogenesis through ROS generation 
[2]. We previously reported that VEGF activated NADPH 
oxidase in CECs and contributed to choroidal neovasculariza-
tion in a laser-induced choroidal neovascularization (CNV) 
model [35]. To understand the relationship between NOX4 
and VEGF, we determined whether NOX4 was involved in 
VEGF-induced ROS generation in hRMVECs. In hRMVECs, 
knockdown of NOX4 by siRNA transfection (Figure 4A) 
inhibited basal and VEGF-induced ROS generation (Figure 
4B). This suggests that VEGF activates NOX4 and leads to 
ROS generation.

NOX4 interacts with phosphorylated vascular endothelial 
growth factor receptor 2 to regulate vascular endothelial 
growth factor-mediated STAT3 activation and endothelial 
cell proliferation: Activated VEGF/ VEGFR2 signaling 
can cause IVNV in rat [13,36,37] and mouse models of OIR 
[12,17]. We determined if endothelial NOX4 was involved in 
VEGF/VEGFR2 signaling. We first measured VEGF-induced 
VEGFR2 and STAT3 phosphorylation in cultured hRMVECs 
that were transfected with NOX4 siRNA compared to control 
(Figure 5A). NOX4 silencing had no effect on basal levels of 
phosphorylated VEGFR2 (p-VEGFR2; Figure 5A) or STAT3 

(p-STAT3; Figure 5B), but partly reduced p-VEGFR2 (Figure 
5A) and completely inhibited VEGF-induced p-STAT3 
(Figure 5B), providing support that STAT3 was a down-
stream effector of activated NOX4 and that NOX4 involved 
VEGFR2 signaling. To determine the mechanism in which 
VEGF/VEGFR2 and NOX4 were involved in downstream 
STAT3 activation, hRMVECs were pretreated with the 
VEGFR2 tyrosine kinase inhibitor, SU5416, or vehicle, and 
then stimulated with VEGF. In response to VEGF stimula-
tion, coimmunoprecipitation of NOX4 with VEGFR2 was 
increased (Figure 5C). However, inhibition of VEGFR2 
activation by SU5416 inhibited coimmunoprecipitation 
of NOX4 and VEGFR2 and SU5416 treatment effectively 
blocked VEGF-induced p-VEGFR2 in the same cell lysates 
(Figure 5C). Altogether, these results suggest that a structural 
relationship between NOX4 and p-VEGFR2 existed following 
VEGF-induced activation of VEGFR2 and that together the 
interaction over-activated STAT3.

To assess the effect of NOX4 and STAT3 on EC prolifera-
tion, hRMVECs transfected with siRNAs to NOX4 or STAT3 
or control siRNAs were treated with VEGF or PBS for 24 h. 
Compared to control, NOX4 siRNA (Figure 6A) and STAT3 
siRNA (Figure 6B) significantly inhibited VEGF-induced 
hRMVEC proliferation. These and the previous data provide 
evidence that VEGF-VEGFR2 signaling mediated NOX4 
enhanced EC proliferation through activation of STAT3.

DISCUSSION

VEGF plays important roles in physiologic angiogenesis in 
development and in the adult [38,39] as well as in pathologic 
angiogenesis in cancer [40,41] and eye diseases [30,42-44]. 
Inhibition of the bioactivity of VEGF has been used in several 
retinal and choroidal diseases to reduce pathologic angiogen-
esis [30,45], including several leading causes of blindness 
worldwide, neovascular age-related macular degeneration 
(AMD) [46], diabetic retinopathy [47], and retinopathy of 
prematurity [48]. However, in AMD, repeated anti-VEGF 
injections are usually required, and reports of retinal and 
choroidal atrophy raise concerns regarding long-term vision 
loss [49,50]. In addition, a single dose of intravitreal anti-
VEGF can reduce circulating VEGF levels [30,51], raising 
questions about reducing beneficial effects of VEGF as a 
neuroprotective agent in development or after brain ischemia 
or stroke [52,53]. We previously found excessive signaling 
through VEGFR2-triggered signaling pathways that caused 
IVNV [54]. To preserve beneficial aspects of VEGF signaling 
and inhibit IVNV, we sought to identify effectors that regulate 
VEGFR2 activation and downstream angiogenic signaling 
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pathways as a means of supporting physiologic angiogenesis 
while inhibiting IVNV.

NADPH oxidase isoforms NOX1, NOX2, and NOX4 
have been implicated in pathologic angiogenesis of the 
retina and choroid in different models [5-10]. We previously 
found that activation of NADPH oxidase delayed physiologic 
retinal vascular development in the rat OIR model [8] but 
caused IVNV mediated through STAT3 in the rat OIR model 
rescued in 28% supplemental oxygen [24]. We and others also 
found that VEGF expression increased at several time points 
in the rat OIR model, including at P18 in association with 
IVNV [36]. In this study, we focused on the potential role 
of NOX4 in retinal ECs in VEGF-induced IVNV. At P18 in 
the OIR model compared to RA pups, STAT3 activation was 
also increased in retinal lysates, in association with greater 
expression of retinal NOX4 and the development of IVNV.

To study the role of NOX4 and VEGFR2 signaling 
in retinal ECs, a series of experiments were performed in 
cultured hRMVECs. Knockdown of NOX4 by siRNA trans-
fection inhibited basal and VEGF-induced ROS generation. 
In addition, knockdown of NOX4 partially reduced VEGF-
induced VEGFR2 activation and abolished VEGF-induced 
STAT3 activation, suggesting the expression level of NOX4 
and its activation to generate ROS were important for the 
interaction of NOX4/p-VEGFR2 and in maintaining activa-
tion of downstream signaling effectors of VEGFR2. The 
results from in vitro studies support a structural interaction 
between NOX4 and VEGFR2, perhaps through an adaptor 
protein, that relies on activation of VEGFR2, and that trig-
gered STAT3 activation to cause hRMVEC proliferation.

In summary, our study provides new evidence that 
VEGF-induced VEGFR2 can exacerbate downstream 
STAT3 activation through an interaction with NOX4 and may 
contribute to IVNV in the rat OIR model. Future studies to 
understand the interaction between NOX4 and p-VEGFR2 
are important, because inhibiting NOX4 or its generated ROS 
may be a method to regulate VEGFR2 singaling and safely 
reduce VEGFR2-mediated IVNV.
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