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Abstract. Malaria in Vietnam has become focal to a few provinces, including Phu Yen. This study aimed to assess
correlations between intervention (population proportion protected by insecticide-treated nets and indoor residual
spraying) and climatic variableswithmalaria incidence inPhuYenProvince. TheVietnamNational Institute ofMalariology,
Parasitology, and Entomology provided incidence data for Plasmodium falciparum and Plasmodium vivax for 104
communes of Phu Yen Province from January 2005 to December 2016. Amultivariable, zero-inflated Poisson regression
model was developed with a conditional autoregressive prior structure to identify the underlying spatial structure of the
data and quantify associations with covariates. There were a total of 2,778 P. falciparum and 1,770 P. vivax cases during
the study period. Plasmodium falciparum and P. vivax incidence increased by 5.4% (95% credible interval [CrI] 5.1%,
5.7%) and 3.2% (95% CrI 2.9%, 3.5%) for a 10-mm increase in precipitation without lag, respectively. Plasmodium
falciparum and P. vivax incidence decreased by 7.7% (95%CrI 5.6%, 9.7%) and 10.5% (95%CrI 8.3%, 12.6%) for a 1�C
increase in minimum temperature without lag, respectively. There was a > 95% probability of a higher than provincial
average trend of P. falciparum and P. vivax in Song Cau and Song Hoa districts. There was a > 95%probability of a lower
than provincial average trend in Tuy Dong Xuan and Hoa districts for both species. Targeted distribution of resources,
including intensified interventions, in this part of the province will be required for local malaria elimination.

INTRODUCTION

Vietnam has made tremendous progress in reducing mor-
tality andmorbidity associated withmalaria in recent years.1–4

A successful ramping-up of interventions including improve-
ments in early and accurate diagnosis, free access to treat-
ment with artemisinin-based combination therapies (ACTs),
widespread and routine distribution of insecticide-treated
mosquito nets (ITNs), and targeted and reactive indoor re-
sidual spraying (IRS) has seen a reduction inmalaria cases and
deaths by 97% and 99.8%, respectively, between 1991 and
2014.3,5,6 As a result of the significant reduction in malaria
incidence, the Vietnam National Institute of Malariology, Par-
asitology, and Entomology (NIMPE) is pursuing an agenda of
progressive elimination with a goal to eliminate local trans-
mission by 2030.1–4,7

Since 1991, malaria control in Vietnam has been based on
free early diagnosis and treatment with ACT, vector control
through the free distribution of ITNs/long-lasting insecticidal
nets (LLINs), and IRS.8Quinine and chloroquinewere themain
treatments for Plasmodium falciparum and Plasmodium vivax
until 1991. Between 1992 and 1994, artemisinin derivatives
were introduced in all districts. In 1999–2000, a fixed combi-
nation of dihydroartemisinin, piperaquine, trimethoprim, and
primaquine became the first-line treatment.9

Vector control in Vietnam underwent many changes. In
1992 and 1993, dichlorodiphenyltrichloroethane was used for
IRS.Becauseof the rapid decline of themalaria incidence after
the introduction of ITNs, IRS was largely abandoned after
1995.8 Since 2009, ITNs have been progressively replaced by
LLINs as funds have become available through the Global
Fund to Fight AIDS, Tuberculosis, and Malaria. Supplemental
single LLINs or long-lasting insecticide-treated hammock

nets are also now provided tomobile andmigrant populations
and forest-goers.10

In recent years, malaria has become more geographically
confined to provinces in Central and Central-Southern Vietnam,
including Phu Yen Province.11 In these areas, surges in cases
have been attributed to a number of factors including the pres-
ence of exophagic and anthropophilic vectors (Anopheles
dirus),12,13 barriers to control activities due to remote mountain-
ous and forested areas,2 forest-related economic activities,14–16

and poverty.14,17 Furthermore, the spread of artemisinin-
resistant P. falciparum in the Greater Mekong Subregion (GMS)
poses a serious threat to malaria elimination in Vietnam.18–22

The aims of this study were to identify malaria clusters by
species in Phu YenProvince at the commune level and assess
correlations between intervention-related variables (pro-
portion of the population protected by ITNs and IRS) and en-
vironmental variables, with malaria incidence at the commune
level. The findings from this study can be used for focused
interventions ofmalaria by themalaria programofficials of Phu
Yen and by malaria elimination countries.

MATERIALS AND METHODS

Study sites and data sources. Phu Yen is located in the
South Central Coastal region of Vietnam. Phu Yen is admin-
istratively divided into nine districts and 104 communes
(Figure 1). The total population of Phu Yen in 2016 was
875,387. Numbers of reported P. falciparum and P. vivax
cases by commune and by month from January 2005 to De-
cember 2016 and ITN/IRS data were provided by the NIMPE.
Commune-level population data were provided by Phu Yen
provincial council. Commune population was imputed by
month as follows: the difference in the district population in
2004 and 2005was calculated and then divided by 12 to allow
for a monthly population increase in 2005. A similar approach
was used to calculate themonthly population of the rest of the
study period (2006–2016). High-resolution (1 km2 [30 arc-
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seconds]) raster maps of interpolated long-term (1950–2000)
averagemonthly precipitation and temperaturewere obtained
from the WORLDCLIM website.23 Precipitation and temper-
ature maps were imported into a geographical information
system (GIS) (GIS; ArcMap version 10.5, ESRI, Redlands, CA)
and linked spatially to a digitized boundary map of the 104
communes of Phu Yen Province. The monthly mean of pre-
cipitation and temperature were extracted for each study

commune using Zonal Statistics functions in ArcMap (ESRI,
Redlands, CA).
Exploration of seasonal patterns and temporal trends.

Themonthly malaria incidences by Plasmodium species were
calculated for the full time series (January 2005–December
2016). The time series of malaria incidence was decom-
posed using seasonal-trend decomposition based on lo-
cally weighted regression to show the seasonal pattern, the

FIGURE 1. Map of Phu Yen Province in Vietnam with districts and communes. This figure appears in color at www.ajtmh.org.
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temporal trend, and the residual variability. The time series
data, the seasonal component, the trend component, and the
remainder component are denoted by Yt, St, Tt, and Rt, re-
spectively, for month t = 1 to N, and

Yt ¼St þTt þRt:

The parameter setting “periodic” was used for the seasonal
extraction, and all other parameters were by default. In the
study, logarithmic transformations were used for the time
series data.24,25

Crude standardized morbidity ratios (SMRs). Crude
SMRs for each commune were calculated by

Yi ¼ Oi

Ei
,

whereY is theSMR in commune i,O is the observed number of
malaria cases in the commune i, andE is the expected number
of malaria cases in the commune i, across the study period.
The expected number of malaria case was calculated by
multiplying the provincial malaria incidence by the average
population for each commune over the entire study period.
Independent variable selection. Initially, a preliminary

Poisson regression of total malaria cases was undertaken to
select the significant covariates; of these, the best fit covariates
were selected with the lowest Akaike’s information criterion (AIC).
Climatic variables, namely,precipitationandminimumtemperature
(�C) without a lag, were selected for inclusion into the final model
because these climatic variables had the best fit (Supplemental
Table 1). Selected covariates for the final model were tested for
collinearity, and no collinearity was found (Supplemental Table 2).
Spatial autocorrelation analysis. Spatial autocorrelation

was explored at a global scale usingMoran’s I statistic, and at
a local scale estimated using the Anselin Local Moran’s I
statistic (local indicators of spatial association [LISA]) and the
Getis-Ord Gi* statistics. The global Moran’s I statistic was
used to assess the presence and strength of spatial auto-
correlation over the whole study area and to test the as-
sumptionof spatial independence in the implementationof the
spatial pattern analysis. The LISA and the Getis-Ord Gi* sta-
tistics were used to detect local clustering of malaria and to
identify the locations of hotspots. These analyses were con-
ducted using tools provided in ArcMap software.26

Spatiotemporal model. Of the 14,976 observations, there
were 13,350 (89.1%) zero counts for P. falciparum and 13,864
(92.6%) zero counts for P. vivax. Zero counts can arise from
two processes: “excess zeros” (also called structural zeros),
for which the process of their occurrence is different from the
“random zeros” that arise as part of the Poisson process that
generates the malaria counts. One possible explanation for
the excess zeros is that they arise in communes that were
unable to support malaria transmission during the study pe-
riod for a variety of epidemiological reasons such as vector
habitat unsuitability or isolation from areas with ongoing
transmission. Zero-inflated Poisson (ZIP) regression was a
better model with lower AIC and Bayesian Information Crite-
rion (BIC) than the standard Poisson regression, and the
Vuong test showed the two models were statically different
(Supplemental Table 3). Bayesian statistical software Win-
BUGS version 1.4 (Medical Research Council, Cambridge,
United Kingdom, and Imperial College London, London,
United Kingdom) was used to develop ZIP regression models

for P. falciparum and P. vivax separately. They contained a
mixing probability ω that the observation is an excess zero
count. The model included climatic variables (minimum tem-
perature and precipitation); proportion of the population
covered by ITNs and IRS, as explanatory variables; and spa-
tially structured and unstructured random effects.
For the count of malaria cases Y, in the ith commune (i =

1. . .104) and the jth month (January 2005–December 2016),
the model was structured as follows:

P
�
Yij ¼ yij

�
¼
(

ωþ 1 ð1�ωÞe�μ, yij ¼ 0

ð1�ωÞe�μ μ
yij
ij

.
yij, yij >0;

Yij ∼Poisson
�
μij

�
,

log
�
μij

� ¼ log
�
Eij
�þ θij,

θij ¼ α þ β1 � Popprotectedij þ β2

� Precipitationij þ β3 � Tminij þ β4 � trendj

þ ui þ si þ wij,

where Eij is the expected number of cases (acting as an offset
to control for population size) in commune iandmonth j, andθij
is themean log relative risk (RR);α is the intercept; andβ1,β2,β3,
and β4 are the coefficients of proportion of population covered
by ITNs and IRS, the overall temporal trend of malaria pre-
cipitation and minimum temperature; unstructured, spatially
structured, and spatiotemporal randomeffect were denoted by
ui, si, andwijwhich assumed to a variance σs

2 andmean of zero.
A conditional autoregressive prior structure was used to

model the spatially structured random effect. Spatial rela-
tionships between the communes were determined using a
queen contiguity. For two communes sharing a border, an
adjacency weight of 1 was assigned, whereas if they did not,
the weight was 0. An unbounded uniform (i.e., flat) prior distri-
butionwasspecified for the intercept,whereasanon-informative
normal prior distribution (i.e., with a wide variance, σ2 = 1,000)
was used for the coefficients. The priors for the precision of
unstructured and spatially structured random effects (1/σu

2

and 1/σs
2) were specified using non-informative gamma dis-

tributions, with shape and scale parameters equal to 0.01.
An initial 10,000 burn-in iterations were discarded. Con-

vergence was examined by running the subsequent blocks of
20,000 iterations, by visual inspection of posterior density and
history plots, and occurred at approximately 100,000 itera-
tions for each model. The posterior distributions of each
model’s parameters were stored after the convergence
(100,000 iterations). The summary of the analysis was per-
formed with the posterior mean and 95% credible intervals
(CrIs). In all analyses, an α-level of 0.05 was adopted to in-
dicate statistical significance (as indicated by 95% CrI for RR
that excluded 1). ArcMap 10.5.1 software (ESRI, Redlands,
CA) was used to generate the maps of spatial distribution of
posterior means of the unstructured and structured random
effects obtained from the three models.

RESULTS

Descriptive analysis. There were 2,778 P. falciparum and
1,770P. vivax casesduring the studyperiod. Theproportion of
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P. falciparum cases continued to decrease from 79.0% (211)
in 2005 to 50.0% (42) in 2016, whereas the proportion of
P. vivax increased from 21.0% (55) to 50.0% (42) during the
same period. The annual parasite incidence for the study pe-
riodwas0.28 and0.18 casesper 1,000person-years at risk for
P. falciparum andP. vivax, respectively (Table 1). Both species
of malaria displayed a strong seasonal pattern, with incidence
increases starting in September and peaking in November
(Figure 2, Supplemental Figure 1). Bothwere heterogeneously
distributed across the province, with high SMRs in Dong Xuan
and Song Hon districts (Supplemental Figure 2).
Malaria clusters. The Global Moran’s I showed significant

spatial autocorrelation for both P. falciparum (z score = 9.30;
P < 0.0001) and P. vivax (z score = 5.94; P < 0.0001)
(Supplemental Figures 3 and 4). Hotspot analysis using the
Getis-Ord Gi* statistic showed that 13 hotspots for
P. falciparum and 11 hotspots P. vivax were located in the
communes of Dong Xuan and Son Hoa districts, whereas 37
P. falciparum and 35 P. vivax coldspots were located in Dong
Hoa, Phu Hoa, and Tuy Hoa districts. Nevertheless, cluster
analysis using LISA showed only 18 P. falciparum and 5
P. vivax high–high clusters in Dong Xuan, Phu Hoa, and Son
Hoa districts (Figure 3).
Spatiotemporal model. Plasmodium falciparum incidence

decreased by 6.6% (95% CrI 0.6%, 13.3%) and P. vivax in-
cidence increased by 89% (95% CrI 72.5%, 107.1%) every
month during the study period. A 10-mm increase in pre-
cipitationwasassociatedwith an increase inP. falciparum and
P. vivax by 5.4% (95% CrI 5.1%, 5.7%) and 3.2% (95% CrI
2.9%, 3.5%), respectively. A minimum temperature increase
of 1�C was associated with a decrease in P. falciparum and
P. vivax risk of 7.7% (95% CrI 5.6%, 9.7%) and 10.5% (95%
CrI 8.3%, 12.6%), respectively. The model showed that every
10% increase in population protected by IRS and ITNs was
associated with a decrease in incidence of P. falciparum by
11%. However, these decreases were not statistically signif-
icant (Table 2).
The spatially auto-correlated random effect (vi) smooths the

spatial pattern of residual variation in malaria incidence after
taking into account the fixed effects (Figure 4). Both types of
malaria showed areas of lower than average residual malaria
risk in Song Cau, Tuy An, Phu Hoa, Dong Hoa, and Tuy Hoa
districts. For both types of malaria, areas of higher than

average residual malaria risk were found in Dong Xuan, Son
Hoa, and Song Hinh districts.
There was > 95% probability of a higher than provincial

average trend of P. falciparum in 10/104 communes, which
weremostly located in the SonHoa districts. Similarly, 11/104
communes had > 95% probability of a higher than national
average increasing trend of P. vivax, also mostly located in
Song Cau and Song Hoa districts. For both P. falciparum and
P. vivax, 15/104 districts had > 95% probability of a trend less
than the provincial average, mostly located in Tuy Dong Xuan
and Hoa districts (Supplemental Figure 5).

DISCUSSION

Using a surveillance dataset of 12 years (2005–2016), the
present study has demonstrated substantial changes occur-
ring with respect to annual trends and the geographical dis-
tribution of malaria in Phu Yen Province. In this study, we
found that malaria hotspots for both species were found in
Dong Xuan and Son Hoa districts. Plasmodium falciparum
trend decreased, whereas P. vivax showed an increasing
trend. Both species of malaria displayed a strong seasonal
pattern. Prevention measures including LLINs and IRS were
not significant predictors of malaria incidence. Minimum
temperature was associated with reduction in malaria in-
cidence, whereas precipitation was associatedwith increase in
malaria incidence.
Malaria cases showed a strong seasonal pattern, with cases

increasing fromSeptember andpeaking inNovember each year.
This pattern was associated with the rainy season in Phu Yen,
where two seasons (dry, from January to August, and rainy, from
September to December) were distinguished. Other studies re-
ported a similar association with rainfall in Bhutan, India, and
otherpartsof theworld.27–35Thisfinding isconsistentwith thatof
the published literature from Vietnam.17,36 During the study pe-
riod, P. falciparum showed a decreasing trend, whereas the op-
positewas true forP.vivax,which issimilar to thenational trend.37

As countries embark on malaria elimination, P. falciparum in-
cidence declines more rapidly than the incidence of P. vivax
because of the greater effectiveness of vector control interven-
tions on the former.38 Treating all stages of the parasite (radical
cure) is a critical strategy for the successful control and ultimate
elimination of P. vivax.39

TABLE 1
Malaria incidence during the study period (2005–2016)

Year Population

Plasmodium falciparum Plasmodium vivax

Cases Proportion of total cases API Cases Proportion of total cases API

2005 784,003 211 0.79 0.27 55 0.21 0.07
2006 791,922 352 0.86 0.44 56 0.14 0.07
2007 799,921 168 0.81 0.21 40 0.19 0.05
2008 808,001 156 0.92 0.19 13 0.08 0.02
2009 816,163 274 0.85 0.34 48 0.15 0.06
2010 824,407 222 0.80 0.27 57 0.20 0.07
2011 832,734 244 0.65 0.29 133 0.35 0.16
2012 841,146 331 0.54 0.39 281 0.46 0.33
2013 849,642 327 0.49 0.38 339 0.51 0.40
2014 858,138 348 0.45 0.41 419 0.55 0.49
2015 866,720 103 0.26 0.12 287 0.74 0.33
2016 875,387 42 0.50 0.05 42 0.50 0.05
Overall 9,948,183 2,778 0.61 0.28 1,770 0.39 0.18
API = annual parasite incidence.
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Malaria risk continues to decline in Vietnam, and trans-
mission is becoming increasingly heterogeneous, with most
cases now concentrated within a relatively small number of
communes, including Phu Yen.11 Such patterns are consistent
with those of other countries with lowmalaria burden.27,35,40–43

Therefore, spatially targeting interventions and associated re-
sources are likely to achieve better results than a uniform ap-
proach to the distribution and delivery of malaria reduction
interventions.44–46 Geographical information system–based
spatial decision support systems (SDSSs) are one of the tools
currently being used in countries in the Asia-Pacific region to
support enhanced surveillance in priority areas, primarily as a
means for locating malaria transmission, identifying and tar-
geting appropriate foci-specific interventions, and ensuring
these interventions are implemented at optimal levels of
coverage.47–49 Combining the capacity to identify priority
malaria clusters and associated appropriate foci-specific in-
terventions with enhanced surveillance and intervention man-
agement tools such as a SDSS provides significant potential
opportunity to target and strengthen elimination efforts where
needed.45,50

This study found evidence of significant spatial variability in
malaria incidence within Phu Yen Province. This likely arose
because of two main processes: first, the effects of the
covariates in themodel (preventive coverageandclimate) and,
second, the residual effects of additional, unmeasured influ-
ences onmalaria incidence that were captured by the random
effects—thesewereboth spatially structuredandunstructured.
Given that theareasofhigh residual riskwere in thewesternpart
of the province, proximity to other high-transmission areas
might partly explain this residual variation; however, further in-
vestigation is required.
One of the strengths of this study was the capacity to

implement the spatial analysis at a relatively fine resolution,
being the commune level. Traditionally, spatial patterns of
malaria risk have been displayed at larger geographical

units, such as at district, province, national, regional, and
global scales.51,52 However, such resolutionmaymaskmore
localized underlying patterns of disease through averag-
ing.53 Therefore, use of finer geographic units such as
communes may be necessary to observe important local
variation in spatial patterns ofmalaria risk and to better guide
disease control efforts and resource allocation, particularly
when transmission declines to levels favorable to the pursuit
of elimination.44

This study used Bayesian statistical methods to quantify
seasonal and commune variations of P. falciparum and
P. vivaxand theeffects of climatic factors. The finding from this
analysis indicated that precipitation and temperature were
important drivers of spatiotemporal patterns of malaria in-
cidence inPhuYen. Although therewas a significant reduction
in malaria incidence, this success has not been evenly dis-
tributed throughout Phu Yen, and spatial heterogeneities re-
main (Figure 4). Targeted distribution of resources should be
implemented using evidence-based approaches, supported
by spatiotemporal analyticalmethods, to assistmore effective
malaria control in PhuYenProvincewhere these resourcesare
most needed.
A limitation of the study included the use of routine case

reports to measure incidence. Known issues exist surrounding
completeness and representativeness of such data. It has been
reported that routine reportingofmalaria cases through thehealth
informationsystem inVietnamunderestimates the true numberof
cases.54 Whether these factors affect the validity of our analysis
depends on whether or not underreporting systematically differs
between communes and time-periods. Second, populations of
districts were projected and may have led to over or under esti-
mation. Third, we used long-term interpolated climatic variables
because there were no data that coincided with the study time
period. This might have impacted the spatiotemporal distribution
of malaria. Finally, unmeasured risk modifiers, such as socio-
economic development, living standards, treatment, localized

FIGURE 2. Decomposed monthly (A) Plasmodium falciparum and (B) Plasmodium vivax incidence in Phu Yen Province, Vietnam, 2005–2016.
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behavioralpatterns,populationmobility, importedcases,andbed
net use, are unaccounted for in this study.55–57

CONCLUSION

Minimum temperature was associated with decreased risk,
whereas precipitation was associated with increased risk of
both P. falciparum and P. vivax. A high residual risk area of
malaria transmission (after accounting for intervention and

climate variables) was identified in the northwestern part of
Phu Yen Province. Hence, targeted distribution of resources,
including intensified interventions, in this part of the province
will be required for local malaria elimination. Similar ap-
proaches can be used for identifying spatial heterogeneity of
malaria transmission for resource allocation by malaria elimi-
nation countries.

Received April 30, 2020. Accepted for publication June 18, 2020.

TABLE 2
Regression coefficients and 95% CrI from Bayesian spatial and nonspatial models of P. falciparum and P. vivax cases reported by month and
communes in Phu Yen Province, Vietnam, 2005–2016

Variable P. falciparum RR (95% CrI) P. vivax RR (95% CrI)

Intercept* −1.14 (−1.38, −0.94) −1.23 (−1.48, −1.02)
Population protected (10% increase)† 0.999 (0.998, 1.00) 1.00 (0.998, 1.001)
Precipitation (10 mm increase) 1.054 (1.051, 1.057) 1.032 (1.029, 1.035)
Temperature minimum (�Celsius) 0.923 (0.903, 0.944) 0.895 (0.874, 0.917)
Mean monthly trend 0.934 (0.867, 1.006) 1.89 (1.725, 2.071)
Proportion of zero 0.218 (0.171, 0.264) 0.277 (0.226, 0.327)
Heterogeneity
Unstructured 2.537 (0.689, 8.063) 2.038 (0.581, 6.879)
Structured (spatial) 0.153 (0.091, 0.258) 0.155 (0.084, 0.283)
Structured (trend) 2.903 (1.681, 4.675) 2.45 (1.364, 4.084)
CrI = credible interval; P. falciparum = Plasmodium falciparum; P. vivax = Plasmodium vivax; RR = relative risk.
* Coefficients.
†Proportion of population protected by preventive measures.

FIGURE 3. Malaria cluster maps by communes of Phu Yen Province, Vietnam, 2005–2016. (A) Getis-Ord Gi* statistics and (B) Anselin’s Local
Moran’s I forPlasmodium falciparum. (C) Getis-OrdGi* statistics and (D) Anselin’s LocalMoran’s I forPlasmodiumvivax. This figure appears in color
at www.ajtmh.org.
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