
BMB
   Reports

*Corresponding author. Tel: +82-43-261-2842; Fax: +82-43-274- 
8705; E-mail: scbae@chungbuk.ac.kr
#These authors contributed equally to this work.

https://doi.org/10.5483/BMBRep.2018.51.3.015

Received 20 December 2017

Keywords: LATS1/2, MST1/2, RUNX, TAZ, TEAD, YAP

ISSN: 1976-670X (electronic edition)
Copyright ⓒ 2018 by the The Korean Society for Biochemistry and Molecular Biology

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-
censes/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 1. Schematic diagram of YAP, TAZ, and Yki. P: Proline-rich 
region, TBD: TEAD-binding domain, SBD: Sd (Drosophila homolog
of mammalian TEADs)-binding domain, WW: WW domain, C-C: 
coiled-coil region, TA: transactivation domain, PDZ BD: PDZ- 
binding domain.
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Hippo signaling plays critical roles in regulation of tissue 
homeostasis, organ size, and tumorigenesis by inhibiting 
YES-associated protein (YAP) and PDZ-binding protein TAZ 
through MST1/2 and LATS1/2 pathway. It is also engaged in 
cross-talk with various other signaling pathways, including 
WNT, BMPs, Notch, GPCRs, and Hedgehog to further 
modulate activities of YAP/TAZ. Because YAP and TAZ are 
transcriptional coactivators that lack DNA-binding activity, 
both proteins must interact with DNA-binding transcription 
factors to regulate target gene’s expression. To activate target 
genes involved in cell proliferation, TEAD family members are 
major DNA-binding partners of YAP/TAZ. Accordingly, 
YAP/TAZ were originally classified as oncogenes. However, 
YAP might also play tumor-suppressing role. For example, YAP 
can bind to DNA-binding tumor suppressors including RUNXs 
and p73. Thus, YAP might act either as an oncogene or tumor 
suppressor depending on its binding partners. Here, we 
summarize roles of YAP depending on its DNA-binding 
partners and discuss context-dependent functions of YAP/TAZ. 
[BMB Reports 2018; 51(3): 126-133]

INTRODUCTION

The Hippo pathway was first characterized in Drosophila 
mosaic genetic screens (1-3). It regulates organ size by 
controlling cell proliferation, differentiation, and survival (4, 
5). Subsequent genetic studies have revealed that Yki, the fly 
homolog of mammalian YAP, is a major target of the Hippo 
pathway. Overexpression of Yki induces cell growth and 
inhibits apoptosis by promoting transcription of diap1 and 
cycE (6). On the other hand, Yki is inactivated by 
Wts-mediated phosphorylation (6). Specifically, Hippo signaling 
results in phosphorylation of Yki at multiple sites, inactivating 
its oncogenic activities. Accordingly, YkiS168A which harbors a 

mutation in the key phosphorylation site is constitutively 
active (3, 6). Eye-specific overexpression of YkiS168A had led to 
enormous overgrowth of the eye, analogous to the phenotype 
resulting from knockdown of Hippo kinases (5). Together, 
these results demonstrate that Yki is an oncoprotein.

The mammalian homolog of Yki was initially identified as 
Yes-associated protein (YAP) (7). YAP contains WW domains 
capable of interacting with a PPXY motif and a PDZ-binding 
motif (Post-synaptic density, Discs large, Zonula occludens-1- 
binding motif) at the C-terminus (8). It is expressed as two 
alternatively spliced isoforms: YAP-1 and YAP-2 (9) (Fig. 1). 
TAZ (transcriptional coactivator with PDZ motif) was initially 
identified through its ability to interact with 14-3-3 proteins 
(10). TAZ, a YAP homolog, also contains a conserved WW 
domain that interacts with the PPXY motif as well as the PDZ 
domain. Consequently, YAP and TAZ have similar structures 
and functions (8) (Fig. 1). Yap-knockout mice have exhibited 
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Fig. 2. Summary of signaling pathways that regulate interactions 
between YAP and its partners. SMADs activated by TGF-β
translocate into the nucleus and bind to YAP, thus promoting the 
expression of target gene. TEAD is a representative transcription 
factor that binds to YAP and promotes cell proliferation. YAP is 
inactivated by LATS kinase which is activated by MST or 
inactivated by TRIO-RAC1 signaling. In DNA damage, YAP 
phosphorylated by c-ABL binds to p73 in the nucleus and 
promotes apoptosis. YAP-ERBB4 activated by NRG1 regulates cell 
growth by promoting the expression of target genes, including 
CTGF, CYR61, and ANKRD1. 

early embryonic lethality (11). ApoE/rtTA-driven liver-specific 
overexpression of Yap has resulted in hepatomegaly at early 
stage that ultimately progresses to hepatocellular carcinoma 
(HCC) at later time points (5). The oncogenic activity of YAP 
has been further confirmed in various cultured cell lines. For 
example, high YAP activity promotes the proliferation and 
survival of cultured ovarian cancer cells (12). It increases the 
invasiveness of non-small-cell lung cancer cell lines (13). 
Conversely, knockdown of YAP suppresses invasion and 
metastasis in gastric cancer cell lines (14). Similarly, TAZ 
contributes to tumorigenesis of breast cancer cells by 
promoting cell migration, invasion, and anchorage-independent 
growth (15).

YAP/TAZ shuttles between the nucleus and cytoplasm 
depending on extracellular signaling and growth conditions. 
For example, YAP is phosphorylated and localized to the 
cytoplasm at high cell density. However, it is de-phosphorylated 
and localized to the nucleus at low cell density (3). Such cell 
density–dependent regulation of YAP phosphorylation is 
controlled by LATS kinase which is inhibited by GPCR/G- 
protein signaling (16) or activated by MST1/2 (Fig. 2). 
Stimulation of protease-activated receptors (PARs) also 
activates YAP/TAZ by decreasing level of phosphorylation. For 
example, PAR1 inhibits LATS1/2 kinase via G12/13 and Rho 
GTPase (17). 

Because YAP/TAZ are transcriptional coactivators that lack 

DNA-binding activity, these proteins require DNA-binding 
transcription factors to regulate target gene’s expression. Initial 
studies have shown that the oncogenic activity of YAP/TAZ is 
primarily mediated by interactions with TEAD family 
transcription factors (18, 19). For example, the YAP-TEAD 
complex plays a central role in promoting cell proliferation 
and transformation (20). Although YAP/TAZ mostly interact 
with TEAD family members in response to various stimuli, 
they also interact with other DNA-binding transcription factors, 
including p73 (21), ERBB4 (22), EGR-1 (23), RUNXs (24, 25), 
and SMADs (26, 27). Binding of YAP to one of these 
DNA-binding transcription factors results in cellular context– 
dependent activities that can be either oncogenic or 
tumor-suppressive. For example, in response to DNA damage, 
YAP interacts with p73 and induces apoptosis, thereby 
suppressing tumorigenesis (21). In this review, diverse roles of 
YAP/TAZ depending on identities and functions of their 
DNA-binding partners are summarized. 

TEADs

TEAD transcription factors are the best-characterized binding 
partners of YAP/TAZ (28). TEADs were originally identified as 
transcription enhancer factors (TEFs) (29). Mammals have four 
TEAD genes (TEAD1–4) that encode four homologs with the 
same domain structure (30). Despite their structural similarities, 
TEAD family members are expressed in distinct patterns, 
suggesting that each member has a unique function (30, 31).

Physical interactions between YAP and TEADs are mediated 
through the N-terminal region of YAP and the C-terminal 
region of TEAD protein (28, 32). In human YAP, residue S94 
(S79 in mouse Yap) forms a hydrogen bond with Y429 of 
TEAD4 (Y422 in mouse Tead4) that is critical for YAP-TEAD4 
interaction (33). YAP-S94A mutation abolishes YAP-TEAD 
binding (34). Physiologically, AMP-activated protein kinase 
(AMPK), a master regulator of cellular energy homeostasis, 
phosphorylates YAP-S94 and interferes with the YAP-TEAD 
interaction (35).

TEAD family members play key roles in normal cell growth. 
Dysregulation of these genes is associated with tumorigenesis 
(36). Expression of TEADs is frequently elevated in several 
types of cancer (37), including breast cancer (38, 39), lung 
cancer (40), prostate cancer (41), osteosarcoma (42), pancreatic 
ductal adenocarcinoma (43), ovarian cancer (44), glioblastoma 
(45), melanoma (46), colon cancer (47), hepatocellular 
carcinoma (48, 49), medulloblastoma (50), and mesothelioma 
(51). In ovarian cancer initiated cells (OCICs), high expression 
of TEAD1/3/4 is associated with elevated expression of 
YAP/TEAD target genes such as RUNX2, ITGB2, and ERBB4 
(52). In HCC, dominant-negative TEAD potently suppresses 
YAP-mediated hepatomegaly and tumorigenesis, indicating 
that the YAP-TEAD complex plays critical roles in cellular 
transformation (49). 

The transforming activity of TEADs is disrupted by mutations 
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that abolish the YAP-TEAD interaction. Chen et al. have 
shown that K297A, W299A, F337A, and Y429A mutations of 
TEAD4 can disrupt its interaction with YAP and abrogate 
YAP-TEAD4-mediated transformation of MCF10A cells (53). 
Disruption of YAP-TEAD4 interaction is genetically linked to 
Sveinsson’s chorioretinal atrophy (SCRA), an autosomal 
dominant eye disease characterized by bilateral chorioretinal 
degeneration (54). All SCRA patients harbor the Y421H point 
mutation in TEAD1 (corresponding to Y429 of TEAD4) which 
abolishes the YAP-TEAD1 interaction (55). 

Through interactions with TEADs, activated YAP/TAZ will 
localize to the nucleus and bind to promoters of target genes 
involved in cell proliferation, growth, and survival (4, 5, 15, 
28, 56). Target genes of the YAP/TAZ-TEAD complex include 
CYR61 (20), CTGF (34), AREG (57), MYC (58), Gli2 (59), 
Vimentin (60), and AXL (61).

p73

p73 is related to p53 tumor-suppressor protein. Like p53, p73 
induces cell cycle arrest or apoptosis. It is therefore classified 
as a tumor suppressor (62). YAP functions as a transcriptional 
coactivator of p73 (21). It induces p73-mediated apoptosis (63) 
by inducing BAX and p53AIP1 (64). Binding domains for 
YAP-p73 interaction have been mapped to the WW domain of 
YAP and the PPPY motif of p73 (21). The PDZ-binding motif of 
YAP is required for stabilization of p73 and for p73-mediated 
pro-apoptotic activity of YAP (65). The YAP-p73 complex 
stabilizes p73 and prevents its ITCH-mediated degradation 
(65). The interaction between p73 and ITCH is mediated 
through the PPPY motif of p73 and the WW domain of ITCH 
(66). The PPPY motif of p73 is recognized by both YAP and 
ITCH, consistent with the idea that YAP competes with Itch for 
binding to p73, thus inhibiting ITCH-mediated ubiquitination 
of p73 (67). 

The activity of the p73-YAP complex is controlled by 
multiple mechanisms. Promyelocytic leukemia (PML) promotes 
the apoptosis-inducing activity of the complex by associating 
with the p73-YAP complex. PML promotes p300-mediated 
acetylation of p73 and inhibits YAP degradation via the 
ubiquitin-proteasome pathway (64, 68, 69). Upon treatment 
with interferon-β (IFN-β), PML is induced, thus promoting 
accumulation of YAP-p73 in the nucleus (70). Therefore, YAP 
functions as a tumor suppressor when it is complexed with 
p73.

The YAP-p73 complex formation and complex-mediated 
transcription are enhanced by c-ABL (71). In multiple myeloma, 
YAP is deleted or consistently downregulated to evade 
apoptosis despite pervasive DNA damage (71). Re-expression 
of YAP in multiple myeloma cells induces c-ABL-mediated 
apoptosis and reduces cell proliferation. These results cause 
the formation of p73-YAP complex by c-ABL (71). In response 
to DNA damage, c-ABL is activated. It then phosphorylates 
YAP on residue Y357 (72) (Fig. 2). The resultant phospho-Y357 

YAP accumulates in the nucleus (72). In the nucleus, YAP 
interacts with p73 and induces pro-apoptotic target genes such 
as BAX and PIG3 (73). Notably, c-ABL-mediated YAP 
phosphorylation causes dissociation of other YAP partners to 
facilitate formation of the YAP-p73 complex. In particular, 
c-ABL dissociates both RUNX and ITCH from YAP (72). Thus, 
c-ABL dictates the binding partner of YAP by controlling its 
phosphorylation status. It acts as a “switch” between different 
transcriptional programs, i.e., between oncogenic and 
tumor-suppressor functions of YAP. The Y357 residue of YAP 
is a potential phosphorylation target for several other tyrosine 
kinases, including Yes and Src. This indicates that these 
kinases may also affect the choice of YAP partner (72, 74, 75). 
YAP-TEAD interaction is also affected by LATS1/2-mediated 
phosphorylation. Therefore, the identity of YAP-binding 
partner might be affected by these kinases. 

ERBB4 

ERBB-4 (EGFR family member v-Erb-b2 avian erythroblastic 
leukemia viral oncogene homolog 4) receptor protein tyrosine 
kinase is proteolytically processed by membrane proteases 
(γ-secretase) in response to ligand or 12-O-tetradecanoylphorbol- 
13-acetate stimulation. The resultant soluble intracellular 
domain (ICD) of ERBB-4 is translocated to the nucleus, 
functioning as a transcription regulator (22) (Fig. 2). 

The ICD of ERBB4 is a binding partner of YAP. ERBB4 
co-immunoprecipitates with YAP and TEAD that might form a 
ternary complex. Accordingly, ERBB4 could either aid the 
assembly of binary YAP-TEAD complex or participate in 
ERBB4/YAP/TEAD ternary complex. In the latter scenario, 
ERBB4 could modulate transcription at TEAD target sites by 
recruiting or displacing transcription factors (22, 76, 77). The 
interaction between YAP and ERBB4 is mediated through WW 
domains of YAP and PPXY motifs located within the ICD of 
ERBB4 (78). YAP-ERBB4 regulates organ and tissue growth by 
promoting the expression of target genes, including CTGF, 
CYR61, and ANKRD1 (77). YAP-ERBB4 is activated by NRG1 
(a member of the neuregulin family that acts on the EGFR 
family of receptors). This activation is inhibited by the Hippo 
pathway (77).

The YAP-ERBB4 interaction is inhibited by WW 
domain–containing oxidoreductase (WWOX) which contains 
two WW domains that interact with several binding partners of 
YAP, such as p73 (79), ERBB4 (80), and RUNX2 (81). WWOX 
sequesters ERBB-4 in the cytoplasm and antagonizes the 
function of YAP (82). WWOX is frequently inactivated in 
osteosarcoma. Restoration of WWOX osteosarcoma cell lines 
decreases the expression of YAP-RUNX2 target genes involved 
in cell adhesion and motility (83). Thus, WWOX modulates 
YAP activity by competing with YAP for binding to p73, 
ERBB4, and RUNX2. The association between YAP and ERBB4 
suggests the existence of cross-talk between EGFR and 
Hippo-YAP networks because ERBB4 is a key member of the 
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EGFR family of receptor tyrosine kinases (RTKs) (22, 76).

EGR-1

EGR-1 (Early growth response protein 1) is also known as 
Zif268 (zinc finger protein 225) or NGFI-A (nerve growth 
factor–induced protein A). EGR-1 is a nuclear protein that 
functions as a transcriptional regulator. EGR-1 induces BAX 
expression and apoptosis in cancer cells, thus functioning as a 
tumor suppressor (23, 84). To induce expression of BAX, 
EGR-1 interacts with YAP via the PPXY motif of EGR-1 and 
WW domains of YAP (23). In PC3 cell xenografts treated with 
adenoviral EGR-1, irradiation can result in induction of BAX 
and significant regression in tumor volume, indicating that 
radiation-induced pro-apoptotic activity of EGR-1 (inducing 
BAX expression) can lead to cell death through interaction of 
EGR-1 with YAP (23).

TBX5

YAP, β-catenin, and TBX5 form a complex and induce the 
expression of transcriptional targets such as BCL2L1 and 
BIRC5. This complex is required for the survival and 
transformation of β-catenin-active cancer cell lines (74). TAZ 
directly interacts with TBX5, p300, and PCAF, thereby acting 
as a central component in TBX5-dependent transcriptional 
complexes. TAZ-related protein YAP also stimulates TBX5 
activity. Its influence on TBX5 is potentiated by TAZ, with 
which it forms a heterodimer (85). TBX5 recruits TAZ/YAP to 
downstream target genes, resulting in remarkable augmentation 
of transcription. Physical association of TAZ with p300 and 
PCAF stimulates TBX5-dependent transcription presumably by 
promoting acetylation of histones associated with TBX5 target 
genes (85).

SMADs

SMADs are intracellular proteins that transduce extracellular 
signals from TGF-β or BMP to the nucleus where they activate 
transcription of downstream target genes (86). SMADs 
phosphorylated by receptor kinases form trimers of two 
receptor-regulated SMADs (Smad1, 2, 3, 5, 8) and one 
co-SMAD (SMAD4). SMAD6 and 7 are inhibitory SMADs that 
attenuate TGF-β and BMP signals. YAP/TAZ also regulate 
TGF-β-SMAD signaling by dictating the localization of 
receptor-activated SMADs in response to polarity complexes 
formed in response to cell density (87-89) (Fig. 2). At low cell 
density, YAP/TAZ and SMAD2/3 accumulate in the nucleus. 
By contrast, at high density, the Hippo pathway drives 
cytoplasmic localization of YAP/TAZ which sequesters 
SMAD2/3, thereby suppressing TGF-β signaling (3, 88). 
SMAD7 also interacts with YAP and increases the inhibitory 
activity of SMAD7 against TGF-β signaling (26). In the nucleus, 
TAZ forms a complex with SMAD2/3-SMAD4 and couples the 

complex to the transcriptional machinery (87, 88). This 
complex in turn binds to promoters of SMAD7 and 
plasminogen activator inhibitor 1 (PAI-1) genes to activate 
their transcription (87). Because SMAD7 is inhibitory, as noted 
above, activation of SMAD7 transcription by the SMAD2/3- 
SMAD4 complex suppresses TGF-β signaling (86). 

RUNXs

RUNX family members are DNA-binding transcription factors 
that serve as master regulators of development. Among three 
RUNX family members (RUNX1, RUNX2, and RUNX3), 
RUNX2 functions as an osteogenic master regulator that 
governs skeletal development and homeostasis (90, 91). The 
interaction between YAP and RUNX2 was first identified by 
Yagi et al. (25). Interacting regions have been mapped into the 
PPPY motif of RUNX2 and the WW domain of YAP (25). 
Subsequent work has shown that the YAP-RUNX2 complex 
plays critical roles in regulating skeletal gene expression (75). 
Src/Yes tyrosine kinase signaling contributes to regulation of 
bone homeostasis (92, 93). One of the underlying mechanisms 
is mediated by inhibition of YAP-RUNX2 interaction (25). YAP 
interacts with native RUNX2 protein and suppresses RUNX2 
transcriptional activity. Inhibition of Src/Yes kinase blocks 
tyrosine phosphorylation of YAP and dissociates YAP-RUNX2 
complexes, thereby inducing expression of osteocalcin gene 
(92). These observations suggest that Src/Yes signals are 
integrated via organization of YAP-RUNX2 transcriptional 
complexes to attenuate skeletal gene expression (75). Hong et 
al. have also reported that TAZ can direct interact with Runx2 
and induce the transcription of osteocalcin gene, a late marker 
of osteoblast development (94). This complex represses 
PPARγ-dependent gene transcription (94). 

RUNX3 interacts with YAP and TEAD4 to form a 
YAP-TEAD4-RUNX3 ternary complex. RUNX3 interacts with 
TEAD4 through the C-terminal region of TEAD4 and the Runt 
domain of RUNX3. However, RUNX3 interacts with YAP 
through the WW domain of YAP and the PPPY motif of 
RUNX3. The pattern of YAP-TEAD4-RUNX3 ternary complex 
formation is very similar to that of the YAP-TEAD-ERBB4 
ternary complex (77). Notably, association of RUNX3 with 
YAP-TEAD4 markedly decreases the DNA-binding ability of 
TEAD (24). Consistent with this, ectopic expression of RUNX3 
in a gastric cancer cell line also attenuates the oncogenic 
activity of YAP-TEAD4 (24). Conversely, expression of 
RUNX3-R122C (mutated RUNX3 at Arginine 122 to Cysteine, 
previously identified in gastric cancer (95)) impairs the 
interaction between RUNX3 and TEAD (24). Thus, RUNX3 
antagonizes the oncogenic activity of YAP-TEAD4.

Jang et al. have reported that the interaction between YAP 
and RUNX3 is promoted when cell growth is inhibited (96). 
When cells are grown at high density or cultured under 
serum-starved conditions, LATS1/2-mediated YAP phosphory-
lation is elevated. In addition, RUNX3 interacts with 
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Fig. 3. Reciprocal regulation of YAP activity by TRIO-RAC1 
signaling and the Hippo pathway. RUNX3 interacts with YAP and 
TEAD4 to form a YAP-TEAD4-RUNX3 ternary complex. When 
TRIO-RAC signaling is activated, kinase activity of LATS is 
inhibited while YAP activity is increased. RUNX3 then dissociates 
from the ternary complex, resulting in the formation YAP-TEAD 
complex. When cell growth is inhibited, TEAD dissociates from 
the ternary complex through LATS-mediated YAP phosphorylation, 
resulting in the formation YAP-RUNX3 complex. Therefore, LATS1/2-
mediated YAP phosphorylation not only inhibits YAP-TEAD 
complex, but also facilitates YAP-RUNX3 complex formation.

phosphorylated YAP (96). Mutation of LATS1/2-mediated 
phosphorylation sites in YAP can abolish the YAP-RUNX3 
interaction without affecting YAP-TEAD4 interaction. LATS1/2- 
mediated phosphorylation of YAP causes dissociation of the 
YAP-TEAD4 complex (Fig. 3). Thus, YAP phosphorylation 
status controlled by cell cycle governs the switching of YAP 
binding between TEAD4 and RUNX3 (96). It is worth 
mentioning that the mechanism underlying phosphorylation- 
dependent partner choice is very similar to that of regulation 
by c-ABL. As noted above, c-ABL-mediated YAP phosphory-
lation dissociates RUNX and ITCH from YAP, thereby 
facilitating formation of the YAP-p73 complex (72). Therefore, 
the oncogenic or tumor-suppressive activity of YAP is 
determined by its DNA-binding partner proteins which in turn 
are governed by cellular status. 

PROSPECTS

The role of YAP/TAZ in cancer development remains 
controversial. Initially, YAP/TAZ were described as oncogenes 
(6). Consistent with this, overexpression of YAP induces cell 
proliferation. In addition, YAP expression is elevated in human 
HCC and many other malignancies (97). On the other hand, 
recent studies have shown that YAP induces apoptosis in 
response to DNA damage in collaboration with p73 and PML 
(64). It also suppresses human colorectal cancer (98). These 
observations indicate that YAP could be defined as a tumor 
suppressor as well as an oncogene. The opposing roles of YAP 
in oncogenesis might be due to its lack of DNA-binding 

activity. This feature causes YAP target gene selection to be 
dictated by its DNA-binding partners which in turn are 
determined by their phosphorylation status. To further 
understand the roles of YAP in oncogenesis, it is important to 
study the molecular partners that interact with YAP as well as 
the kinases that regulate complex formation. 
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