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Abstract

As the rate of percutaneous coronary intervention increases, in-stent restenosis (ISR) has

become a burden. Random forest (RF) could be superior to logistic regression (LR) for pre-

dicting ISR due to its robustness. We developed an RF model and compared its perfor-

mance with the LR one for predicting ISR. We retrospectively included 1501 patients (age:

64.0 ± 10.3; male: 76.7%; ISR events: 279) who underwent coronary angiography at 9 to 18

months after implantation of 2nd generation drug-eluting stents. The data were randomly

split into a pair of train and test datasets for model development and validation with 50

repeats. The predictive performance was assessed by the area under the curve (AUC) of

the receiver operating characteristic (ROC). The RF models predicted ISR with larger AUC-

ROCs of 0.829 ± 0.025 compared to 0.784 ± 0.027 of the LR models. The difference was

statistically significant in 29 of the 50 repeats. The RF and LR models had similar sensitivity

using the same cutoff threshold, but the specificity was significantly higher in the RF models,

reducing 25% of the false positives. By removing the high leverage outliers, the LR models

had comparable AUC-ROC to the RF models. Compared to the LR, the RF was more robust

and significantly improved the performance for predicting ISR. It could cost-effectively iden-

tify patients with high ISR risk and help the clinical decision of coronary stenting.

Introduction

Percutaneous coronary intervention (PCI) has been a routine clinical practice for revasculari-

zation in patients with coronary artery disease (CAD), by reducing mortality in ST-segment

elevation myocardial infarction and improving quality of life [1]. The mid-term risk of death

associated with PCI using second-generation drug-eluting stent (DES) is close to that associ-

ated with coronary artery bypass grafting, except for individuals with diabetes and/or three-

vessel disease [2]. As the rate of revascularization by stenting continues to increase, in-stent
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restenosis (ISR) has become a burden that impairs patient well-being [3]. About 10% of the

PCIs in the United States were for ISR lesions, and approximately 25% of the patients with ISR

presented acute myocardial infarction. Predicting ISR would enable the possibility to optimize

stent procedure, closely monitor or consider an alternate treatment. However, the existing risk

model has not been used in clinical practice due to limited external validation [4]. A powerful

and robust prediction model is urgently needed.

Logistic regression (LR) is a standard approach for binary prediction, but it is easily

impacted by outliers [5]. Outlier is an observation point that is distant from other observation

points. They produce leverage effect to the LR model and impair its predictive performance.

Recently, random forest (RF), a machine-learning (ML) algorithm, has gained popularity in

predicting clinical outcomes. In a large-scale benchmark experiment, RF outperformed LR in

prediction in 69% of datasets from open ML databases [6]. Vien et al. found that the RF model

was superior to the traditional LR model in predicting pacemaker implantation following

transcatheter aortic valve replacement [7]. A previous study reported that the ML-based algo-

rithms had higher accuracy than the existing risk score model in predicting ISR [8]. But no sig-

nificant difference was revealed between RF and LR due to the small sample size (263 patients

with 23 ISR events).

We hypothesized that the RF model can be used in ISR prediction and have better perfor-

mance than the LR model due to higher robustness. We developed an RF model and compared

its predictive metrics to the LR model in a larger retrospective dataset including 1501 patients

and 279 ISR events. The robustness of the RF and LR model was also tested. The following arti-

cle is presented following the STROBE reporting checklist [9].

Method

Data source

The data were retrospectively collected from the database at Guizhou Provincial People’s Hos-

pital with the institutional ethics committee’s approval. The requirement for informed partici-

pant consent was waived by the ethics committee since the data were deidentified. ISR is

defined as more than 50% stenosis within or 5 mm adjacent to a previously stented segment by

quantitative coronary analysis (QCA; syngo QCA software, Siemens) [10]. We screened 2508

patients who had reassessed coronary dimension by QCA within 9 to 18 months after prior

coronary stenting between January 2014 and August 2020 (Fig 1). We excluded 967 patients

who had prior stenting procedures in other hospitals, 16 receiving stents other than 2nd gener-

ation DES, and 24 with missing essential clinical characteristics. A total of 1501 patients were

finally included in the study. 279 patients were diagnosed with ISR. 1222 patients without ISR

were identified as control. No patients with PCI in bypass grafts were included.

Model development

We used the open-source R software version 4.0.5 (The R Foundation, Vienna, Austria) for

ML model development. The data were randomly split into the train (75%) and test datasets

(25%) with 50 repeats, generating 50 paired train and test datasets (Fig 1). Each test dataset

was unseen to its paired train dataset. The 10-fold cross-validation method was used for tuning

hyperparameters, selecting variable subsets, and developing models in the train datasets. Then

each model was validated in the paired test dataset. The design was aimed to avoid any over-

optimistic or over-pessimistic results by chance.

15 ISR predictors were selected according to documentation, including patient age, male

gender, smoking history, clinical presentation of acute coronary syndrome (ACS), diabetes,

hypertension, dyslipidemia, chronic kidney disease (CKD) stage, number of stenotic vessels
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(>50% of luminal diameter by QCA), number of stenting vessels, minimum stent diameter,

total stent length, left main artery stenting, bifurcation stenting (left main), and stenting in

complex lesions (type B2 and C) [11]. The CKD stage is classified by calculating the estimated

glomerular filtration rate using the Modification of Diet in Renal Disease Study equation [12].

The complex lesion was classified by two experienced interventional cardiologists according to

the ACC/AHA criteria [13].

The hyperparameter of mtry (the number of random feature candidates at each split) and

ntree (the number of trees in forest) in the RF model were first tuned by the grid search

method (caret package, version 6.0–88; randomForest package, version 4.6–14). Then we

Fig 1. Overview of the data source and model development. Abbreviations: DES = drug-eluting stent, ISR = intra-stent restenosis, ROC = receiver

operating characteristic, PR = precision-recall.

https://doi.org/10.1371/journal.pone.0268757.g001
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measured the conditional permutation importance (CPI), mean decrease accuracy (MDA),

and mean decrease Gini (MDGini) to select important variables using the 50 train datasets

(permimp package, version 1.0–1) [14]. We unselected left main artery stenting and bifurca-

tion stenting due to their low values in all the parameters (S1 Fig). For the LR model, the step-

wise Akaike information criterion (AIC) method was performed to exclude redundant

variables in 50 train datasets (MASS package, version 7.3–54; stats package, version 4.0.5). Left

main stenting and bifurcation stenting were unselected due to their high exclusion frequency

(S2 Fig). Then significant collinearity was detected between the number of stenting vessels and

total stent length using the variance inflation factor (mctest package, version 1.3.1). We unse-

lected the number of stenting vessels to alleviate the collinearity, because the total stent length

had high scores in the variable importance analysis, and it was not excluded once by stepwise

AIC method.

A total of 12 variables were finally selected. Patient age, number of stenotic vessels, total

stent length, and minimum stent diameter were input as continuous variables. CKD stage was

input as ordered categorical variables. The male gender, smoking history, stenting for ACS,

diabetes, hypertension, dyslipidemia, and complex lesions (type B2 and C) were input as

binary variables. For RF model development using 10-fold cross-validation, the mtry and

ntree were tuned each time.

Model performance and interpretation

The predictive performance was evaluated using the test datasets. The area under the curve

(AUC) of receiver operating characteristic (ROC) and precision-recall (PR) curves were calcu-

lated (pROC package, version 1.17.0). The sensitivity, specificity, positive predictive value, neg-

ative predictive value, detection rate, detection prevalence, F1 score, and accuracy at the cutoff

thresholds of 0.8 sensitivity were evaluated using a confusion matrix. The variable importance

in the RF model was assessed by CPI, MDA, and MDGini.

Test model robustness

The model robustness was tested by removing outliers from the total data. We initialized a

logistic regression model using the total data by inputting the 12 variables. The outliers

were detected by the Cooks distance (stats package, version 4.0.5). Then we sequentially

removed patients with more than 8 to 4 times of mean Cooks distance (mCD) from the

study population, and reperformed the model development and validation in the 50 paired

train and test datasets (S3 Fig). The ROC curves were analyzed to evaluate the model

accuracy.

Statistical analysis

For baseline characteristics, continuous variables were presented as mean ± standard deviation

(SD). The Student’s t-test was used for comparison if normally distributed; otherwise, the

Mann-Whitney U test was used. Categorical variables were presented as frequency (percent-

age), and comparison was performed using the Chi-square test. The predictive metrics were

presented as mean ± SD (minimum ~ maximum). The AUC-ROC were compared using the

DeLong test. The AUC-PR were compared by values as no established statistical method. The

accuracy, F1, sensitivity, specificity, PPV, and NPV in 50 test datasets were compared using

paired Student’s t-test. A two-tailed P value of less than 0.05 was considered statistically signifi-

cant. All the statistical analysis was performed by R software 4.0.5.
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Results

Study population

An overall number of 1501 patients with 279 (18.6%) ISR events were included in the study.

Patient baseline characteristics were shown in Table 1. The age and male gender distributions

between control patients and those with ISR were similar (control: age 63.6 ± 10.5 years, 76.2%

male; ISR: age 65.7 ± 9.6 years, 78.9% male). The prevalence of smoking history, hypertension,

dyslipidemia, diabetes, CKD stage, ACS, number of stenotic vessels, and number of stenting

vessels were significantly higher in patients with ISR than those in control patients. The

patients with ISR received stents with smaller minimum diameters and longer total lengths

than the control patients.

Table 1. Baseline characteristics.

Control n = 1222 ISR n = 279 P value

Male gender 931 (76.2) 220 (78.9) 0.383

Age, yrs 63.6 ± 10.5 65.7 ± 9.6 0.001

Bodyweight, kg 70.6 ± 11.5 71.5 ± 11.1 0.23

Smoking history 413 (33.8) 118 (42.3) 0.009

Hypertension 706 (57.8) 182 (65.2) 0.026

Dyslipidemia 379 (31.0) 115 (41.2) 0.001

Diabetes 433 (35.4) 171 (61.3) < 0.001

CKD stage

I or II 944 (77.3) 164 (58.8) < 0.001

III 223 (18.2) 69 (24.7)

IV 43 (3.5) 30 (10.8)

V 12 (1.0) 16 (5.7)

LVEF, % 50.8 ± 8.0 49.0 ± 8.4 0.002

DAPT 1198 (98.0) 269 (96.4) 0.101

Statins 1203 (98.4) 274 (98.2) 0.775

ACEI/ARB 1117 (91.4) 258 (92.5) 0.562

β-blocker 1075 (88.0) 247 (88.5) 0.794

ACS 948 (77.6) 232 (83.2) 0.049

Number of stenotic vessels

1 vessel 615 (50.3) 100 (35.8) < 0.001

2 vessels 392 (32.1) 97 (34.8)

3 vessels 215 (17.6) 82 (29.4)

Left main stenosis 48 (3.9) 22 (7.9) 0.008

Number of stenting vessels

1 vessel 959 (78.5) 158 (56.6) < 0.001

2 vessels 229 (18.7) 100 (35.8)

3 vessels 34 (2.8) 21 (7.5)

Left main stenting 48 (3.9) 22 (7.9) 0.008

Bifurcation stenting 33 (2.7) 14 (5) 0.07

Complex lesion (type B2 and C) 500 (40.9) 201 (72.0) < 0.001

Minimum stent diameter, mm 3.0 ± 0.4 2.7 ± 0.3 < 0.001

Total stent length, mm 43.0 ± 21.6 59.7 ± 27.4 < 0.001

Values are n (%) or mean ± SD.

ACEI = angiotensin-converting enzyme inhibitors; ACS = acute coronary syndrome; ARB = angiotensin receptor blockers; CKD = chronic kidney disease;

DATP = dual antiplatelet therapy; LVEF = left ventricular ejection fraction.

https://doi.org/10.1371/journal.pone.0268757.t001
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Model performance

The ROC and PR curves from 1 of the 50 test datasets are shown in Fig 2A and 2B. The RF

models had an overall better predictive performance than the LR models (Table 2). The RF

models predicted ISR with 0.45 ± 0.015 (0.000 ~ 0.075) larger AUC-ROC than LR models

[0.829 ± 0.025 (0.783 ~ 0.880) vs. 0.784 ± 0.027 (0.722 ~ 0.835)]. The RF models had signifi-

cantly larger AUC-ROC than the LR models in 29 of the 50 test datasets (Fig 2C). The

AUC-PR was also larger in the RF model than that of LR model in 49 of the 50 test datasets

(Fig 2D). The predictive metrics were assessed in the test datasets using the cutoff threshold of

0.8 sensitivity. The sensitivity, NPV, and detection rate were similar, but the RF models had

significantly higher specificity, PPV, F1 score, accuracy, and lower detection prevalence than

Fig 2. Analysis of the ROC and PR curves. The representative ROC (A) and PR curve (B) from 1 of the 50 test datasets are shown. The AUC-ROC (C) and AUC-PR

(D) in the 50 test datasets were presented. The X-axis denotes each test dataset. The Y-axis denotes the value of AUC-ROC or AUC-PR. The AUC-ROCs between the

RF and LR models were compared by the DeLong test. �P< 0.05, #P< 0.01, †P< 0.001. Abbreviations: AUC = area under the curve; LR = logistic regression;

RF = random forest; ROC = receiver operating characteristic; PR = precision-recall.

https://doi.org/10.1371/journal.pone.0268757.g002
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LR in the majority of the test datasets. In general, the RF model predicted approximately 25%

less false positive than the LR with similar sensitivity of 80%.

Model robustness

The AUC-ROC significantly increased in both RF and LR models as the outliers were sequen-

tially removed (Table 3). After the patients with more than 4 time of mCD were removed, the

AUC-ROC was comparable between the RF and LR models [0.918 ± 0.016 (0.885 ~ 0.950) vs.

0.915 ± 0.016 (0.878 ~ 0.945)].

Variable importance

The CPI, MDA, and MDGini were calculated from the 50 RF models (Fig 3). Although the

results were discordant, the total stent length and minimum stent diameter ranked among the

most important features for predicting ISR.

Discussion

Major findings

In the present study, using 50 random splits of paired train and test datasets, we found that the

RF model was more robust and showed stable superiority in predicting angiographic ISR com-

pared to the LR model. The total stent length and minimum stent diameter were the most

important features for predicting ISR in the RF model.

Comparison of the models

A model is considered to be robust if its accuracy is less affected by the outliers in the train

dataset [15]. The robustness is usually tested by injecting outliers into the data. In our study,

the multivariate outliers were the control patients with high ISR probability and the ISR

patients who had low ISR probability. To test model robustness, we tailored the data by remov-

ing the patients with more than 4 times of mCD (S4 Fig). Then the LR model had comparable

accuracy to the RF model. The result reversely provided the evidence that RF was more robust

Table 2. The predictive performance between the RF and LR models.

Random forest Logistic regression Differencea P value

AUC-ROC 0.829 ± 0.025 (0.783 ~ 0.880) 0.784 ± 0.027 (0.722 ~ 0.835) 0.045 ± 0.015 (0.000 ~ 0.075) 29/50b

AUC-PR 0.512 ± 0.056 (0.389 ~ 0.682) 0.435 ± 0.047 (0.313 ~ 0.548) 0.077 ± 0.038 (-0.025 ~ 0.193) NA

Sensitivity 0.801 ± 0.057 (0.667 ~ 0.899) 0.793 ± 0.062 (0.623 ~ 0.899) 0.007 ± 0.053 (-0.116 ~ 0.101) 0.335c

Specificity 0.717 ± 0.031 (0.652 ~ 0.770) 0.623 ± 0.033 (0.561 ~ 0.692) 0.094 ± 0.035 (0.023 ~ 0.180) < 0.001c

PPV 0.392 ± 0.026 (0.333 ~ 0.444) 0.323 ± 0.019 (0.272 ~ 0.362) 0.069 ± 0.023 (0.016 ~ 0.127) < 0.001c

NPV 0.941 ± 0.015 (0.910 ~ 0.969) 0.931 ± 0.018 (0.887 ~ 0.964) 0.010 ± 0.015 (-0.026 ~ 0.036) < 0.001c

Detection rate 0.148 ± 0.011 (0.123 ~ 0.166) 0.146 ± 0.011 (0.115 ~ 0.166) 0.001 ± 0.010 (-0.021 ~ 0.019) 0.335c

Detection prevalence 0.378 ± 0.030 (0.316 ~ 0.439) 0.454 ± 0.034 (0.366 ~ 0.524) -0.076 ± 0.034 (-0.160 ~ -0.003) < 0.001c

F1 score 0.525 ± 0.029 (0.465 ~ 0.581) 0.459 ± 0.025 (0.388 ~ 0.506) 0.067 ± 0.025 (0.002 ~ 0.114) < 0.001c

Accuracy 0.759 ± 0.027 (0.705 ~ 0.811) 0.708 ± 0.027 (0.634 ~ 0.758) 0.051 ± 0.024 (-0.014 ~ 0.094) < 0.001c

Values are mean ± SD (minimum ~ maximum) from the 50 random test datasets.
a The value of random forest minus the value of logistic regression from each test dataset.
b DeLong test was used. P value less than 0.05 was revealed in 29 of the 50 test datasets.
c Paired student’s T test was used.

AUC = area under the curve; NPV = negative predictive value; PPV = positive predictive value; PR = precision-recall; ROC = receiver operating characteristic.

https://doi.org/10.1371/journal.pone.0268757.t002
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than LR. However, the cutoff threshold of outlier is arbitrary, and the multivariate outlier is

associated with the study population and variables. In addition, removing outliers to achieve

higher accuracy is not feasible in prospective studies in which the outcome is unknown until

observed.

Overfitting is the concept that a prediction model fits well with train datasets, but does not

predict accurately with unseen test datasets. One of LR’s limitations is when multiple variables

with correlations are included, serious deviation would be generated and lead to overfitting

[5]. The predictors of ISR are of multiple correlation and interaction [11]. Patients with diabe-

tes are associated with renal dysfunction, dyslipidemia, long lesion, and smaller vascular diam-

eter [16–18]. RF is an ensemble-based ML algorithm that uses multiple de-correlated decision

trees to make a prediction. The tree-based model can be resistant to correlative variables [19].

Important features

RF is not merely a black-box as other ML algorithms. We calculated the CPI, MDA, and

MDGini to assess the importance of the variables. The CPI is considered to be more stable and

reliable than the others [14]. The total stent length and minimum stent diameter ranked the

most important features. Longer total stent length could imply a more complex vascular mor-

phology and stenting approaches, such as multivessel disease, diffuse lesion, side branch, and

bifurcate technique. Calcific lesion is associated with long lesion, older age, diabetes, and renal

dysfunction. It is the major cause of stent under expansion and malapposition, which subse-

quently lead to ISR [20]. Longer total stent length could also correlate to smaller stent diameter

in a diffuse lesion since more distal vessels could be targeted for stenting. A large-scale trial

using intravascular ultrasound (IVUS) showed the cutoff of minimal stent area for prediction

angiographic ISR was 5.3mm2 ~ 5.7mm2 [21]. By transforming to diameter, it was 2.6mm ~

2.7mm, indicating a significantly higher ISR rate while implanting stents with diameters less

than 2.75mm even in the absence of under expansion. Neoatherosclerosis is an important

pathological characteristic of ISR in the second-generation DES era [22]. It can be accelerated

atherosclerosis due to incomplete endothelialization, disrupted endothelial function, and

excessive uptake of circulating lipid [23]. Smoking, hypertension, diabetes, CKD, and multi-

vessel disease are associated with impaired endothelial function, and dyslipidemia contributes

Table 3. Robustness test by sequentially removing the outliers.

AUC-ROC P < 0.05b

Random forest Logistic regression Differencea

Total data control = 1222, ISR = 279 0.829 ± 0.025 (0.783 ~ 0.880) 0.784 ± 0.027 (0.722 ~ 0.835) 0.045 ± 0.015 (0.000 ~ 0.075) 29/50c

Removal of the outliers with

> 8 times of mCD control = 1217, ISR = 266 0.836 ± 0.021 (0.786 ~ 0.875) 0.801 ± 0.028 (0.734 ~ 0.871) 0.035 ± 0.017 (-0.002 ~ 0.066) 21/50c

> 7 times of mCD control = 1215, ISR = 255 0.845 ± 0.021 (0.813 ~ 0.897) 0.815 ± 0.024 (0.775 ~ 0.864) 0.030 ± 0.016 (-0.004 ~ 0.071) 13/50c

> 6 times of mCD control = 1212, ISR = 236 0.872 ± 0.023 (0.825 ~ 0.914) 0.850 ± 0.021 (0.806 ~ 0.889) 0.021 ± 0.016 (-0.021 ~ 0.057) 14/50c

> 5 times of mCD control = 1203, ISR = 204 0.900 ± 0.017 (0.859 ~ 0.932) 0.886 ± 0.016 (0.853 ~ 0.923) 0.014 ± 0.013 (-0.017 ~ 0.040) 3/50c

> 4 times of mCD control = 1200, ISR = 173 0.918 ± 0.016 (0.885 ~ 0.950) 0.915 ± 0.016 (0.878 ~ 0.945) 0.003 ± 0.010 (-0.018 ~ 0.021) 0/50c

Values are mean ± SD (minimum ~ maximum) from the 50 test datasets.
a Value of random forest minus value of logistic regression.
b DeLong test was used.
c P value less than 0.05 was revealed in no. of the 50 test datasets.

mCD = mean Cooks distance.

https://doi.org/10.1371/journal.pone.0268757.t003
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to a higher level of blood triglyceride and cholesterol. Stenting for ACS indicated stenting on

unstable lesions that is a significant risk factor of neoatherosclerosis [22].

Discordance

Jesús et al. compared 6 ML algorithms with 3 traditional risk score systems in predicting

ISR using the data containing 263 patients from the GRACIA-3 trial [8]. A total of 68

Fig 3. Importance of the features. The CPI, MDA, and MDGini of the variables. Sort by descending CPI. Values were

all scaled to 0 ~10 for presentation. The higher the value, the more important the variable is. Abbreviations:

ACS = acute coronary syndrome, CKD = chronic kidney disease, CPI = conditional permutation importance,

MDA = mean decrease accuracy, MDGini = mean decrease Gini.

https://doi.org/10.1371/journal.pone.0268757.g003
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variables, including bare-metal and DES stent, were screened for model development.

Using the 10-fold cross-validation method, the RF and LR were among the models with the

highest accuracy, but no statistically significant difference was revealed due to the small

sample size (AUC-ROC: power = 0.218) and the possibility of noise variables [19]. We con-

ducted the comparison of RF and LR in a larger retrospective patient cohort. Our study

population consisted of patients receiving 2nd generation DES on de novo atherosclerotic

lesions with worse renal function, multivessel disease, complex lesion, and small vessel

diameter. It would therefore better fit the routine clinical practice in developing countries

where coronary artery bypass graft surgery is not widely applicable. By randomly splitting

the data into paired train and test datasets with 50 repeats, we found that the RF models all

had larger AUC-ROC than the LR models. As the difference of sensitivity between the RF

and LR model oscillated around zero, the differences of specificity, PPV, and F1 score were

all above zero, indicating that the stable and better performance of the RF models is not by

chance (S5 Fig). Cui et al. reported that 6 plasma metabolites can be used to predict ISR

with a very high accuracy of 0.93 [24]. However, the metabolites are not routinely measured

by mass spectrum in routine clinical practice, and their predictions were made after coro-

nary stenting. Our model provides prediction before coronary stenting based on the vari-

ables obtained from daily practice, QCA, and stenting strategy.

Clinical implication

Intravascular imaging modalities enable the ability to optimize PCI strategy and precise stent-

ing [25]. The IVUS was associated with a 40% reduction in target vessel revascularization com-

pared to angiographic guidance [26]. In our study, the intravascular imaging devices were only

employed in less than 3% of the patients due to increased expense. The RF model predicted

ISR with similar sensitivity of 80% but an average of 0.094 higher specificity than the LR

model, reducing 25% of false positives. If the models had been used to identify patients with a

high risk of ISR for employing intravascular imaging, close follow up and considering alterna-

tive therapy, the RF could have been more cost-effective than the LR by decreasing 25%

expense with similar reductions in ISR and target vessel revascularization.

Limitations

First, the current study is limited by its retrospective and single-center nature. The indications

for repeat QCA included newly onset chest discomfort, prior high-risk PCI, and ischemic find-

ings in non-invasive testing. The patients could be a self-selected high-risk group, questioning

the validation in external and prospective cohorts. Further model generalization including less

biased observational cohorts is required. Second, gene polymorphisms, blood biomarkers,

intravascular imaging, coronary calcification, and PCI procedures which have been reported

to be risk factors of ISR were not included in our models. Further feature selection for a more

generalized model with better predictive performance is an ongoing work by our team. Third,

the QCA was reassessed 9 ~ 18 months after initial coronary stenting. Some control patients

who had reassessment of QCA early at 9 months may have diagnosed ISR if QCA was reas-

sessed late to 18 months. This bias could result in an underestimation of the accuracy of the

predictive models. Forth, the best cutoff threshold is unknown. Identifying more patients who

will develop ISR with acceptable specificity is the rationale that 0.8 of sensitivity is used in our

study. Finally, the RF and LR algorithm are limited in inputting coronary imaging data. The

QCA could miss important features that are difficult to quantify. The convolutional neural net-

work has the advantage of fully utilizing imaging data and could play a key role in future

studies.
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Conclusions

Using the variables obtained from patient characteristics and QCA, we developed an ML

model using RF to predict angiographic ISR in the retrospective cohort of patients who had

initial coronary stenting for 9 ~ 18 months. The robust RF model improved predictive perfor-

mance as compared with the traditional LR model and could help clinical decisions for coro-

nary stenting with higher cost-effectiveness.

Supporting information

S1 Fig. Variable selection in the RF algorithm. The conditional permutation importance,

mean decrease accuracy, and mean decrease Gini of the 15 variables. Order as descending CPI

value. The higher the value, the more important the variable is. Abbreviations: ACS = acute

coronary syndrome, CKD = chronic kidney disease.

(TIF)

S2 Fig. Variable exclusion frequency in the LR model by the stepwise AIC method. The

exclusion frequency was counted from the 50 LR models. The exclusion frequency is denoted

at the top of each column. Order as ascending exclusion frequency. The higher the frequency,

the variable less influenced the LR model. Abbreviations: ACS = acute coronary syndrome,

CKD = chronic kidney disease.

(TIF)

S3 Fig. The workflow of robustness test. Abbreviations: ISR = intra-stent restenosis,

ROC = receiver operating characteristic.

(TIF)

S4 Fig. The Cooks distance and probability of ISR. The Cooks distances among the study

population (A). The X-axis denotes each patient. The Y-axis denotes the Cooks distance of

each patient in ascending order. The blue solid line denotes the mCD. The red dashed line

denotes the threshold of 4 times of mCD. The histogram of the probability of ISR of the study

population (B) and that after removal of the patients with more than 4 times of mCD (C). The

X-axis ranges from 0 to 1, denoting the probability of ISR. The Y-axis denotes the patient fre-

quency of the probabilities. Abbreviations: ISR = in-stent restenosis; mCD = mean Cooks dis-

tance.

(TIF)

S5 Fig. Difference of the metrics between the RF and LR models. The difference was calcu-

lated by subtracting the value of the LR model from that of the RF model in each test dataset.

The difference of sensitivity oscillated around zero in the 50 test datasets. However, the differ-

ences in specificity, PPV, and F1 scores were all above zero, indicating that the RF models had

higher specificity, PPV, and F1 scores than the LR models under similar sensitivity. Abbrevia-

tions: LR = logistic regression; RF = random forest.

(TIF)

S1 File. Minimal data set.

(XLSX)
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